ISSN 1998-4812 Вестник Башкирского университета. 2008. Т. 13. №3(1)
761
УДК 541.013.5:541.253:532.14
ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ ФОРМЫ И ОБЪЕМА МОЛЕКУЛ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ В РАМКАХ МОДЕЛИ ANSAB
© А. В. Белик, В. В. Рукавишников*
Челябинский государственный университет Россия, 454021 г. Челябинск, ул. Бр. Кашириных, 129.
Тел./факс: +7 (351) 799 70 66.
E-mail: vrukavishnikov@carboceramics. com
Рассмотрена возможность применения нового алгоритма ANSAB для оценки молекулярного объема гетероциклических соединений, в котором атомы, образующие молекулу, не имеют сферической симметрии. Показано удовлетворительное согласие расчетных и экспериментальных относительных плотностей рассмотренных соединений.
Ключевые слова: относительная плотность, модель ANSAB, строение молекул, молеку-
лярный объем.
Г етероциклические соединения в современной органической химии пользуются особым вниманием и повышенным интересом исследователей, что обусловлено спецификой их химического поведения (например, [1]) и широким спектром практического использования.
В области теоретической органической и вычислительной химии, при решении ряда важных задач, связанных с проблемой оценки связи между строением молекул и свойствами образованного ими вещества, часто требуется достоверная оценка молекулярной формы и молекулярного объема.
К настоящему времени предложено много моделей для оценки этих параметров. Например, хорошо известная [2] модель Стюарта-Бриглеба для определения формы молекулы. Наибольший интерес представляют математические модели, позволяющие с помощью современной вычислительной техники рассматривать молекулы в виде атомных образований, где радиус каждой атомной сферы не является строго фиксированной величиной (как, например, ван-дер-ваальсовый радиус), а зависит от общей конфигурации объекта в целом.
Ранее удовлетворительные результаты были получены в рамках модели DENSON [3-5]. Молекула рассматривалась в «стандартной геометрии», когда значения длин валентных связей и углов принимались равными их наиболее типичным значениям (например, [6]). Далее известная проблема «атомов в молекуле», наглядно обозначенная, например, в работах [7, 8], решалась в «сферическом приближении». Каждый из атомных радиусов вычислялся с помощью ряда аналитических функций (зависящих от евклидовых межатомных расстояний в молекуле).
В работах [9-11] предложена новая схема развития такого подхода к оценке молекулярной формы молекул, названная моделью ANSAB. В этой модели атомы вместо сферы представляются суперпозицией эллипсоидов, определяемых количеством атом-атомных взаимодействий. (Необходи-
мые параметры для построения эллипсоидов функционально зависят от межатомных расстояний.) Для вычисления межатомных расстояний привлекались методы квантовой химии. Нами для этой цели предлагается использовать метод РМ3, реализованный, например, в программном продукте Hy-perChem [12].
Настоящая работа посвящена рассмотрению пространственного строения молекул гетероциклических соединений в рамках модели ANSAB. Оценить достоверность получаемых результатов можно косвенным путем в результате сравнения расчетных значений относительных плотностей соединений с экспериментальными (d204). Ранее в работах [10, 11] такой подход был применен к углеводородам и кислородсодержащим органическим соединениям, где были получены удовлетворительные результаты.
Как и в модели DENSON, в модели ANSAB, каждому химическому элементу присвоено свое собственное значение атомного радиуса, являющегося параметром модели: г0(Н) = 0.3325, г0(С) = 0.6500, r0(N) = 0.6775 , г0(О) = 0.5350 А. Для молекулярных систем, где имеет место взаимодействие атомов друг с другом, вычисляются величины, определяющие деформацию каждой исходной атомной сферы в эллипсоид (в направлении каждого парного взаимодействия) [10, 11]. В результате этого атомы в молекуле приобретают новый геометрический образ. Молекулярный объем в программе определялся численно [9-11, 16].
В данной работе были проведены расчеты молекулярного объема 45 гетероциклических соединений с помощью программы [13].
Плотность вещества вычислялась по известной формуле [14] с использованием коэффициента упаковки равным 0.7080. Экспериментальные значения относительных плотностей веществ (d204 (эксп.)) были взяты из работы [15]. Полученные данные представлены в таблице.
* автор, ответственный за переписку
Таблица
Экспериментальные [15] и вычисленные значения относительных плотностей ряда гетероциклических соединений
№ Соединение ё204 (эксп.) ё204 (расч.) А а
1 1,4-диметилпиперазин 0.8600 0.9138 -0.0538
2 1,5-диметил-2-пирролидон 1.0242 1.0112 0.0130
3 1 - бензилпирролидин 0.9627 0.9396 0.0231
4 1 -изопропилпиперидин 0.8389 0.9025 -0.0636
5 1 -метил-2-пирролидон 1.0328 1.0306 0.0022
6 1-пропилпиррол 0.8833 0.9333 -0.0500
7 1,5-диметил-2-пирролидон 1.0242 1.0110 0.0132
8 1 -метил-2-пирролидон 1.0328 1.0304 0.0024
9 2,3,4-триметилпиридин 0.9543 0.9449 0.0094
10 2,3-диметил-4-этилпиррол 0.9150 0.9276 -0.0126
11 2,3-диметилпиридин 0.9453 0.9531 -0.0078
12 2,4,6-триметилпиридин 0.9221 0.9448 -0.0227
13 2,4-диметил-3-этилпиррол 0.9142 0.9275 -0.0133
14 2,4-диметилпиридин 0.9319 0.9530 -0.0211
15 2,4-диметилпиррол 0.9208 0.9399 -0.0191
16 2,4-диметилтиофен 0.9899 1.0438 -0.0539
17 2,5-диметилпиразин 0.9887 0.9704 0.0183
18 2,5-диметилпиррол 0.9288 0.9401 -0.0113
19 2,5-диметилтиофен 0.9850 1.0437 -0.0587
20 цис-2,5-диметилпиперазин 0.9218 0.9172 0.0046
21 2,6-диметилпиридин 0.9226 0.9532 -0.0306
22 2-винилпиридин 0.9757 0.9742 0.0015
23 2-метил-5-этилпиридин 0.9189 0.9454 -0.0265
24 2-метилпиррол 0.9295 0.9506 -0.0211
25 2-пирролидон 1.1200 1.0609 0.0591
26 2-пропилпиридин 0.9119 0.9460 -0.0341
27 3-(1 -метил-2-пирролидинил)пиридин 1.0082 0.9466 0.0616
28 3-метилпиразол 1.0119 0.9736 0.0383
29 3-метил-4-этилпиррол 0.9059 0.9334 -0.0275
30 3-этилтиофен 0.9980 1.0442 -0.0462
31 4-винилпиридин 0.9800 0.9743 0.0057
32 пиран-4-он 1.1900 1.1797 0.0103
33 4-пропилпиридин 0.9250 0.9459 -0.0209
34 2-метилбензоксазол 1.1211 1.0471 0.0740
35 2-метилбензофуран 1.0540 1.0317 0.0223
36 изоксазол 1.0780 1.1535 -0.0755
37 индан 0.9639 0.9394 0.0245
38 пиперидин 0.8698 0.9077 -0.0379
39 этиловый эфир пиридин-2-карбоновой 1.1191 1.1048 0.0143
40 этиловый эфир пиридин-3-карбоновой 1.1082 1.1046 0.0036
41 пиримидин 1.0517 1.0038 0.0479
42 пирролидин 0.8586 0.9116 -0.0530
43 тиетан 1.0020 1.0844 -0.0824
44 тиопиран-2-он 1.1550 1.1379 0.0171
45 хроман 1.0720 1.0136 0.0584
а А = ё204 (эксп.) - ё204 (расч.)
Полученные результаты свидетельствуют об удовлетворительном согласии расчетных и экспериментальных величин. Следовательно, модель ANSAB можно рекомендовать для оценки формы, молекулярного объема и прогноза относительной плотности гетероциклических соединений.
ЛИТЕРАТУРА
1. Русинов В. Л., Чупахин О. Н. Нитроазины. Новосибирск: Наука. Сиб. отд. 1991. -350 с.
2. Химический энциклопедический словарь. М.: Сов. Энциклопедия, 1983. -792 с.
3. Белик А. В., Ульянова Л. В., Зефиров Н. С. // Докл. АН СССР. 1990. Т. 313. №3. C. 628-629.
4. Белик А. В. // Изв. Вузов. Химия и хим. Технология. 1992. Т. 35. Вып. 4. С. 51-55.
5. Белик А. В., Потемкин В. А. // Журнал общей химии. 1993. Т.63. Вып. 6. С. 1201-1203.
6. Allen F. H., Kennard O, Watson D. G. et al. // J. Chem. Soc., Perkin Trans. II. 1987. P. S1-S19.
7. Бейдер Р. Атомы в молекулах: Квантовая теория. М.: Мир, 2001. -532 с.
8. Татевский В. М. // Вестн. Моск. ун-та. Сер.2. Химия. 1999. Т.40. №2. С. 75-79.
9. Рукавишников В. В., Белик А. В. // Вестн. Челяб. ун-та. Сер. 4. Химия. 2004. №1. С. 44-45.
10. Рукавишников В. В., Белик А. В. // Изв. Вузов. Химия и хим. Технология. 2006. Т.49. Вып. 9. С. 110-112.
11. Рукавишников В. В., Белик А. В. // Современные наукоемкие технологии. М.: «Академия естествознания». 2005. № 9. С. 103-105.
12. Соловьев М. Е., Соловьев М. М. Компьютерная химия. М.: СОЛОН-Пресс, 2005. -536 с.
13. Рукавишников В. В., Белик А. В. М.: ВНТИЦ, 2005. № 50200600030.
14. Китайгородский А. И. Молекулярные кристаллы. М.: Наука, 1971. -424 с.
15. Свойства органических соединений. Справочник Л.: Химия, 1984. -520 с.
16. Белик А. В., Рукавишников В. В. // Башкирский химический журнал. 2006. Т. 13. № 4. С. 116-117.
Поступила в редакцию 06.09.2008 г. После доработки — 08.09.2008 г.