МАТЕРИАЛЫ КОНФЕРЕНЦИИ «ОТЕЧЕСТВЕННЫЕ ПРОТИВООПУХОЛЕВЫЕ ПРЕПАРАТЫ»
25
ционного фактора) проводили в культуре клеток крови после 72 ч культивирования в тесте РБТЛ с ФГА и верапамилом (разведения исходного препарата в 1000 и 10000 раз).
Результаты. Повышенная экспрессия гена Snail отмечена как у пациентов с глиомами, так и у 2 пациентов с кровоизлиянием в головной мозг. У здоровых людей экспрессия гена Snail не обнаружена. Под действием верапа-мила в разведении в 1000 и 10000 раз экспрессия гена Snail в мезенхимальных клетках крови была подавлена. Более эффективно экспрессию гена Snail подавлял верапамил в разведении в 10000 раз по сравнению с разведением в 1000 раз. При разведении верапамила в 10000 раз экспрессия гена Snail подавлялась в 2 раза сильнее по отношению к контрольному показателю.
Заключение. Полученные в эксперименте данные свидетельствуют о том, что верапамил является вероятным протектором индукции ЭМП, подавляя экспрессию гена Snail — ключевого индуктора ЭМП. Можно предположить, что у пациентов с глиомами превращение лимфоцитов в лимфобласты сопровождается повышением активности экспрессии гена Snail. Это может быть следствием особенностей опухоль-ассоциированного воспаления при глиомах головного мозга, когда III стадия воспаления имеет незавершенный характер по типу «незаживающей раны». В результате этого процессы репарации за счет воспаления переходят в процессы регенерации посредством механизмов ЭМП и сопровождаются репрограммированием муль-ти- и плюрипотентных клеток, которые в дальнейшем становятся источником продолженного роста глиом.
М.А. Грин1, Н.В. Суворов1, П.В. Островерхов1, М.А. Каплан2, А.Г. Мажуга34, А.Ф. Миронов1 РАЗРАБОТКА ТАРГЕТНЫХ НАНОСТРУКТУРИРОВАННЫХ ФОТОСЕНСИБИЛИЗАТОРОВ НА ОСНОВЕ БАКТЕРИОХЛОРОФИЛЛА А ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА Московский технологический университет, Москва, Россия;
2Медицинский радиологический научный центр им. А.Ф. Цыба — филиал ФГБУ«ФМИЦим. П.А. Герцена» Минздрава России, Обнинск, Калужская обл., Россия; 3МГУ им. М.В. Ломоносова, химический факультет, Москва, Россия;
4Национальный исследовательский технологический университет «МИСиС», лаборатория биомедицинских наноматериалов, Москва, Россия
Введение. Повышение результативности фотодинамической терапии (ФДТ) в онкологии непосредственно связано с увеличением селективности накопления фотосенсибилизаторов (ФС) в опухолевой ткани. В настоящей работе рассмотрены два возможных подхода к таргетной доставке пигментов в опухоль.
Цель исследования — разработать способы получения наноструктурированных ФС с векторными молекулами, реализующими повышенное накопление в опухоли и, как следствие, фотодинамическую эффективность.
Материалы и методы. В качестве ключевого соединения взят дипропоксибактериопурпуринимид (дипропокси-
БПИ), метиловый эфир которого обладает высокой стабильностью, поглощает в области 800 нм и, как показали эксперименты на животных, проявляет высокую фотоин-дуцированную активность. Для активного таргетинга ФС в опухоль при раке предстательной железы (РПЖ) получен конъюгат с векторным пептидом на простатический специфический мембранный антиген (PSMA), сверхэкспрес-сированный на быстропролиферирующих клетках РПЖ. Для пассивного таргетинга ФС в опухоль были получены наночастицы золота, ковалентно связанные с N-амино-БПИ ( max = 830 нм) за счет остатка липоевой кислоты, а также наночастицы золота и магнетита, покрытые плю-роником (Pluronic F127), с нековалентно иммобилизованными дипропоксибактериопурпуринимидами в виде кислоты и ее метилового эфира.
Результаты. Наноструктурированные ФС представляют собой сферы с гидродинамическим диаметром не более 100 нм, поглощают свет в области 795 нм и интенсивно флуоресцируют при 803 нм, что подтверждает наличие мономерной формы пигмента на поверхности наночастиц.
Селективность накопления полученных ФС была исследована на клетках опухолей различного генеза и живот-ных-опухоленосителях.
Заключение. Получены наноструктурированные ФС путем ковалентной и нековалентной иммобилизации пигментов на наночастицы золота и магнетита. Присоединение векторной молекулы на периферию хлоринового макроцикла реализует таргетную доставку пигмента в зону интереса.
Работа выполнена при финансовой поддержке РНФ (грант № 16-13-10092) и РФФИ (грант ОФИ-м № 15-29-01150).
И.А. Гринева12, А.А. Балакина2, Т.С. Ступина2, Б.С. Федоров2, А.А. Терентьев12 ИССЛЕДОВАНИЕ МЕХАНИЗМОВ ЦИТОТОКСИЧНОСТИ КОМПЛЕКСА ПЛАТИНЫ (IV) С ЛИГАНДАМИ - ПРОИЗВОДНЫМИ ИЗОНИКОТИНОВОЙ КИСЛОТЫ МГУ им. М.В. Ломоносова, Москва, Россия; 2ФГБУНИнститут проблем химической физики РАН, Черноголовка, Московская область, Россия
Введение. Комплексы на основе платины (II) широко используются в качестве химиотерапевтических агентов. Основным недостатком препаратов платиновой группы является высокая токсичность для нормальных клеток организма человека. Комплексы на основе платины (ГУ) — перспективные противоопухолевые соединения, поскольку обладают не только высокой активностью, но и пониженной токсичностью. В ходе работы получен и исследован новый комплекс платины (IV), включающий лиганды — производные изоникотиновой кислоты (ИНК-2).
Цель исследования — изучить влияние комплекса платины (IV) с ИНК-2 на опухолевые клетки различного происхождения.
Материалы и методы. В работе использовали комплекс платины (ГУ) с лигандами — ИНК-2. Эксперименты проводили на клеточных линиях HepG2 (гепатоклеточная карцинома человека), Caco2 (аденокарцинома прямой кишки
Спецвыпуск/ том 16 / 2017
РОССИЙСКИЙ БИОТЕРАПЕВТИЧЕСКИЙ ЖУРНАЛ