For citation-. Zhang Huiru, Xu Qiao, Cao Lican, Mei Shunqi. Structural optimization of ultra-wide width electromagnetic launch weft inserter based on magnetization theory // Grand Altai Research & Education — Issue 2 (22)'2024 (DOI: 10.25712/ASTU.2410-485X.2024.02) — EDN. https.//elibrary.ru/RBOVZJ
UDK 613.168
Structural optimization of ultra-wide width
electromagnetic launch weft inserter based on magnetization theory
Zhang Huiru1*, Xu Qiao1, Cao Lican1, Mei Shunqi1'2
1 Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, 430073, China 2 Innovation Centre of Advanced Textile Technology (Jianhu Laboratory), Shaoxing, 312000, China
E-mail: zhr15623633695@163.com
Abstract. The weft inserter is the core component of the piece shuttle loom, in which the weft inserter needs to hold the weft yarn and go through the process of launching, flying, braking and so on. In order to improve the acceleration performance of the weft inserter, according to the magnetization theory, it is proposed to increase the magnetic flux difference by adding permanent magnets to the weft inserter to increase the applied magnetic field force by comparing the position of the permanent magnet material in the weft inserter and analyzing the electromagnetic force on the weft inserter with the addition of the permanent magnet using Ansys Maxwell finite element software. The results show that the addition of a permanent magnet sheet at the end of the weft inserter increases the magnetic field gradient on both sides of the device and enhances the electromagnetic force.
Keywords: weft inserter; magnetic field force; electromagnetic launch insertion; optimized design
шт1*, шя1, w^rn1, mum12
i пш&ш, фн, m 430073
2 ФНт^, 312000
E-mail: zhr15623633695@163.com
ш, m ^т^й^шпжт тмшшъ, шжжда
щ ш^шшшштштштж, тшш-^я. жад^ш^ш
ЙЗ^ЙШЯ, Ansys Maxwell ЯШкШШШШуПШШЗШ
шх, шмш
ШЩ: шл ШШЧШ, tttt&it о Иш
штшшшк -щтшшшшшшш, шш, ш чш, шжш, жшхыштшш 12m [1;14]. тшл^шшшш
Я, Х^, «ШтШ^М^ [3].
ш^, хшттттлтрхжхгтт. шт
mm, i^m, ^хх«, шшщшнйм^йвшш. ш
[2] ШШМ JURGNES тяШ%ШтЖШ^\ттт
шттъх&т. шшш&шш, хтш-штш, лад^ i6m/s, шшшшх ш^&ш,, штшшт, шч\пш шт&ш^, жтшшшт^штвтттшиш, я^ш^шхй. шышштш&пмхяш [13]
GA731-380 тмтяшш^, шшти 7.5m ттшмтяш,
шшятт, ттшшшшшт%ттшт\ш, ^шшт^
да^ш, йй^т, пттштш, шш 90r/min, т^яш®
ж^шшш, шх.
mm, шш
шшшшшш, чшштттш. ^ттштшштш^, шшшйфшж, ефшж^ф^шйфй^
Д^ШЙ, ШШ, -ЩШШШ& [4;15]. Emad Owlia Щ&ХШ [5]
ш&ях^ш. [6] Ш&7ВМ& шшштттш. йй&й, штжтшттттштт т, тш^шшт,
ш7тпшжя. шши, и ш&шщшшшш
ттттш, шшштш^шшштжт^шштшт
щшшш [7]. т^тмшттт'йт\т№тт7тшт, # т±7шшшшшж [8].
шшшшш^шшяшъш, »^фх, ш^щш,
5.4m [9;16],
'\жшТ, 12m штяшшш.
^шшпшшш^ттшхтттшш, тттшш
IL, ^
tt [10]. Вй, ШШШМШШШШШШМШ& [ii;i7], ШШШШШ, ЯШЯШкШ Ansys Maxwell 2D, ^ШШШЩ«^
^тштшштшттшк.
1 шмямятш
ш, шшшш1 ш. шшшя^хш DT4 ш, шштшшяя ш^шшшт&ш, йжшшр, шшшшштштшш
Fig. 1 Schematic diagram of the electromagnetic launch weft insertion
2
тшишштштшштттш
ад^шюл.
шш^шя^шпшмаш адш^штмлйадш, Ш 2. мл^шпшмаш^Ф^^йш^л, мл^,
ж^, ^ш^шшпж, з^одатж, ш
Y
1 /дф g li в 1 1 1 1
1 ■ 1 ) 1 1 1 1 1 -л
и и 1
®2 /шш^шшптш'&тттт
Figure 2. Segmented combination of ultra-wide width electromagnetic launch weft inserter principle
= (1)
[12]:
F = BILsine =-^MlpLs = M XA<P (2)
Lsxlp
I=Mlp,
B
M=--H (3)
[12]:
F = jM(x + dx)S(B(x + dx) - B(x)) (4)
m mim^ ip Ls ^««rn^^.
3 si^m^m^
3.1
m, (2), m^mmmm
a ^nmmmmtmm.
(b)
(a) (b)
Figure 3. The weft inserter for Sulzer projectile looms: (a) The weft inserter housing; (b) The unidirectional weft inserter structure
# Maxwell2D + ^ШШШШШЫ, ШШЖШШт
copper, ШШШХ steel_1008 Iffi, тШШЖШШЩ^ vacuum.
®4
Figure 4. Simulation diagram of electromagnetic launch weft insertion
шп®5. тътшт^шшттышшхтж & и, тшъшшп. ш-ттт, ?жш
тшшшшш(b) ад^ж^одшжт шшшшш, чтш
(а) жшшш.
ж.
®5
(a) ^m^mrn^^mmm;
(b) 31 n^mm^x^trnrnrn
Figure 5. The weft inserter material configuration scheme:
(a) Large permanent magnet material at the front of the weft inserter
(b) Large permanent magnet material at the back of the weft inserter
Figure б. Force diagram of the weft inserter
3.2
Й3.1 ^ТОЬШЖ, ^^З^ШШИ^ЖШ^Ш^Ж
ш7 ^ш^шпш^жшш^йй, жттп-тттшш
Ч№ШШШШ$1 NdFe ьшш^шшшшх NdFe ЙЙ^ЖШдаШ^
гх-^тттшт, штштшшмттжтшя.
®7 ^mnmmm^jtmw (c)
^ïffi^/J^NdFe (d) Figure 7. Configuration of different permanent magnets at the rear end of the weft inserter (c) Small piece of NdFe at the rear end of the weft inserter (d)
®8
Figure 8/ Force diagram of the weft inserter
4
MX^m Maxwell 2D
mm, mm^ffi&fcMfimx ^mm^mmmmt im^-nrnxymimtimmim^mrnm,
[1] ^5, mx^, m^^mmmMmim&mm^mmmif^vi m
^^M, 2018, 39(7):130-136.
[2] rnmmummimm^mmzmD]. ^x^x^, 2002.
[3] Cherston J., Veysset D., Sun Y. et al. Large-area electronic skins in space: vision and preflight characterization for first aerospace piezoelectric e-textile[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020. SPIE, 2020, 11379: 239-252
[4] BWM. M^[M]. 1985.
[5] Owlia, Emad, Mirjalili et al. Design and modeling of an electromagnetic launcher for weft insertion system[J]. Textile research journal, 2019, 89(5):834-844.
[6] nx, » xrnmmm,
2022, 50(1):12-16.
[7] mmm, rnmm. mrm^mmmmMmft^timmvi x^mrn, 2022,
41(2):49-52,81.
[8] ^15, ^x®, Mmimm^mm^mmmnmf^mmftwi M
kf^XfM, 2018(3):138-142,46.
[9] 2008(8):64-67. D0I:10.3969/j.issn.1003-3025.2008.08.016.
[10] 2015: 24-39.
[11] i^^, x^R^M. -^^mmmmmmmmim^mJ].
,2018,37(8):1-5. ,2023.
[13] i^. ^m^&*,2018,46(6):59-62.
[14] ^urn^x^, 2022.
[15] mx^-. mmimm^m^mmm^mmmmm mxmnx^, 2020.
[16] #irn ^urn^x^, 2023.
[17] H^M, Mtff. mimmmmmmM^mmmmmmmvi mmmR
2021, 52(03):40-43. References
[1] Xu Q., Yan We, Mei S. et al. Based on the electromagnetic launch of ultra wide width automatic loom weft insertion mechanism design method [J]. Journal of textile, 2018, 33 (7) 6:130136. (in Chinese) DOI: 10.13475 / j.f ZXB. 20170203607.
[2] Ji Dong. Design of weft insertion mechanism and shuttle box of heavy-duty wide loom[D]. Tianjin Polytechnic University,2002.
[3] Cherston J., Veysset D., Sun Y. et al. Large-area electronic skins in space: vision and preflight characterization for first aerospace piezoelectric e-textile[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020. SPIE, 2020, 11379: 239-252
[4] Ouyang J., Liu Z., Yang L., et al. Numerical analysis of a novel magnetoresistive electromagnetic transmitter[J]. Microtome,2010,38(7):25-27,30. (in Chinese) D0I:10.3969/j.issn.1004-7018.2010.07.008.
[5] Owlia, Emad, Mirjalili, Seyed Abbas, Shahnazari, Mostafa. Design and modeling of an electromagnetic launcher for weft insertion system[J]. Textile research journal,2019,89(5):834-844. D0I:10.1177/0040517518755793.
[6] Liu N., Zhang Q., Chen H. et al. Key technology and experimental research on wide electromagnetic projection and levitation of weft draw-in [J]. Shanghai Textile Science and Technology, 2022, 50 (01): 12-16. (in Chinese) D0I:10.16549/j.cnki.issn.1001-2044.2022.01.079.
[7] Zhang J., Yao L., Yang S. Modeling analysis and simulation study of magnetoresistive electromagnetic launch [J]. University Physics, 2022, 41 (02): 49-52+81. (in Chinese) D0I:10.16854/j.cnki.1000-0712.210180.
[8] Xu Q, Yan X, Mei S et al. Structural design and magnetic field analysis of electromagnetic launch weft-inducing mechanism for ultra-wide width width loom [J]. Modern Manufacturing Engineering, 2018, (03): 138-142+46. (in Chinese) D0I:10.16731/j.cnki.1671-3133.2018.03.025.
[9] Zhang W. Technological progress of projectile loom[J]. Textile Herald,2008(8):64-67. (in Chinese) D0I:10.3969/j.issn.1003-3025.2008.08.016.
[10] Xiang H. Electromagnetic induction coil gun principle and technology [M]. Beijing: Arms Industry Press, 2015: 24-39.
[11] Wang X., Yu C., Sha Z. An optimization method of magnetic field configuration of electromagnetic coil transmitter[J]. Military Automation, 2018,37(8):1-5. (in Chinese) D0I:10.7690/bgzdh.2018.08.001.
[12] He Yuchen. Research on structure and performance of ultra-wide width electromagnetic weft insertion mechanism based on multi-field coupling[D]. Wuhan Textile University, 2023.
[13] Wang Fangchang. Characteristics and application of extra-wide rapier loom[J]. Cotton Textile Technology, 2018, 46(6):59-62.
[14] Cui Xiaolong. Research on structural performance optimization of ultra-wide width electromagnetic emission weft insertion mechanism[D]. Wuhan Textile University,2022.
[15] Yan Wenjun. Research on the control system of electromagnetic weft insertion device of ultra-wide width loom[D]. Wuhan Textile University, 2020.
[16] Sun Weibo. Research and experiment on bidirectional electromagnetic drive of wide-width suspension shuttle weft insertion[D]. Wuhan Textile University, 2023.
[17] Tian Jinpeng, Yi Ningxuan. Effect of drive coil winding structure on the performance of coil-type electromagnetic transmitter[J]. Magnetic Materials and Devices, 2021, 52(03):40-43.