Научная статья на тему 'Сравнение расчетных и экспериментальных значений эффективности и шарнирных моментов элевонов на тонких изолированных крыльях малого удлинения'

Сравнение расчетных и экспериментальных значений эффективности и шарнирных моментов элевонов на тонких изолированных крыльях малого удлинения Текст научной статьи по специальности «Механика и машиностроение»

CC BY
254
65
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по механике и машиностроению, автор научной работы — Зыкова Г. Г., Калинин А. И., Микеладзе В. Г., Рекстин А. Ж.

Проведено сопоставление экспериментальных и расчетных характеристик эффективности и шарнирных моментов элевонов на изолированных крыльях малого удлинения. Исследования проведены для крыла с изломом передней кромки с углом стреловидности χп.к.=65°/55° и крыла с прямой передней кромкой с χп.к.=55°. Рассмотрено влияние количества вихрей, моделирующих крыло, на результаты расчета. Исследовано взаимное влияние отклонения элевонов на правой и левой половинах крыла.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Зыкова Г. Г., Калинин А. И., Микеладзе В. Г., Рекстин А. Ж.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Сравнение расчетных и экспериментальных значений эффективности и шарнирных моментов элевонов на тонких изолированных крыльях малого удлинения»

УЧЕНЫЕ ЗАПИСКИ Ц А Г И Том V 1974

№ Г

УДК 629.7.025.1.015.3 + 629.735.33.015.3.025.35

СРАВНЕНИЕ РАСЧЕТНЫХ И ЭКСПЕРИМЕНТАЛЬНЫХ ЗНАЧЕНИЙ ЭФФЕКТИВНОСТИ И ШАРНИРНЫХ МОМЕНТОВ ЭЛЕВОНОВ НА ТОНКИХ ИЗОЛИРОВАННЫХ КРЫЛЬЯХ МАЛОГО УДЛИНЕНИЯ

Г. Г. Зыкова, А. И. Калинин, В. Г. Микеладзе, А. Ж. Рекстик

Проведено сопоставление экспериментальных и расчетных характеристик эффективности и шарнирных моментов элевонов на изолированных крыльях малого удлинения. Исследования проведены для крыла с изломом передней кромки с углом стреловидности Хп. к = 65°/55° и крыла с прямой передней кромкой с хп. к = ^°- Рас‘ смотрено влияние количества вихрей, моделирующих крыло, на результаты расчета. Исследовано взаимное влияние отклонения элевонов на правой и левой половинах крыла.

Для расчета аэродинамических характеристик органов управления в настоящее время может быть использован метод С. М. Белоцерковского, основанный на линейной теории вихревой поверхности [1]. Однако для практического применения этого метода необходимо знать, как согласуются результаты расчета и эксперимента, численного расчета и точного решения. Ранее проводилось сравнение расчетных и экспериментальных характеристик эффективности органов управления на тонких крыльях малого удлинения при малых скоростях, причем при проведении расчетных исследований использовался метод С. М. Белоцерковского с применением теоремы обратимости [2].

Применение теоремы обратимости позволяет свести расчет крыла с отклоненными элевонами к расчету крыла с неотклоненными элевонами в обращенном потоке, в результате чего оказывается возможным расположить вихри, которыми моделируется крыло, равномерно по поверхности крыла. Однако этим методом можно определять лишь суммарные характеристики крыла. Для того чтобы, определить характеристики шарнирных моментов органов управления и распределение нагрузки на крыле, необходимо рассматривать крыло с отклоненными органами управления в прямом потоке. В этом случае крыло моделируется неравномерной сеткой дискретных вихрей с более густой сеткой на органе управления. Возможность замены крыла с органами управления неравномерной сеткой вихрей обоснована в работе [3]. В этой работе путем сравнения результатов численного расчета бесконечной пластинки с рулем по теории вихревой поверхности с точным решением для тонкого профиля с рулем выявлено хорошее совпадение результатов расчета указанным методом с точным решением. В этой же работе проведено сравнение расчетных и экспериментальных характеристик органов управления на крыльях конечного размаха, в основном для прямоугольных крыльев.

В настоящей работе сопоставлены результаты систематического эксперимента с результатом расчета на ЭЦВМ методом дискретных вихрей для тонких изолированных крыльев малого удлинения с изломом передней кромки с углом стреловидности хп. к = 65755° и крыла с передней кромкой без излома с хп. к=^°^

(фиг. 1). При расчете крылья рассматривались в прямом потоке. На каждом из крыльев было испытано по четыре варианта элевонов, различающихся положением по размаху крыла. Рассмотренные варианты элевонов на фиг. 1 обозначены римскими цифрами. Элевоны исследованных вариантов имели конструктивную компенсацию. Обе модели были испытаны в аэродинамической трубе малых

скоростей. Эксперимент показал, что зависимости су, тг, тх,

т„

=/(8эв) ли-

нейны в диапазоне 5эв= + 10— 15° и их производные по 8ЭВ при а от 0 до 10° изменяются слабо. Расчет для этих крыльев проводился на ЭЦВМ БЭСМ-6 по программе, составленной в ЦАГИ, позволяющей определять значения производных с*эв, ти^эв, т*9В, Отщэв , р*98. Основная часть расчетов проводилась при общем количестве вихрей на полукрыле N=120, числе вихрей на элевоне Дгэв=24.

Кроме того, с целью определения влияния количества вихрей на результаты расчета для четырех вариантов элевона на крыле с наплывом хп. к = 65°/55° были проведены расчеты также при общем количестве вихрей N = 56 и 216. Коли-

\П^5Г) Д.-/,/; у-11,2, с-3,5%

0010

0,005

1 л • т ** ) Ш. ЗА к //= обр /Г= » зкс 46; по те/, атимост 56 1 1201 Прям 216) перимеш Треме ¿1 ой расчет 77

1 1 Ч' Г ^3£ V

1 \Л Ж Ж

0 ЗА

-от

2о ~ — относительная ноординггта

ЗЛ I/* мачала зле00//а

-от

0,25 0,50 0,75 г0зл

-¡за

о О

11

Г

Фиг. 1

Фиг. 2

чество вихрей на элевоне соответственно составляло ЛГЭВ = 16 и 30. На фиг. 2 для примера показано сравнение расчетных (при различном количестве вихрей)

и экспериментальных значений производных с 9В и т эв в зависимости от оту эв _

носительной координаты начала элевона вдоль размаха крыла На этой же

фигуре приведены ранее полученные результаты расчетов по теореме обратимости при общем количестве вихрей на полукрыле N = 48 (4 по хорде и 12 по полуразмаху). Видно, что расчетные значения производных суэв заметно зависят от количества вихрей, моделирующих крыло. С увеличением количества вихрей с 56

5 •

до 216, т. е. приблизительно в 4 раза, расчетные значения с вв увеличиваются на

8

15—25Уо и приближаются к значениям с ®в, полученным по теореме обратимости

8 5

при N = 48. Аналогичный результат был получен для производных тгав и тхэв . Как показано в работе [1], для расчета характеристик эффективности органов управления по линейной теории с применением теоремы обратимости достаточно моделировать крыло вихрями в количестве N = 48-5-60. Следовательно, чтобы получить с достаточной точностью характеристики эффективности органов управления расчетом по прямому методу требуется проводить расчеты при общем

количестве вихрей на полукрыле N более 200. Значения производных т^в

с увеличением количества вихрей на полукрыле с 56 до 216 (при увеличении количества вихрей на элевоне с 16 до 30) изменяются сравнительно слабо. Из фиг. 2

— о 5

видно, что характер изменения по гоэв производных суэв и /юП1эв, полученных

У эв

расчетным и экспериментальным путем, одинаков, но расчетные значения, полученные по теореме обратимости или прямому методу при достаточно большом числе вихрей Ы, превышают экспериментальные. Это расхождение, как показано было ранее, объясняется в основном влиянием щелей по торцам элевона, через которые происходит перетекание потока, вследствие чего разность давлений на верхней и нижней поверхности крыла несколько уменьшается. Путем сопоставления расчетных и экспериментальных значений производных эффективности

6 5 5 §

с„эв, тгэв, тхэв и шарнирных моментов тшэв элевонов можно определить эмпирические коэффициенты, позволяющие ввести поправки в расчетные значения производных.

Для характеристик эффективности элевонов суэв, тгэв и тхэв в работе [2] были получены указанные коэффициенты, соответственно равные &= 0,8, 0,85 и 0,83. Для производной т ?а нолучен поправочный эмпирический коэффициент

_ эв .

к = 0,8о. Проведенные исследования показали, что при определении характеристик эффективности органов управления целесообразно пользоваться линейной теорией с применением теоремы обратимости.

Применение теоремы обратимости позволяет существенно сократить машинное время, требуемое для расчетов. Например, для расчета характеристик эффективности органа управления на ЭЦВМ БЭСМ-6 прямым методом при количестве вихрей на полукрыле N =200 (при количестве вихрей на органе управления Иэв г: 30) требуется ~ 20 мин. машинного времени, а для расчета по теореме обратимости требуется ~ 0,1 мин. при количестве вихрей на полукрыле N = 48.

Применение теоремы обратимости дает возможность получать характеристики эффективности одновременно для любого расположения органов управления по размаху крыла, в то время как по прямому методу (крыло в прямом потоке) характеристики эффективности органов управления считаются отдельно для каждого конкретного варианта. Так как при расчете характеристик эффективности органов управления по теореме обратимости крыло моделируется равномерной сеткой вихрей, исключается также влияние расположения вихрей на крыле на результаты расчетов, что имеет место в прямом методе.

При определении характеристик шарнирных моментов органов управления приходится пользоваться прямым методом, при этом количество вихрей на органе управления следует брать порядка 24—30.

Для крыльев малого удлинения было исследовано взаимное влияние элевонов на обеих половинах крыла. Вопрос этот возник в связи с определением положения второго фокуса крыла по размаху. Положение второго фокуса крыла по размаху гР при отклонении органов поперечного управления, расположенных в концевой части крыла, экспериментальным путем обычно определяется как отношение приращения величины поперечного момента от отклонения органов управления на правой и левой половинах крыла в разные стороны к приращению подъемной силы при отклонении органов управления на обеих половинах крыла в одну сторону.

Для органов управления, расположенных в концевой части крыльев со сравнительно большими удлинениями, такой способ определения второго фокуса по размаху крыла приводит к правильным результатам. Это объясняется отсутствием взаимного влияния отклоненных органов управления на правой и левой половинах крыла.

Чтобы установить наличие или отсутствие взаимного влияния элевонов, расположенных в корневой и средней части крыла малого удлинения, для исследуемых

моделей было проведено сравнение расчетных значений производных суэв, тгэв ,

т1эв и т,1эв в зависимости от относительной координаты начала элевона ^оэв эв

при симметричном и антисимметричном обтекании. В качестве примера на фиг. 3

5чв 6чв

показаны результаты расчета производных суэв и тшэв при симметричном и несимметричном обтекании крыла. Из сравнения этих зависимостей видно, что взаимное влияние правого и левого элевонов, расположенных в средней и корневой части крыла, велико. Расхождение в значениях производных при симметричном и несимметричном обтекании крыла может составлять для корневых элевонов 40—50%.

Для проверки полученных расчетных результатов был проведен специальный эксперимент. Исследуемая-модель с прямой передней кромкой крыла была разрезана по оси симметрии крыла. Левая половина крыла крепилась к рычажной системе аэродинамических весов, правая половина расчаливалась тросами к раме весов и устанавливалась рядом с левой половиной.

Испытания модели проводились при а = 0. Для примера на фиг. 4 приведены зависимости су=/(5эв> л) и тх =/(8эв- л) при отклонении левого элевона для первого варианта элевонов (см. фиг. 1) при неотклоненном правом элевоне, правом элевоне, отклоненном в ту же сторону, что и левый, и в противоположную сторону . Видно, что отклонение правого элевона, расположенного в корневой части крыла, оказывает заметное влияние на обтекание левой половины

К*.Г \ Л=120

1005

-0005

т*** ш зл

—— ^ У

> 0,25 0,50 0,75 газз симметричное обтекание антисимметричное обтекание

= /77

Фиг. 3

к = ¿7; = 55°; злебрн Оароанта!

— симметричное обтекание 1 рагчрт

— антисимметричное обтенание\г е

° симметричное обтекание I Зкслери-• антисимметричное обтеканиег мент

Фиг. 5

Фиг. 6

крыла. Так, расхождения в величине производной еуэв (для левого элевона) при симметричном и несимметричном отклонении элевонов составляет 44% от соответствующей величины при симметричном обтекании. Характер расчетных и экспериментальных зависимостей суэв=/(г0Эв) °Динаков» но расчет дает завышенные значения производных (фиг. 5). '

Из сравнения зависимостей гр = /(г0 эв) (фиг. 6), полученных при значениях с®88 для симметричного и несимметричного случаев, следует, что положение второго фокуса по размаху изолированного крыла при отклонении элевонов в корневой и средней части крыла нельзя определять пользуясь значением

г®в при симметричном обтекании крыла.

Полученные результаты позволяют сделать некоторые выводы применительно к испытаниям моделей полукрыльев у стенки трубы. На таких моделях можно исследовать эффективность и шарнирные моменты элеронов или элевонов, используемых в качестве органов поперечного управления, расположенных в-концевой части крыла. Исследование же на полукрыльях эффективности ил» шарнирных моментов корневых элеронов, корневых секций элевонов, ннтерцеп-торов в корневой или средней части крыла дает завышенные значения производных тьх и яіщ.

ЛИТЕРАТУРА

1. Белоцерковский С. М. Тонкая несущая поверхность в дозвуковом потоке газа. М., .Наука*, 1965.

2. Микеладзе В. Г. Исследование аэродинамических характеристик элевонов на крыльях малого удлинения. .Ученые записки ЦАГИ*, т. I, № 2, 1970.

3. Гординский В. Я. К расчету аэродинамических характеристик крыла с рулевой поверхностью. Труды ЦАГИ, вып. 1286, 1970.

Рукопись поступила 18/ V 1973 г_

i Надоели баннеры? Вы всегда можете отключить рекламу.