For citation: Liao Mingzhe, Xu Qiao, Mei Shunqi, Zhang Huiru, Dai Yuguang. The influence of yoke on electromagnetic force during electromagnetic weft insertion // Grand Altai Research & Education — Issue 2 (22)'2024 (DOI: 10.25712/ASTU.2410-485X.2024.02) — EDN: https://elibrary.ru/BGFLIH
УДК 613.168
The influence of yoke on electromagnetic
force during electromagnetic weft insertion
Liao Mingzhe*1, Xu Qiao1, Mei Shunqi1'2, Zhang Huiru1, Dai Yuguang1
1 Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, 430073, China 2 Innovation Centre of Advanced Textile Technology(Jianhu Laboratory), Shaoxing, 312000, China
E-mail: 1325113434@qq.com
Abstract. Electromagnetic weft insertion technology has a broad application prospect in the weaving of wide-width textiles. Based on the principle of electromagnetic drive, this paper analyzes the factors that may affect the electromagnetic force. The electromagnetic weft insertion device without yoke is simulated by finite element simulation software. It is found that most of its magnetic field lines are diffused outwardly, the energy conversion efficiency is low and the electromagnetic force is unstable. Then a magnetic yoke is installed outside the drive coil. The results show that the magnetic field inside the drive coil increases significantly, the magnetic field line escaping to the outside decreases obviously, and the electromagnetic force received by the clip weft device increases and becomes more stable, which can effectively improve the efficiency of electromagnetic weft insertion.
Keywords: Electromagnetic weft insertion mechanism,Electromagnetic launch, Electromagnetic yoke
fe® si шт^штят^штш
mm1, tm1, тити, шт1, мш1
1 Пи 430073
2 (ШШШШ ФНШХ, 312000
E-mail: 1325113434@qq.com
шт: ттт^штм^тт^шгтьтшш. штшш шшт, штвтшмтш. жтшшшшштштт\ шшштш. шшшхшшгш, шшшшш, т^шшт^ш-^шж шш, шШШЙШШ&ЩХ
0 Иш
шшшк, шхт, штжттшш, ^тмм&тмяш шшт&шш, шчш, шшшшшш.шштчш
Ш^Ш [1].
Ш^ИЙ^ПЩдаЯШШйМжЖ^^МЙ 2015 г/min fp 850r/min, Щ ^П^ЯМШ^ШМЙ 5.4m - 5.5m,
ш^шшштк вш^шшш&шш
ыштт^шт^.
ттттр^мышйшжшх^, тьтхшгтщш^
шшшшттш, 1974 ш&тш-^ш
яшяшът [2]. 2006 -шя^тяш [3].
discovery яшяяшш,
^ШшшЖ^Ш 400^/min [4]. ш.ш-хшшятшж&шя
[5], шт&шш&тшшш.
тшшштшт+ж [6]. E^I^ÄÖъшшАтшшш
^ЯЖЙМШЛШтТда [7][8].
шашмодш^йша^^н*^ ШШ, Ät
шш^аш^й, [9]; твд^а
шшшшшт, шь^^тешпшйт [10]; мшмм^
т.
1 х^яа
штшытшш, ш
тшшжшя.
m ьшттшштяй:
F = V(m • В) (1)
^^ОДФ^Ш^ШФ^ШВ, ттйтттшш, МйШФ^Я ^ШДОЙНЙШЛ. тьш^шттжФйшш тштш, «етрш^^шл.
Figure. 1 Schematic diagram of electromagnetic weft insertion device
i, ^ffl^^ R1, R2,
^ l, 1 Bt, z
fa, [11], +
B(z) =
До nrnzi
2
R +
/L 4 «2+^2 2 + (f+Z) ,
Ri+/Ri2 + g+z)
(2- z) z n
R2+jR22 + g-z)
Ri+JRi2 + (f-z)
(2)
та^та^шт шь x ^ y am^it
# Z ^МЛ fz:
I
F(z) = 2TrrixfJ2JB(z)a-^dz (3)
r ^iswe, xm лшашлж (3) ^ШЗ^шпЖЙ а.
a = m = ™:lxnjzjB(z)a^dz (4)
т т ц.0 z~ -z v 7
VI
v = f a = f jz+2 B (z) dz dt (5)
J0 m J0 Jz-i v J dz v '
Maxwell ^T^. M^I^M
about-Z
2.1
# Maxwell2D ^
s^ffl, steel_1008 «4, copper
W4, Ssjjii^n^iffii®^ vacuum.
Figure 2. Simulation model without yoke
ет^Ши^ 1800 Ш, № 100A, 9mm, 30mm, ^^ 90mm.
8mm, -fog 90mm, Mrn^ 50g, 10m/s ЙШё^, Ш
On Selection Й^Н^ 0.5mm; On Selection ^ЖСТ^, Й^Н^ 1mm.
И 10ms, 0.5ms, Ш^^Ш^ШШМ^ШШИШЛ^^
®3
Figure. 3 Magnetic field line distribution of electromagnetic weft insertion model without yoke
-- —
/
#
®4
Figure 4. Electromagnetic force of electromagnetic weft insertion model without yoke
727.1N, 9ms
2.2 шмшчтштшшА
Maxwell2D ФЙ^Т^ШШ ЙМШ^Ж^, ШШШ
ШШ®^ steel_1008 ш, 8тш, On Selection ШсНШз 1mm.
as ^тш^жшш
Figure 5. Simulation model with yoke
тжгт^ттштшштттмштпТ:
®6
Figure. 6 Magnetic field line distribution of electromagnetic weft insertion model with yoke
М
ХВЬЩэ ШЙ^ШЛ^ГВД:
Ф, ^^ШОДШЛШМ^. «ШШМЗШИФ^^Я^ЗДМ
ШЛ^ШпТ:
®7
Figure.7 Electromagnetic force of electromagnetic weft insertion model with yoke
804.8N. ВДШШйШШШШ,
3 S
Maxwell
ИШГЙ, ЙШ7ШЮШЙ, ^
Мж
K±)[J].
в
Ш, 2019(7):71-
[1] Äfö, ^Sf.
74. D01:10.3969/j.issn.1003-3025.2019.07.028.
[2] Josef, J., & Ernst, G. (1974). Weft insertion system for weaving looms (Patent number: US3902535A). United States.
[3] ^m. --2006, 34(7):59-61.
D0I:10.3969/j.issn.1001-2044.2006.07.025.
[4] Jim Kaufmann. ITMA 2019 — Just a Few of The "Cool" Things on Display[J]. Textile World,2019,169(5).
[5] ^ ^Ä, 2018,39(7):130-136. D0I:10.13475/j.fzxb.20170203607.
kf^XfM, 2018(3):138-142,46. D0I:10.16731/j.cnki.1671-3133.2018.03.025.
[7] 2018.
[8] Ä^^^, 2020.
[9] M^MMM^^«»]. 2015, 5(4):33-35.
D0I:10.3969/j.issn.2095-2163.2015.04.010.
[10] i^, I5M&, 2011, 32(2):1-7. D01:10.3969/j.issn.1671-4547.2011.02.001.
[11] ^m^, Mm [M]. ^M: 1985.
References
[1] Hong Haicang, Li Xueqing. Recent progress and development trend of weaving technology at home and abroad [J]. Textile Review,2019(7):71-74. (in Chinese) D0I:10.3969/j.issn.1003-3025.2019.07.028.
[2] Josef, J., & Ernst, G. (1974). Weft insertion system for weaving looms (Patent number: US3902535A). United States.
[3] Liu Ping, FANG Shao-en. A New Type of loom — Magnetic weft Insertion Loom [J]. Shanghai Textile Science and Technology, 2006, 34(7):59-61. (in Chinese) D0I:10.3969/j.issn.1001-2044.2006.07.025.
[4] Jim Kaufmann. ITMA 2019 — Just a Few of The "Cool" Things on Display[J]. Textile World,2019,169(5).
[5] Xu Qiao, YAN Wenjun, Mei Shunqi, et al. Based on the electromagnetic emission of ultra wide width automatic loom weft insertion mechanism design method [J]. Journal of textile, 2018, 33 (7) 6:130-136. The DOI: 10.13475 / j.f ZXB. 20170203607.
[6] Xu Qiao, YAN Xiaoyu, Mei Shunqi, et al. Structure Design and Magnetic Field Analysis of Electromagnetic Emission weft Insertion Mechanism for Ultra-Wide Door Loom [J]. Modern Manufacturing Engineering,2018(3):138-142,46. D0I:10.16731/j.cnki.1671-3133.2018.03.025.
[7] Yan Xiaoyu. Analysis, Design and Simulation of Electromagnetic Emission weft Insertion Mechanism [D]. Wuhan Textile University,2018.
[8] Yan Wenjun. Research on Control System of Electromagnetic weft Insertion Device for Super Wide Door Loom [D]. Wuhan Textile University,2020.
[9] Sun Han, BAI Xiujun. Physical Model Construction and System Implementation of Electromagnetic Gun [J]. Intelligent Computer and Applications, 2015, 5(4):33-35. (in Chinese) D0I:10.3969/j.issn.2095-2163.2015.04.010.
[10] Wang Qun, GENG Yunling. Electromagnetic gun and its Characteristics and Military Application Prospect [J]. National Defense Science and Technology,2011,32(2):1-7. (in Chinese) D0I:10.3969/j.issn.1671-4547.2011.02.001.
[11] Zhao Kaihua, Chen Ximou. Electromagnetics [M]. Beijing: Higher Education Press, 1985.