Научная статья на тему 'Сглаживающий фильтр с обобщенным экспоненциальным весом'

Сглаживающий фильтр с обобщенным экспоненциальным весом Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
122
21
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СГЛАЖИВАЮЩИЙ ФИЛЬТР / МЕШАЮЩИЙ ШУМ / ПОГРЕШНОСТЬ ФИЛЬТРАЦИИ / ЦИФРОВОЕ МОДЕЛИРОВАНИЕ

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Толстунов В. А.

Рассматриваются два алгоритма сглаживающего фильтра с экспоненциальными весовыми множителями. Приведены результаты цифрового моделирования удаления шумов этими фильтрами. Показано, что при малых вероятностях импульсного шума лучшие результаты дает один алгоритм, а при больших вероятностях этого шума другой. Результаты работы данных фильтров сравниваются с результатами традиционного медианного фильтра.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Сглаживающий фильтр с обобщенным экспоненциальным весом»

МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №02/2018 ISSN 2410-6070

8. Владимиров, С. А. Механизм формирования потенциальной рентабельности возделывания риса на Кубани / С. А. Владимиров // Перспективы развития науки и образования: Сборник научных трудов по материалам Международной научно-практической конференции 29 ноября 2013 г. В 7 частях. Часть 7, Мин-во обр. и науки - М.: «АР-Консалт», 2013 г. - С. 18-20.

9. Амелин, В. П. Экологически чистая ресурсо- и энергосберегающая технология возделывания риса и севооборотных культур / В. П. Амелин, С. А. Владимиров // Научный журнал Труды КубГАУ. - 2007. - Вып. 4 (8). - С. 165-170.

10. Владимиров, С.А. Агромелиоративные приемы возделывания риса на экологически чистой основе в условиях Нижней Кубани: автореф. дис. ... канд. с.-х. наук / С.А. Владимиров; НИМИ. - Новочеркасск, 1991. - 24 с.

11. Владимиров, С.А. Теоретические основы энергетического механизма влияния климата предпосевного периода на формирование урожайности риса / С.А. Владимиров // Земельные и водные ресурсы: мониторинг эколого-экономического состояния и модели управления: материалы международной научно-практической конференции, посвященной 10-летию Института землеустройства, кадастров и мелиорации (23-25 апреля 2015 г.). - Улан-Удэ: Изд-во БГСХА им. В.Р. Филиппова, 2015. - С. 182-187.

12. Владимиров, С. А. Ресурсная модель формирования потенциальной продуктивности рисового поля ирригационных систем Нижней Кубани // С. А. Владимиров, Е.И. Гронь // Перспективы развития науки и образования: Сборник научных трудов по материалам Международной научно-практической конференции 29 ноября 2013 г. В 7 частях. Часть 7, Мин-во обр. и науки - М.: «АР-Консалт», 2013 г. - С. 15-17.

13. Владимиров, С.А. Компьютерно-реализуемые модели оптимизации ресурсопотребления в экологическом рисоводстве/ С.А. Владимиров, Е.И. Гронь, Г.В. Аксенов, А.В. Беззубов / Интеграция науки и производства - стратегия устойчивого развития АПК России в ВТО. Материалы международной научн.-практ. конф., посвященной 70-летию Победы в Сталинградской битве. 30 января - 1 февраля 2013 г. г. 24. Волгоград. том 3. - Волгоград: ФГБОУ ВПО Волгоградский ГАУ, 2013. С. 213-215.

14. Владимиров, С.А. Агроэкология ирригационных агроландшафтов Нижней Кубани и рентабельность риса / С.А. Владимиров, Н.Н. Крылова, В.М. Голиков / Интеграция науки и производства - стратегия устойчивого развития АПК России в ВТО. Материалы международной научн.-практ. конф., посвященной 70-летию Победы в Сталинградской битве. 30 января - 1февраля 2013 г. г. Волгоград. том 1. - Волгоград: ФГБОУ ВПО Волгоградский ГАУ, 2013. С. 56-60.

15. Амелин, В.П. Методика расчета эффективности использования земель рисового ирригированного фонда / В.П. Амелин, С. А. Владимиров // Научный журнал Труды КубГАУ. - 2009. - Вып. 4(19). - С. 227-230.

16. Семенова, Т.В. Аспекты рационального использования земель / Т.В. Семенова, В.В. Щукин // Современное состояние и перспективы развития научной мысли: сборник статей международной практической конференции — 2017. С.58-61

17. Хатхоху, Е.И., Основные положения проектирования мелиоративных систем нового поколения / Е.И. Хатхоху, Д.В. Прус, Г.Н. Фоминова // Международный научный журнал «Символ науки» №5 - 2016. С.86-89

© Реус И.С., 2018

УДК 004.67

Толстунов В.А.

канд. техн. наук КемГУ, г. Кемерово, РФ

E-mail: [email protected]

СГЛАЖИВАЮЩИЙ ФИЛЬТР С ОБОБЩЕННЫМ ЭКСПОНЕНЦИАЛЬНЫМ ВЕСОМ

Аннотация

Рассматриваются два алгоритма сглаживающего фильтра с экспоненциальными весовыми множителями. Приведены результаты цифрового моделирования удаления шумов этими фильтрами.

МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №02/2018 ISSN 2410-6070

Показано, что при малых вероятностях импульсного шума лучшие результаты дает один алгоритм, а при больших вероятностях этого шума - другой. Результаты работы данных фильтров сравниваются с результатами традиционного медианного фильтра.

Ключевые слова

Сглаживающий фильтр, мешающий шум, погрешность фильтрации, цифровое моделирование.

Для восстановления сигналов, искаженных различными помехами, широко используются усредняющие фильтры с весовыми коэффициентами, например [1,2,3,4]. Как правило, весовые коэффициенты усредняющих фильтров являются константами, которые образуют фильтрующую маску. Такие фильтры достаточно хорошо удаляют импульсный шум малой интенсивности. Исследования показали [3], что при удалении импульсного шума существенно лучшие результаты показывают фильтры, весовые коэффициенты которых зависят от отсчетов входного сигнала. В этом случае общую модель сглаживающего фильтра для обработки изображений можно представить в виде

Zk+(m-1)/2 -^l+(n-1)/2 i=k-(m-1)/2 2 j=l-(n-1)/2^ ^ ij * ij

Zk+(m-1)/2 -^l+(n-1)/2 i=k-(m-1)/2 2 ;=l-(n-1)/2^ ^ ij '

ykl ^k+(m-1)/2 ^l+(n-1)/2 , (1)

где х. - отсчеты входного сигнала, - отсчеты сигнала на выходе фильтра, {(х.)- непрерывная, однозначная, нелинейная функция, т X п - размер апертуры фильтра. В частности, если f (х) = ехр(—Шх), а> 0, то из (1) получаем алгоритм сглаживающего фильтра с экспоненциальным весом. Показано [3], что данный фильтр очень хорошо удаляет импульсный шум, если вероятность его появления не превосходит значения 0.6. При больших значениях данной вероятности погрешность фильтрации становится существенно выше.

Рассмотрим алгоритм (1) в случае, когда ^ (х) = ехр(—Шх), Ш > 0, и f2 (х) = ехр(—Ш2х), Ш2 < 0. Пусть на вход фильтра с апертурой размера т X п поступает сигнал с

отсчетами х. = siJ■ + + 7]. , где sij - отсчеты полезного сигнала, - отсчеты гауссовского шума и - отсчеты импульсного шума. Будем полагать, что гауссовский шум имеет нулевое математическое ожидание и дисперсию, равную (Г2 . Пусть для импульсного шума А - величина импульса, Р , q -

соответственно вероятности появления положительного и отрицательного импульсов. Обозначим У1, У2 -выходы фильтров (1) с весовыми функциями соответственно х), f2(х). Пусть у3- выход традиционного медианного фильтра [1] с которым будем сравнивать работу предыдущих фильтров.

Результаты зашумления и фильтрации изображения размером М X N будем оценивать соответственно соотношениями

_ 1 -г-^М I I

*0 = ш Х=1 ^— , (2)

к = М^ ^=1 — у.. (3)

Пусть Ях,Я2 - погрешности удаления наложенного шума, определенные по (3), соответственно фильтрами

Zk+( т—1)/2 ^/+(п—1)/2

i=k —(т—1)/2 =1—(п—1)/2 еХр(~а-[х. )х

УЫ ^ ^ +(п—1)/2 , (4)

Ai=k—(т—1)/2 =1—(п—1)/2 еХр(~а-[х. )

МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №02/2018 ISSN 2410-6070

Zk+(m-1)/2 ^ l+(n-1)/2

/ exp(-a x )x..

i=k-(m-1)/2^j=l-(n-1)/2 2 ij lJ

Ук1 = -r-k+(m-1)/2 -^l+(n-1)/2 П. (5)

/ / exp(-a x )

¿-~li=k-(m-1)/2^j=l-(n-1)/2 2 ij

Константа С > 0 в (5) необходима для регулирования уровня яркости профильтрованного изображения. Пусть еще R - погрешность медианного фильтра.

В таблице 1 приведены погрешности R 0 при наложении на заданное изображение импульсного шума

с амплитудой A, вероятностями импульсов p = 0.6, q = 0 . Приведены, так же, погрешности R, R1, R2 при удалении этого шума медианным фильтром и фильтрами (4), (5) при a1 = 50, a2 = -20. m = П = 3 В последней строке данной таблицы приведены значения константы С регулирующей яркость изображения.

Таблица 1

Погрешности фильтрации при изменении амплитуды A

Погрешность Амплитуда A

100 130 160 190 220 250 280 310 340

R0 0,236 0,306 0,377 0,447 0,517 0,589 0,658 0,729 0,799

R 0,275 0,362 0,449 0,532 0,620 0,707 0,791 0,878 0,964

Ri 0,166 0,166 0,166 0,166 0,166 0,166 0,166 0,166 0,166

R2 0,091 0,052 0,043 0,045 0,045 0,045 0,046 0,057 0,062

С 0,5 0,5 0,65 0,75 0,85 1 1,1 1,2 1,4

В таблице 2 приведены погрешности К о при наложении на заданное изображение импульсного шума

с заданной вероятностью р при А = 100, q = 0 и погрешности при удалении этого шума фильтрами (4), (5) и медианным фильтром при т = п = 3, ах = 30, а2 =-20. В последней строке данной таблицы приведены значения константы С .

Таблица 2

Погрешности фильтрации при изменении вероятности р

Погрешность Вероятность p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R0 0.039 0.078 0.118 0.157 0.196 0.235 0.274 0.314 0.353

R 0.022 0.034 0.066 0.123 0.199 0.275 0.334 0.367 0.382

R1 0.050 0.049 0.048 0.047 0.046 0.046 0.054 0.082 0.158

R2 0.165 0.084 0.054 0.045 0.043 0.044 0.045 0.056 0.056

С 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45

Как следует из таблицы 1, увеличение амплитуды импульсного шума слабо влияет на погрешности фильтров (4), (5). Погрешности же медианного фильтра существенно выше. Из таблицы 2 видно, что для удаления импульсного шума с вероятностью появления р < 0.4 лучшие результаты дает алгоритм (4), а при р > 0.4 - алгоритм (5). Погрешности медианного фильтра при р > 0.3 существенно выше погрешностей фильтров (4), (5). Моделирование показало, так же, что при удалении отрицательного импульсного шума ( р = 0,q > 0) значения погрешностей мало отличаются от приведенных в таблице 2. При этом в алгоритме (5) следует использовать константу С < 0 . При удалении гауссовского шума для фильтров (4), (5) следует использовать параметры а1 = 0.00001, а2 = -0.00001. При этом, погрешности всех трех сравниваемых фильтров практически одинаковы.

На рисунке 1 показаны: а - исходное изображение, б - результат его зашумления импульсным шумом

МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №02/2018 ISSN 2410-6070

Рисунок 1 -Исходное изображение и результат его зашумления На рисунке 2 показаны: а - результат удаления шума фильтром (4) (т = п = 3, ш =30, =0.315) , б - результат удаления шума фильтром (5) (т = п = 3,ш2 = —20, с = —0.35, Я2 = 0.04б).

Рисунок 2 - Результаты удаления шума

На рисунке 3 показаны:

а - результат зашумления исходного изображения (А = 80, р = 0.8, q = 0.2.^ = 0.314) , б - результат удаления шума фильтром (4) (т=п = 3,ш = 30, Яг = 0.283), в - результат удаления шума фильтром (5) (т=п = 3, ш2 = —20, с = 0.4, Я2 = 0.084) .

а б в

Рисунок 3 - Результаты зашумления и фильтрации

МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №02/2018 ISSN 2410-6070

Рисунки 1, 2, 3, наглядно показывают хорошие свойства фильтра (5) при обработке очень сильно зашумленных изображений.

Рассмотренный в работе усредняющий фильтр с экспоненциальными весовыми коэффициентами хорошо удаляет аддитивный импульсный шум. При этом, если зашумление относительно малое, то лучшие результаты показывает алгоритм (4), при очень сильном зашумлении - алгоритм (5). Гауссовский шум данным фильтром удаляется так же хорошо, как и традиционным медианным фильтром. Список использованной литературы:

1. Гонсалес Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. - М.: Техносфера, 2005. - 1072 с.

2. Фисенко В.Т. Компьютерная обработка и распознавание изображений /Учеб. пособие.- СПб.: СПбГУИТМО. 2008.-192 с.

3. Толстунов В.А. Усредняющие фильтры с весовыми коэффициентами/ В.А.Толстунов // Инновационная наука. -2016. -Часть 2, - № 1. - С.139 - 143.

4. Jain A. K. Fundamentals of digital image processing.- Prentice Hall.1988.- 569 p.

© Толстунов В.А., 2018

УДК62

Е.В.Ушаков

Студент 3 курса ФТФ КубГУ направление ИСиТ, г.Краснодар E-mail: [email protected] Е.В.Челяпов Учитель информатики МБОУ СОШ№51, г.Краснодар E-mail:[email protected] Л.Н.Ушакова Учитель математики МБОУ СОШ№51, г.Краснодар E-mail:[email protected]

СОЗДАНИЕ БАЗЫ ДАННЫХ ДЛЯ СОВРЕМЕННОЙ ШКОЛЫ В MICROSOFT ACCESS

Аннотация

Статья посвящена рассмотрению сетевых коммуникаций в современной школе и создание базы данных учеников, родителей и учителей на базе программного обеспечения Microsoft Office Access. Рассмотрены основные аспекты и вопросы связанные с разработкой формы, макета базы данных. Применение запросов, отчетов и макросов в БД. На основе проведенной работы можно сделать вывод, что данная форма хранения информации удобна в использовании персоналом и является альтернативой бумажному документообороту.

Ключевые слова

База данных, школа, ученики, учителя, access, БД, СУБД, макросы, форма, запросы, информация.

База данных — один из самых важных компонентов любой информационной системы. Она позволяет структурировано хранить большие объемы информации конкретного предприятия, что значительно рационализирует ведение отчетов и создание архивов. Оптимизированные БД значительно увеличивают

i Надоели баннеры? Вы всегда можете отключить рекламу.