С. В. ПУЗАЧ, д-р техн. наук, профессор, заслуженный деятель науки РФ, начальник кафедры инженерной теплофизики и гидравлики, Академия ГПС МЧС России (Россия, 129366, г. Москва, ул. Бориса Галушкина, 4; e-mail: [email protected]) ДО ТХАНЬ ТУНГ, адъюнкт кафедры инженерной теплофизики и гидравлики, Академия ГПС МЧС России (Россия, 129366, г. Москва, ул. Бориса Галушкина, 4) НГУЕН ТХАНЬ ХАЙ, канд. техн. наук, Институт пожарной безопасности МОБ Вьетнама (Вьетнам, 100000, г. Ханой, ул. Хуат Зуи Тиен, 243)
УДК 614.841
СНИЖЕНИЕ ЭФФЕКТИВНОСТИ СИСТЕМЫ ДЫМОУДАЛЕНИЯ С ИСКУССТВЕННЫМ ПОБУЖДЕНИЕМ ПРИ ВОЗНИКНОВЕНИИ "ПОДДУВА"
Разработана модифицированная зонная модель расчета термогазодинамики пожара в условиях работы системы дымоудаления с искусственным побуждением с учетом возникновения "поддува". Выполнено сопоставление зависимостей скорости опускания нижней границы задымленного нагретого припотолочного газового слоя от времени с момента начала пожара, полученных с использованием предложенной зонной и полевой моделей. Показано, что эффективность работы системы дымоудаления существенно снижается при возникновении "поддува". Обнаружено, что для предотвращения "поддува" для каждого расхода вентилятора системы дымоудаления существует критическое минимальное значение площади дымоудаляющего отверстия, которое существенно зависит от толщины припотолочного слоя в момент включения дымоуда-ления.
Кпючевыеслова: пожар; дымоудаление; смешанная конвекция; поддув; припотолочный слой.
Введение
Эффективность работы систем дымоудаления (далее — СДУ) с естественным побуждением может снижаться из-за явления "поддува" (plugholing [1-3]), которое заключается в том, что чистый воздух из-под припотолочного дымового слоя под действием подъемных сил уносится через дымоудаляющее отверстие. При этом существенно уменьшается расход смеси продуктов горения и частиц дыма, удаляемых наружу из помещения через данное отверстие. Это может привести к скоплению дыма на периферии верхней зоны помещения в местах пребывания людей (например, в атриумах, пассажах и т. д.), поэтому важно не допускать возникновения "поддува".
В работах [4,5] рассмотрены условия возникновения "поддува" и снижение эффективности работы СДУ с естественным побуждением. В настоящей статье, являющейся продолжением работ [4,5], выполнено исследование эффективности работы СДУ с искусственным побуждением с использованием модификации зонной модели расчета термогазодинамики пожара для учета "поддува".
Постановка задачи
На рис. 1,а представлена упрощенная схема при-потолочного дымового слоя в условиях работы СДУ, а на рис. 1,6 — схема течения в момент начала за© Пузач С. В., До Тхань Тунг, Нгуен Тхань Хай, 2015
хвата находящегося под припотолочным слоем холодного воздуха СДУ ("поддув"). Условная нижняя граница припотолочного слоя принимается по правилу "Ы процентов" [6].
Рис. 1. Упрощенная схема припотолочного дымового слоя в условиях работы СДУ при расчетном режиме (а) и начале режима "поддува" (б): 1 — припотолочный слой; 2 — холодный воздух; 3 — дымоудаляющее отверстие; 4 — нижняя граница припотолочного слоя при отсутствии СДУ; 5—то же, при наличии СДУ; 6 — воронка; 7 — полусферическая поверхность; 8 — направление движения смеси газов к вентилятору СДУ; d — приведенный диаметр дымоудаляющего отверстия, м; к — толщина припотолочного слоя, м
При использовании зонного подхода принимаем следующие основные упрощения термогазодинамической картины течения в припотолочном слое:
• существует резко выделенная граница между зонами припотолочного слоя и холодного воздуха, при переходе через которую термогазодинамические параметры изменяются скачкообразно;
• припотолочный слой равномерно прогрет и равномерно задымлен.
Условия возникновения "поддува"
Принимаем, что в уравнениях состояния идеального газа для воздуха и газовой смеси давления и газовые постоянные равны друг другу. В этом случае
Р2Т2 = РвТв,
где р2 — среднеобъемная плотность смеси газов в припотолочном слое, кг/м3; Т2 — среднеобъемная температура припотолочного газового слоя, К;
рв — плотность холодного воздуха в помещении, кг/м3;
Тв — температура холодного воздуха в помещении, К.
При критическом режиме работы (начало "поддува") в дымоудаляющее отверстие начинает поступать воздух из зоны холодного воздуха. Вертикальная составляющая критической скорости подъема воздуха ^кр (м/с) в его входном сечении, при которой столбик холодного воздуха поднимается на высоту к (см. рис. 1), определится из одномерного уравнения Бернулли [4, 5]:
(1)
где g — ускорение свободного падения, м/с2.
Тогда в начале возникновения "поддува" критический массовый расход смеси газов и дыма, удаляемой вентилятором через дымоудаляющее отверстие, составит:
Окр =Р 2 ^кр Р0, (2)
где Окр — критический массовый расход вентилятора СДУ, кг/с;
2
Ро — площадь дымоудаляющего отверстия, м .
Модифицированная зонная модель расчета тепломассообмена
Используется трехзонная модель, в которой объем помещения разбит на зоны конвективной колонки, припотолочного слоя и холодного воздуха [7].
Принципиальная схема тепломассообмена в помещении для трехзонной модели в случае работы СДУ и приточной вентиляции приведена на рис. 2, где стрелками показаны направления течения газовой смеси и тепловые потоки.
Массовый расход в сечении конвективной колонки определяется по формулам [8]:
• при гс > 2пЛ:
\1/3
г
(3)
О = 0071| 9пож (1_гV3
1000
+1,8 • 10-6 е пож(1 -X);
• при гс < гп
о = 0,032
9 пож(1 -Х) 1000
3/5
(4)
где гс — координата поперечного сечения колонки, отсчитываемая от открытой поверхности горючего материала, м; гпл — высота пламенной зоны, м;
= 0,1661 епож(1 Х) 1000
2/5
епож — скорость тепловыделения в помещении,
Вт;е пож = уде н Рг; Л — полнота сгорания;
ууд — удельная скорость газификации горючего материала, кг/(м2-с);
е н — низшая рабочая теплота сгорания горючего материала, Дж/кг;
Рг — площадь открытой поверхности горючего материала, м2;
X — коэффициент теплопотерь из зоны колонки; О — расход смеси газов через сечение колонки, находящееся на высоте гс, кг/с. Средняя температура в сечении конвективной колонки Тк (К) определяется по формуле из работы [7]:
Т = Т
* к в
е пож(1 - X )
СрО
(5)
где ср — удельная изобарная теплоемкость смеси газов, ДжДкг-К).
Высота нижней границы припотолочного слоя находится из решения обыкновенного дифференциального уравнения, полученного из закона сохранения энергии для припотолочного слоя [9]:
Дгк = - О к - е пож (1 - Ф) - Т2Од Рв Рп Ср Рв Тв Рп Рв Тв Рп
(6)
где гк — расстояние от открытой поверхности горючего материала до нижней границы припотолоч-ного слоя, м; х — время, с;
Ок — массовый расход газовой смеси, поступающей из конвективной колонки в припотолоч-ный слой, кг/с;
Рп — площадь потолка помещения, м ; Ф — коэффициент теплопотерь; ф = + еш2 +
+
ес+е + еР )/е„
с
Рис. 2. Схема тепломассообмена в помещении с использованием зонной модели: 1 — стена; 2 — перекрытие; 3 — открытый проем; 4 — горючий материал; 5 — нижняя граница припотолочного слоя; 6—СДУ; 7—приточная вентиляция; 8 — пламенная зона; I — зона конвективной колонки; II — зона нагретого задымленного припотолочного слоя; III — зона холодного воздуха; ¥ — скорость газификации горючего материала, кг/с
Ои1, Ои2, ес, О/ — тепловые потоки, отводимые соответственно в стены (ниже и выше нижней границы припотолочного слоя), потолок и пол, Вт; Ор — тепловой поток, излучаемый через проем, Вт;
Од — массовый расход СДУ, кг/с. Начальное условие (при х = 0) имеет вид: гк = Н- 5 (где Н — высота помещения, м; 5 — толщина горючего материала, м).
Среднеобъемная температура и плотность смеси газов в припотолочном слое находятся из решения дифференциального уравнения закона сохранения массы для припотолочного слоя и уравнения состояния идеального газа соответственно [7]:
У2(й Р2/Дх) = О к - Од; (7)
Р2 = Р2 ОД « рв, (8)
где У2 — объем зоны припотолочного слоя, м3; р2 — давление в зоне припотолочного слоя, Па; Я — газовая постоянная (принимается, что газовые постоянные воздуха и смеси продуктов горения с воздухом равны [7]), ДжДкг-К); рв — давление наружного воздуха при 2 = 0, Па. Массовый расход смеси газов, удаляемой из припотолочного слоя СДУ через дымоудаляющее отверстие, определяется следующим образом:
• при ^о < икр: Од = Овт;
• при И ^ икр: Од =
где ио — вертикальная составляющая скорости во входном сечении дымоудаляющего отверстия, м/с;
ио = Овт / (Р2 Ро);
Овт — массовый расход вентилятора СДУ, кг/с; &д — коэффициент уменьшения расхода через дымоудаляющее отверстие из-за "поддува". Уравнения (6) и (7) решаются численным методом Рунге-Кутта 4-го порядка точности [10].
Полевая модель расчета термогазодинамики пожара
Используется полевой метод расчета, разработанный в [11]. Решаются трехмерные нестационарные дифференциальные уравнения Рейнольдса.
Обобщенное дифференциальное уравнение имеет вид [11]:
^ (РФ) + ШУ (р иФ) = (^гаё Ф) + 5, (9) ох
где Р — плотность газовой смеси, кг/м3;
Ф — зависимая переменная (энтальпия газовой смеси, проекции скорости на координатные оси, концентрации компонентов газовой смеси (О2, СО, СО2, К2, продуктов газификации горючего материала), оптическая плотность дыма, кинетическая энергия турбулентности и скорость ее диссипации);
и — скорость газовой смеси, м/с; Г — коэффициент диффузии для Ф; 5 — источниковый член.
Величина лучистого теплопереноса определяется с помощью метода моментов (диффузионная модель). Выражение для радиационной составляющей источникового члена в уравнении энергии 5Г имеет вид:
<ИУ 5Г =- ^ г 3
(
д21
д21
д х ду
д21 ^ д 2 2
(10)
где 1 — интенсивность излучения, Вт/м2, определяемая из уравнения
2
д21
д21
д х 2 д у2
дг2 у
= 3у(1 - 1Ъ);
(11)
Р — интегральный коэффициент ослабления излучения, м-1;
х, у, г — координаты соответственно вдоль длины, ширины и высоты помещения, м; у — интегральный коэффициент излучения, м-1; 1Ъ — интенсивность излучения абсолютно черного тела, Вт/м2; 1Ъ = аТ4; а — постоянная излучения абсолютно черного тела, Вт/(м2-К4); Т — температура, К.
Локальные значения коэффициентов излучения и поглощения радиационной энергии определяются с использованием локальных величин оптической плотности дыма [11].
Реакция горения рассматривается как одноступенчатая и необратимая:
F + sO ^ (1 + s) P,
(12)
где Г, О, Р—продукты газификации горючего материала, окислитель (кислород воздуха) и продукты реакции соответственно; 5 — коэффициент.
Скорость реакции (12) с учетом влияния на нее турбулентности (диффузионно-вихревая модель) вычисляется по формуле
Gr =р | min J 4 Xpb ; 4 А ; 2 ^
(13)
где Gr — массовая скорость реакции в единице объема газовой среды, кг/(с-м3); е — скорость диссипации кинетической энергии турбулентности, м2/с3; к—кинетическая энергия турбулентности, м2/с2; Xpb, Xo, Xpg — массовая концентрация соответственно продуктов горения,кислорода и продуктов газификации горючего материала. Начальные и граничные условия подробно описаны в [11].
Уравнения (9) и (10) решаются методом контрольных объемов [12] по явной конечно-разностной схеме на равномерной шахматной сетке.
Исходные данные для численного эксперимента
Рассматривается помещение в форме параллелепипеда размером 30x25x15 м.
Свойства горючего вещества (турбинное масло) принимаются по типовой базе горючей нагрузки [7]: Q £ = 41,9 МДж/кг; ууд = 0,03 кг/(м2-с); удельный коэффициент потребления кислорода LÎ2 = -2,82; удельный коэффициент выделения оксида углерода LCO = 0,122.
Площадь пролива турбинного масла 1,0x1,0 м2. Время стабилизации горения 120 с. Мощность стабилизированного горения постоянна во времени: Qrioœ = = 1,26 МВт.
Площадь квадратного дымоудаляющего отверстия в потолке Fо = 2x2 м2. Площадь открытого дверного проема FÂ = 1,2x2,0 м2.
Оси симметрии открытой поверхности горючего материала, отверстия для удаления дыма и двери расположены на продольной оси симметрии помещения (рис. 3,6).
Объемный расход вентилятора СДУ Жвт составляет 30000, 60000 и 90000 м3/ч. Время включения СДУ 30 с.
Начальные условия задавались следующими: Тв = = 293 К; ^в= 1,013105 Па.
Рис. 3. Поля температур в продольном сечении модельного помещения, проходящем через его ось симметрии, при отсутствии СДУ (а) и при ее работе в режиме "поддува" (б): 1 — открытая поверхность горючего материала; 2 — дымоудаляющее отверстие; 3 — открытая дверь
Результаты численных экспериментов и их анализ
Расчеты выполнялись с применением программных продуктов [13, 14].
На рис. 3 представлены характерные поля температур до включения СДУ (см. рис. 3,а) и при возникновении "поддува" (см. рис. 3,б), полученные с использованием программы [13].
На рис. 4 приведены зависимости высоты нижней границы припотолочного слоя от времени с момента начала горения, полученные с использованием зонной и трехмерной полевой моделей при свободном развитии пожара (Жвт = 0м3/ч) и при работе СДУ.
Влияние "поддува" в зонной модели учитывалось использованием коэффициента уменьшения расхода через дымоудаляющее отверстие следующим образом: кд = 0 при отсутствии "поддува"; кд = 0,5 при "поддуве".
Постоянная величина кд = 0,5 принималась из условия совпадения с наименьшей погрешностью результатов расчета по зонной модели (см. рис. 4, кривая 4) и по полевой модели [13,14] (см. рис. 4).
При включении СДУ "поддув" начинался сразу и продолжался до момента, когда толщина припото-
ZK,M
14 12 10 8 6 4 2
~ ___i.
Oo\ \
4
---
О
200
400
600
800
1000
Рис. 4. Зависимость высоты нижней границы припотолоч-ного слоя от времени с момента начала горения: 1-4 — зонная модель; кд = 0: 1 — Шш = 0 м3/ч; 2 — ^вт = 30000 м3/ч; 3 — ^вт = 60000 м3/ч; £д = 0,5: 4 — Швт = 60000 м3/ч; О — полевая модель [13], Швт = 0 м3/ч; О —полевая модель [14], ШЕт = 0м3/ч; □ — полевая модель [13,14], ШЕт = 60000м3/ч
лочного слоя достигала критического значения при заданном расходе СДУ: ккр = 3,54 м (см. рис. 4).
До момента окончания "поддува" кривые 2 и 4 (см. рис. 4) практически совпадали. Это означает, что при фактическом расходе вентилятора ЖВ[= 60000 м3/ч объемный расход удаляемой из припотолочного слоя смеси газов составлял порядка 30000 м3/ч. Таким образом, "поддув" привел к уменьшению расхода удаляемого дыма в 2 раза.
На рис. 5 приведены зависимости минимальной площади дымоудаляющего отверстия ^отЬ (м2), при которой отсутствует "поддув", от толщины припотолочного слоя при различных расходах вентилятора СДУ. Из рис. 5 видно, что при рассмотренных исходных данных задачи наибольшие изменения минимальной площади дымоудаляющего отверстия ограничены диапазоном изменения Н ~ 0^2м. Напри-
т? ,.2
o.min> м
16 14 12 10
0
Рис. 5. Зависимость минимальной площади дымоудаляющего отверстия, при которой отсутствует "поддув", от толщины припотолочного слоя при расходе вентилятора СДУ Швт (м3/ч): 1 — 30000; 2 — 60000; 3 — 90000
мер, при Жвт = 90000 м3/ч ^о]тп = 17,8 м2 при Н = 0,1 м и ^отЬ = 4,0 м2 при Н = 2,0 м.
Таким образом, минимальная площадь дымоудаляющего отверстия изменялась в зависимости от толщины припотолочного слоя в 4,45 раза.
Заключение
Для предотвращения "поддува" в случае работы СДУ с искусственным побуждением для каждого расхода вентилятора существует критическое минимальное значение площади дымоудаляющего отверстия, которое существенно зависит от толщины припотолочного слоя в момент включения СДУ.
Необходимо проведение дальнейших исследований по влиянию мест расположения дымоудаля-ющих отверстий и скоростей течения газовой смеси в припотолочном слое, параллельных перекрытию, на возникновение "поддува".
СПИСОК ЛИТЕРАТУРЫ
1. Viot J., Vauquelin O., Rhodes N. Characterization of the plug-holing phenomenon for the exhausting of a low density gas layer // 14th Australasion Fluid Mechanics Conference. — Adelaide University, Adelaide, Australia, 10-14 December 2001. — P. 529 - 532.
2. Chow W. K., Li /.Review on design guides for smoke management system in an atrium // International Journal on Engineering Performance — Based Fire Codes. — 2005. — Vol. 7, No. 2. — P. 65-87.
3. Linjie Li, Zihe Gao, Jie Ji, Jianyun Han, Jinhua Sun. Research on the phenomenon of plug-holing under mechanical smoke exhaust in tunnel fire / 9th Asia-Oceania Symposium on Fire Science and Technology //ProcediaEngineering. —2013. —Vol. 62. —P. 1112-1120. doi: 10.1016/j.proeng.2013.08.168.
4. Пузач С. В., До Тхань Тунг. Условия возникновения "поддува" при работе систем дымоудаления с естественным побуждением//Пожаровзрывобезопасность.—2014. — Т. 23, № 9. — С. 57-63.
5. Пузач С. В., До Тхань Тунг. Влияние высоты стенки дымоудаляющего отверстия на возникновение "поддува" при дымоудалении с естественным побуждением // Пожаровзрывобезопасность. — 2014.—Т. 23, № 11. —С. 46-51.
6. Chow W.K. Determination ofthe smoke layer interface height for hot smoke tests in big halls // Journal of Fire Sciences. —2009. — Vol. 27, No. 2. — P. 125-142. doi: 10.1177/0734904108096852.
7. Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении. — М. : Академия ГПС МВД России, 2000. — 118 с.
8. International Building Code. — International Code Council, Inc., 2003. URL: http://publicecodes.cy-berregs.com/icod/ibc/2003/index.htm (дата обращения: 10.02.2015).
9. Пузач С. В., Хай Нгуен Тхань. О достоверности применения эмпирических формул расчета массового расхода системы дымоудаления при пожаре в атриуме // Пожаровзрывобезопасность. — 2009. — Т. 18, № 9. — С. 35-43.
10. КорнГ., КорнТ. Справочник по математике для научных работников и инженеров.—М. :Наука, 1968. —720 с.
11. Пузач С. В. Методы расчета тепломассообмена при пожаре в помещении и их применение при решении практических задач пожаровзрывобезопасности. — М. : Академия ГПС МЧС России, 2005. —336 с.
12. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. — М. : Энергоатомиздат, 1984. — 152 с.
13. Свидетельство о государственной регистрации программы для ЭВМ № 2006614238 от 08.12.2006 г. Интегральные, зонные и полевые методы расчета динамики опасных факторов пожара / Пузач С. В. — М. : Федеральная служба по интеллектуальной собственности (Роспатент), 2006.
14. McGrattanK., Klein B., HostikkaS., Floyd J. Fire Dynamics Simulator (Version 5) User's Guide. NIST Special Publication 1019-5. — Gaithersburg, Maryland, USA : National Institute of Standards and Technology, 2007. — 186 p.
Материал поступил в редакцию 27 февраля 2015 г.
— English
REDUCING OF EFFICIENCY OF SMOKE REMOVAL SYSTEM WITH ARTIFICIAL IMPULSE DURING "PLUGHOLING"
PUZACH S. V., Doctor of Technical Sciences, Professor, the Honoured Scientist of the Russian Federation, Head of Thermal Physics and Hydraulic Department, State Fire Academy of Emercom of Russia (Borisa Galushkina St., 4, Moscow, 129366, Russian Federation; e-mail address: [email protected])
DO THANH TUNG, Postgraduate Student of Thermal Physics and Hydraulic Department, State Fire Academy of Emercom of Russia (Borisa Galushkina St., 4, Moscow, 129366, Russian Federation)
NGUYEN THANH HAI, Candidate of Technical Sciences, Institute of Fire Safety MOB Vietnam (Vietnam, 100000, Ha Noi, St. Khuat Duy Tien, 243)
ABSTRACT
Efficiency of smoke removal systems may be reduced due to the phenomenon of "plugholing", which lies in the fact that the clean air out under ceiling smoke layer due to the action of lift forces passes through the smoke ejection hole.
Amodified zone model for calculation of thermal and gas dynamics of fire under action of a smoke removal system with artificial impulse during "plugholing" is proposed. Reducing the flow rate of a mixture of gases and smoke leaving from under ceiling layer outside the room is taken into account by introducing the rate coefficient.
A numerical study of thermal dynamics picture of fire in the model room with model combustible load by using the modified zone model and a three-dimensional field model is made.
It is considered the room in the form of a parallelepiped with dimensions of 30x25x15 m. Combustible material is turbine oil. Volumetric flow rate of fan of smoke removal system are 30000, 60000 and 90000 m3/h.
Dependencies between velocity of lowering the bottom border of the under ceiling layer and the time of fire, that obtained with the use of the modified zone model and a three-dimensional field model, are compared.
It is shown that the smoke removal system efficiency is significantly reduced when "plugholing" is occurred. The flow rate of a mixture of gases and smoke leaving from under ceiling layer outside the room is 2 times less than in the case of the absence of "plugholing".
It is found that to prevent "plugholing" in the case of smoke removal system with artificial impulse for each fan there is critical minimum square of the hole of smoke removal system, which essentially depends on the thickness of under ceiling layer at the time of the beginning of system work.
Keywords: fire; smoke removal; mixed convection; plugholing; temperature of under ceiling layer.
REFERENCES
1. Viot J., Vauquelin O., Rhodes N. Characterization of the plug-holing phenomenon for the exhausting of a low density gas layer. 14th Australasion Fluid Mechanics Conference, Adelaide University, Adelaide, Australia, 10-14 December 2001, pp. 529-532.
2. Chow W. K., Li J. Review on design guides for smoke management system in an atrium. International Journal on Engineering Performance — Based Fire Codes, 2005, vol. 7, no. 2, pp. 65-87.
3. Linjie Li, Zihe Gao, Jie Ji, Jianyun Han, Jinhua Sun. Research on the phenomenon of plug-holing under mechanical smoke exhaust in tunnel fire. 9th Asia-Oceania Symposium on Fire Science and Technology. Procedia Engineering, 2013, vol. 62, pp. 1112-1120. doi: 10.1016/j.proeng.2013.08.168.
4. Puzach S. V., Do Thanh Tung. Usloviya vozniknoveniya "podduva" pri rabote system dymoudaleniya s estestvennym pobuzhdeniyem [Сonditions of "plugholing" in case of smoke exhaust system of natural type]. Pozharovzryvobezopasnost — Fire and Explosion Safety, 2014, vol. 23, no. 9, pp. 57-63.
5. Puzach S. V., Do Thanh Tung. Vliyaniye vysoty stenki dymoudalyayushchego otverstiyana voznikno-veniye "podduva" pri dymoudalenii s estestvennym pobuzhdeniyem [Influence wall height of smoke ejection hole on the rise "plugholing" during work of the smoke removal system with a natural impulse]. Pozharovzryvobezopasnost — Fire and Explosion Safety, 2014, vol. 23, no. 11, pp. 46-51.
6. Chow W. K. Determination of the smoke layer interface height for hot smoke tests in big halls. Journal of Fire Sciences, 2009, vol. 27, no. 2, pp. 125-142. doi: 10.1177/0734904108096852.
7. Koshmarov Yu. A. Prognozirovaniye opasnykh faktorov pozhara vpomeshchenii [Prediction of fire dynamics factors in the room]. Moscow, State Fire Academy of Ministry of Interior of Russia Publ., 2000. 118 p.
8. International Building Code. —International Code Council, Inc., 2003. Available at: http://publiceco-des.cyberregs.com/icod/ibc/2003/index.htm (Accessed 10 February 2015).
9. Puzach S. V., Hai Nguyen Thanh. O dostovernosti primeneniya empiricheskikh formul rascheta masso-vogo raskhoda systemy dymoudaleniya pri pozhare v atriume [About correctness of usage of empirical formulas for calculation of mass rate of smoke removal system during fire in atrium]. Pozharovzryvobezopasnost— Fire and Explosion Safety, 2009, vol. 18, no. 9, pp. 35-43.
10. Korn G., Korn T. Spravochnikpo matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical handbook for scientists and engineers]. Moscow, Nauka Publ., 1968. 720 p.
11. Puzach S. V. Metody rascheta teplomassoobmena pri pozhare v pomeshchenii i ikh primeneniye pri re-shenii prakticheskikh zadach pozharovzryvobezopasnosti [Methods for calculating the heat and mass transfer in a fire at the premises and their application in solving practical problems fire safety]. Moscow, State Fire Academy of Emercom of Russia Publ., 2005. 336 p.
12. Patankar S. Chislenyye metody resheniyazadach teploobmena i dinamikizhidkosti [Numericalmethods for solving problems of heat transfer and fluid dynamics]. Moscow, Energoatomizdat, 1984. 152 p.
13. Puzach S. V. Integral, zone and field methods for calculating the dynamics offire hazards. Certificate on the state registration No. 2006614238 on 08.12.2006. Moscow, Russian Federal Service for Intellectual Property Publ., 2006 (in Russian).
14. McGrattanK., Klein B., HostikkaS., Floyd J. Fire Dynamics Simulator (Version 5) User's Guide. NIST Special Publication 1019-5, National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 2007. 186 p.