Научная статья на тему '电磁引纬过程中磁轭对驱动力影响分析'

电磁引纬过程中磁轭对驱动力影响分析 Текст научной статьи по специальности «Техника и технологии»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
电磁引纬机构 / 磁阻发射 / 磁轭 / Electromagnetic weft insertion mechanism / Electromagnetic launch / Electromagnetic yoke

Аннотация научной статьи по технике и технологии, автор научной работы — Liao Mingzhe, Xu Qiao, Mei Shunqi, Zhang Huiru, Dai Yuguang

电磁引纬技术在宽幅纺织品的织造中有着广阔的应用前景. 根据电磁发射基本原理, 分析了影响电磁力的因素. 采用有限元仿真软件对无磁轭电磁发射引纬机构进行了仿真. 发现其磁力线大部分向外扩散, 能量转换效率低, 电磁力不稳定. 然后在驱动线圈外安装一个磁轭. 结果表明, 驱动线圈内部磁场明显增大, 向外逸出的磁场线明显减小, 引纬器所受电磁力增大且变得更加稳定, 可有效提高电磁引纬效率.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The influence of yoke on electromagnetic force during electromagnetic weft insertion

Electromagnetic weft insertion technology has a broad application prospect in the weaving of wide-width textiles. Based on the principle of electromagnetic drive, this paper analyzes the factors that may affect the electromagnetic force. The electromagnetic weft insertion device without yoke is simulated by finite element simulation software. It is found that most of its magnetic field lines are diffused outwardly, the energy conversion efficiency is low and the electromagnetic force is unstable. Then a magnetic yoke is installed outside the drive coil. The results show that the magnetic field inside the drive coil increases significantly, the magnetic field line escaping to the outside decreases obviously, and the electromagnetic force received by the clip weft device increases and becomes more stable, which can effectively improve the efficiency of electromagnetic weft insertion. Keywords:

Текст научной работы на тему «电磁引纬过程中磁轭对驱动力影响分析»

For citation: Liao Mingzhe, Xu Qiao, Mei Shunqi, Zhang Huiru, Dai Yuguang. The influence of yoke on electromagnetic force during electromagnetic weft insertion // Grand Altai Research & Education — Issue 2 (22)'2024 (DOI: 10.25712/ASTU.2410-485X.2024.02) — EDN: https://elibrary.ru/BGFLIH

УДК 613.168

The influence of yoke on electromagnetic

force during electromagnetic weft insertion

Liao Mingzhe*1, Xu Qiao1, Mei Shunqi1'2, Zhang Huiru1, Dai Yuguang1

1 Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, 430073, China 2 Innovation Centre of Advanced Textile Technology(Jianhu Laboratory), Shaoxing, 312000, China

E-mail: 1325113434@qq.com

Abstract. Electromagnetic weft insertion technology has a broad application prospect in the weaving of wide-width textiles. Based on the principle of electromagnetic drive, this paper analyzes the factors that may affect the electromagnetic force. The electromagnetic weft insertion device without yoke is simulated by finite element simulation software. It is found that most of its magnetic field lines are diffused outwardly, the energy conversion efficiency is low and the electromagnetic force is unstable. Then a magnetic yoke is installed outside the drive coil. The results show that the magnetic field inside the drive coil increases significantly, the magnetic field line escaping to the outside decreases obviously, and the electromagnetic force received by the clip weft device increases and becomes more stable, which can effectively improve the efficiency of electromagnetic weft insertion.

Keywords: Electromagnetic weft insertion mechanism,Electromagnetic launch, Electromagnetic yoke

fe® si шт^штят^штш

mm1, tm1, тити, шт1, мш1

1 Пи 430073

2 (ШШШШ ФНШХ, 312000

E-mail: 1325113434@qq.com

шт: ттт^штм^тт^шгтьтшш. штшш шшт, штвтшмтш. жтшшшшштштт\ шшштш. шшшхшшгш, шшшшш, т^шшт^ш-^шж шш, шШШЙШШ&ЩХ

0 Иш

шшшк, шхт, штжттшш, ^тмм&тмяш шшт&шш, шчш, шшшшшш.шштчш

Ш^Ш [1].

Ш^ИЙ^ПЩдаЯШШйМжЖ^^МЙ 2015 г/min fp 850r/min, Щ ^П^ЯМШ^ШМЙ 5.4m - 5.5m,

ш^шшштк вш^шшш&шш

ыштт^шт^.

ттттр^мышйшжшх^, тьтхшгтщш^

шшшшттш, 1974 ш&тш-^ш

яшяшът [2]. 2006 -шя^тяш [3].

discovery яшяяшш,

^ШшшЖ^Ш 400^/min [4]. ш.ш-хшшятшж&шя

[5], шт&шш&тшшш.

тшшштшт+ж [6]. E^I^ÄÖъшшАтшшш

^ЯЖЙМШЛШтТда [7][8].

шашмодш^йша^^н*^ ШШ, Ät

шш^аш^й, [9]; твд^а

шшшшшт, шь^^тешпшйт [10]; мшмм^

т.

1 х^яа

штшытшш, ш

тшшжшя.

m ьшттшштяй:

F = V(m • В) (1)

^^ОДФ^Ш^ШФ^ШВ, ттйтттшш, МйШФ^Я ^ШДОЙНЙШЛ. тьш^шттжФйшш тштш, «етрш^^шл.

Figure. 1 Schematic diagram of electromagnetic weft insertion device

i, ^ffl^^ R1, R2,

^ l, 1 Bt, z

fa, [11], +

B(z) =

До nrnzi

2

R +

/L 4 «2+^2 2 + (f+Z) ,

Ri+/Ri2 + g+z)

(2- z) z n

R2+jR22 + g-z)

Ri+JRi2 + (f-z)

(2)

та^та^шт шь x ^ y am^it

# Z ^МЛ fz:

I

F(z) = 2TrrixfJ2JB(z)a-^dz (3)

r ^iswe, xm лшашлж (3) ^ШЗ^шпЖЙ а.

a = m = ™:lxnjzjB(z)a^dz (4)

т т ц.0 z~ -z v 7

VI

v = f a = f jz+2 B (z) dz dt (5)

J0 m J0 Jz-i v J dz v '

Maxwell ^T^. M^I^M

about-Z

2.1

# Maxwell2D ^

s^ffl, steel_1008 «4, copper

W4, Ssjjii^n^iffii®^ vacuum.

Figure 2. Simulation model without yoke

ет^Ши^ 1800 Ш, № 100A, 9mm, 30mm, ^^ 90mm.

8mm, -fog 90mm, Mrn^ 50g, 10m/s ЙШё^, Ш

On Selection Й^Н^ 0.5mm; On Selection ^ЖСТ^, Й^Н^ 1mm.

И 10ms, 0.5ms, Ш^^Ш^ШШМ^ШШИШЛ^^

®3

Figure. 3 Magnetic field line distribution of electromagnetic weft insertion model without yoke

-- —

/

#

®4

Figure 4. Electromagnetic force of electromagnetic weft insertion model without yoke

727.1N, 9ms

2.2 шмшчтштшшА

Maxwell2D ФЙ^Т^ШШ ЙМШ^Ж^, ШШШ

ШШ®^ steel_1008 ш, 8тш, On Selection ШсНШз 1mm.

as ^тш^жшш

Figure 5. Simulation model with yoke

тжгт^ттштшштттмштпТ:

®6

Figure. 6 Magnetic field line distribution of electromagnetic weft insertion model with yoke

М

ХВЬЩэ ШЙ^ШЛ^ГВД:

Ф, ^^ШОДШЛШМ^. «ШШМЗШИФ^^Я^ЗДМ

ШЛ^ШпТ:

®7

Figure.7 Electromagnetic force of electromagnetic weft insertion model with yoke

804.8N. ВДШШйШШШШ,

3 S

Maxwell

ИШГЙ, ЙШ7ШЮШЙ, ^

Мж

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

K±)[J].

в

Ш, 2019(7):71-

[1] Äfö, ^Sf.

74. D01:10.3969/j.issn.1003-3025.2019.07.028.

[2] Josef, J., & Ernst, G. (1974). Weft insertion system for weaving looms (Patent number: US3902535A). United States.

[3] ^m. --2006, 34(7):59-61.

D0I:10.3969/j.issn.1001-2044.2006.07.025.

[4] Jim Kaufmann. ITMA 2019 — Just a Few of The "Cool" Things on Display[J]. Textile World,2019,169(5).

[5] ^ ^Ä, 2018,39(7):130-136. D0I:10.13475/j.fzxb.20170203607.

kf^XfM, 2018(3):138-142,46. D0I:10.16731/j.cnki.1671-3133.2018.03.025.

[7] 2018.

[8] Ä^^^, 2020.

[9] M^MMM^^«»]. 2015, 5(4):33-35.

D0I:10.3969/j.issn.2095-2163.2015.04.010.

[10] i^, I5M&, 2011, 32(2):1-7. D01:10.3969/j.issn.1671-4547.2011.02.001.

[11] ^m^, Mm [M]. ^M: 1985.

References

[1] Hong Haicang, Li Xueqing. Recent progress and development trend of weaving technology at home and abroad [J]. Textile Review,2019(7):71-74. (in Chinese) D0I:10.3969/j.issn.1003-3025.2019.07.028.

[2] Josef, J., & Ernst, G. (1974). Weft insertion system for weaving looms (Patent number: US3902535A). United States.

[3] Liu Ping, FANG Shao-en. A New Type of loom — Magnetic weft Insertion Loom [J]. Shanghai Textile Science and Technology, 2006, 34(7):59-61. (in Chinese) D0I:10.3969/j.issn.1001-2044.2006.07.025.

[4] Jim Kaufmann. ITMA 2019 — Just a Few of The "Cool" Things on Display[J]. Textile World,2019,169(5).

[5] Xu Qiao, YAN Wenjun, Mei Shunqi, et al. Based on the electromagnetic emission of ultra wide width automatic loom weft insertion mechanism design method [J]. Journal of textile, 2018, 33 (7) 6:130-136. The DOI: 10.13475 / j.f ZXB. 20170203607.

[6] Xu Qiao, YAN Xiaoyu, Mei Shunqi, et al. Structure Design and Magnetic Field Analysis of Electromagnetic Emission weft Insertion Mechanism for Ultra-Wide Door Loom [J]. Modern Manufacturing Engineering,2018(3):138-142,46. D0I:10.16731/j.cnki.1671-3133.2018.03.025.

[7] Yan Xiaoyu. Analysis, Design and Simulation of Electromagnetic Emission weft Insertion Mechanism [D]. Wuhan Textile University,2018.

[8] Yan Wenjun. Research on Control System of Electromagnetic weft Insertion Device for Super Wide Door Loom [D]. Wuhan Textile University,2020.

[9] Sun Han, BAI Xiujun. Physical Model Construction and System Implementation of Electromagnetic Gun [J]. Intelligent Computer and Applications, 2015, 5(4):33-35. (in Chinese) D0I:10.3969/j.issn.2095-2163.2015.04.010.

[10] Wang Qun, GENG Yunling. Electromagnetic gun and its Characteristics and Military Application Prospect [J]. National Defense Science and Technology,2011,32(2):1-7. (in Chinese) D0I:10.3969/j.issn.1671-4547.2011.02.001.

[11] Zhao Kaihua, Chen Ximou. Electromagnetics [M]. Beijing: Higher Education Press, 1985.

i Надоели баннеры? Вы всегда можете отключить рекламу.