УДК 621.396.988.6: 629.19
МОДЕЛИРОВАНИЕ ТРАЕКТОРИИ ПОЛЕТА В НАВИГАЦИОННЫХ КОМПЛЕКСАХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В ГОРИЗОНТАЛЬНОЙ ПЛОСКОСТИ В.Д. Суслов, Д.В. Козис
Рассматривается подход к организации моделирования траектории полета летательного аппарата (ЛА) в горизонтальной плоскости. Введены математические модели движения ЛА, представлены результаты моделирования в среде Ма^аЪ.
Ключевые слова: моделирование, движение в горизонтальной плоскости.
Введение
На современном этапе проектирования и разработки навигационных комплексов (НК) применение статических и динамических моделей функционирования бортового радиоэлектронного оборудования (БРЭО) является экономически и технически выгодными с точки зрения решения главной задачи - обработки, преобразования и индикации навигационной информации по следующим критериям [1]: полнота, целостность; достоверность; требуемая точность.
По мере роста интенсивности воздушного движения и, как следствие, ужесточения требований к точности навигации в боковом и продольном канале все более усложняется состав БРЭО. На сегодняшний день стало международной нормой наличие в составе НК такого оборудования, как спутниковая навигационная система, система предупреждения близости земли, система предупреждения столкновений и т.д. Соответственно возрастают трудности и объемы работ, связанных с имитацией перечисленного оборудования при их моделировании.
Прежде всего, для достижения высокой степени информационного и динамического подобия моделей и реальных систем приходится отказываться от многих упрощений, общепринятых в существующих разработках НК. Включение в состав НК БЦВМ сделало возможным использование методов комплексной (оптимальной) обработки информации от навигационных датчиков, что требует моделирования навигационных сигналов со статическими характеристиками, близкими к реальным.
Повышение и улучшение характеристик НК, повышение требований к степени информационного и динамического подобия модели и реальной системы приводят к необходимости более детальной имитации навигационной обстановки и других факторов, непосредственно влияющих на работу НК в реальном полете.
Функциональная схема моделирования траектории полета
В состав современного НК входят бортовые цифровые вычислительные машины (БЦВМ), что позволяет, наряду с широким внедрением математических моделей в программное обеспечение:
- реализовать комплексную обработку информации при работе НК;
- обеспечить фильтрацию возмущений и помех;
- реализовать выявление и изъятие из обработки аномальных измерений параметров;
- существенно повысить информационную надежность НК;
- получить отражение реальной пилотажно-навигационной и помеховой обстановки в имитаторе НК;
- моделировать динамику погрешностей датчиков и воспроизводить в имитаторе НК возмущения и помехи и их статические характеристики, близкие к реальным;
- обеспечить системное представление информации в удобной для восприятия оператором форме.
На рис. 1 представлена функциональная схема моделирования траектории полета
ЛА.
Управление в Входная горизонтальной
инф°рмация плоскости
Рис. 1. Функциональная схема моделирования траектории полета
летательного аппарата
Существует два способа реализации моделирования траектории полета.
1. Управляющими воздействиями при моделировании являются значения следующих параметров: географическая широта ф; географическая долгота X; угол сноса (УС); угол крена у; угол тангажа и; гироскопический курс у; путевая скорость ЖПУТ; приборная скорость РпРИБ. Информация с выходов навигационных датчиков по последовательному коду поступает на входы соответствующих модулей БЦВМ, после чего передается в цифровом виде в модуль процессора, где и происходит вычисление навигационных задач [2]. В качестве реальных датчиков навигационной информации выступают: инерциальная система (ИС), система воздушных сигналов (СВС), спутниковая навигационная системы (СНС). В результате моделирования в БЦВМ для управления траекторией полета в горизонтальной плоскости на выходе получаем значение заданного угла крена уЗАд. Данная информация поступает в вычислитель САУ. В результате дальнейшей обработки САУ подает сигналы на исполнительные механизмы, после чего происходит маневр ЛА. Кроме того, существует обратная связь в виде сигналов из САУ в БЦВМ: 8К - отклонение по курсу; 8г - отклонение по глиссаде. Данный способ моделирования является полунатурным, его недостатки приводят к использованию следующего способа моделирования.
2. Вместо реальных датчиков, из которых получают управляющие воздействия для моделирования, используют математические модели сигналов. При этом в БЦВМ создается имитационная среда параметров датчиков навигационной информации и их погрешностей. Структурная схема модели траектории полета при данном подходе приведена на рис. 2. Данный способ моделирования является математическим с применением реальной БЦВМ. Для контроля и визуализации информации, поступающей из БЦВМ на МФЦИ, используется модель (эмулятор) индикатора, реализованная на ПК.
Модель
Рис. 2. Структурная схема модели траектории полета
Моделирование траектории полета летательного аппарата в горизонтальной плоскости
Разворот в горизонтальной плоскости (рис. 3) требует создания центростремительной силы, направленной к центру кривизны траектории и равной по модулю центробежной силе.
б)
Траектория1 Центр
полета кривизны
Рис. 3. Разворот ЛА в горизонтальной плоскости: а) вид сбоку; б) вид сверху
P = — • (2)
Создание такой силы возможно за счет изменения крена самолета на угол у [3]. В этом случае вертикальная составляющая подъемной силы Yacos у уравновешивает силу тяжести G, а горизонтальная составляющая
Rn = Yasiny (1)
центробежную силу GV2
gR
Условия равновесия имеют вид: Ya cosY_G = 0; (3)
GV 2
- Ya Sin y +-= 0. ...
a gR (4)
Под действием этих сил самолет будет осуществлять разворот со скоростью V по дуге окружности радиуса R. Радиус разворота может быть определен как
R = G V2 = V2
RPA3B = ' „ • = , • (5)
g Ya Sin Y g • tg Y
Задача моделирования - рассчитать закон управления движения ЛА в горизонтальной плоскости для выдерживания им точности самолетовождения.
Моделирование траектории полета летательного аппарата в горизонтальной плоскости в среде MatLab
Навигационные характеристики НК существенно зависят от системы координат, лежащей в основе алгоритма моделирования траектории полета [4]. В современных НК наибольшее распространение получила геосферическая система координат. В этой системе перемещение объекта по поверхности сферы описывается системой дифференциальных уравнений: d ф dt
dk = l_ ( _ H^ V sin ИК + UBsin 5B )
dt ~ R t R J|_ cosф , ( )
где ф и X - географическая широта и долгота места объекта; R = 6372900 м - радиус земной сферы; ИК - истинный курс объекта; H и V - высота и горизонтальная составляющая воздушной скорости объекта; UB и 5В - скорость и направление (угол) ветра. В НК истинный курс обычно определяется через гироскопический курс у:
ИК = у+5, (8)
где 5 - азимутальная поправка на перемещение объекта, определяемая уравнением
d8 dk .
— = — sin ф. (9)
dt dt
В свою очередь, изменение гироскопического курса связано с углом крена у зависимостью
^ = g^ggy, (10)
dt V У '
где g - ускорение свободного падения.
Скорость и направление ветра вычисляется из системы уравнений:
W cos УС = V + иВ ^(ИК _ 5В)
1 W sin УС = иВ ^п(ИК _5в ) (11)
[V cos ИК + UB cos 5B ], (6)
При кренах менее 20° с достаточной для практики точностью измерение крена можно описать уравнением
г, ^=г, (12)
где Ту - постоянная времени движения ЛА с креном; уздд - сигнал заданного крена.
Полученные результаты
Рассмотрим движение ЛА по экватору. Входные воздействия (математические модели) представляются в следующем виде:
- приборная скорость Кприб(0 - постоянная величина, равная 600 км/ч (166,67 м/с);
- путевая скорость Жпут(0 - постоянная величина, равная 900 км/ч (250 м/с);
- географическая долгота - линейно возрастающая прямая с тангенсом угла наклона, равным путевой скорости;
- географическая широта ф(^) - постоянная величина, равная нулю;
- гироскопический курс - постоянная величина, равная 90° (1,5704 рад);
- угол сноса УС(0 принимается равным 0,5° (0,087 рад).
Упростим процесс моделирования, приняв нулевой азимутальную поправку на перемещение объекта 5. Постоянную времени Ту движения ЛА с креном назначим равной 30 с. Ошибка в определении линейных характеристик полета не должна превышать значения 0,08-Ю"3-^, где 8 - пройденное расстояние. Ошибка в определении угловых характеристик полета определяется как
аутЛ < *= 8-Ю"5, (13)
На рис. 4 представлена структурная схема моделирования траектории полета ЛА в горизонтальной плоскости в среде Ма1ЬаЬ (81шиНпк). На рис. 5 показан сигнал крена заданного, полученный с учетом влияния трех составляющих погрешности - «квазипостоянной», низкочастотной и высокочастотной. Для сглаживания возникающих флук-туаций в программном обеспечении САУ применяется фильтрация сигнала, которая устраняет явление перерегулирования по крену.
Заключение
Результаты расчетов показывают, что полученная система дифференциальных уравнений (1)-(12) представляет собой математическую модель движения летательного аппарата в геосферических координатах, которая может быть реализована в моделирующей БЦВМ, входящей в состав НК.
Литература
1. Григорьев В.В., Парамонов П.П., Козис Д.В., Коровьяков А.Н., Видин Б.В. Контроль показателей информационной надежности при моделировании аналоговых датчиков навигационных систем летательных аппаратов // Известия вузов. Приборостроение. - 2006. - Т. 49. - № 6. - С. 35-38.
2. Григорьев В.В., Козис Д.В., Коровьяков А.Н., Медынский Ю.В., Парамонов П.П. Обеспечение информационного подобия модели и реальной системы в навигационных комплексах // Научно-технический вестник ИТМО. - 2006. - № 33. - С. 8-10.
3. Козис Д.В. Анализ подходов к моделированию пилотажно-навигационных комплексов летательных аппаратов // Научно-технический вестник ИТМО. - 2004. - № 14. - С. 96-99.
Рис. 4. Структурная схема моделирования траектории полета ЛА в горизонтальной плоскости в среде Ма11_аЬ ^¡тиПпк)
-4
к 10
20
15
10
5
0
0 0.05 0.1 0.15 0.2 1:С
Рис. 5. Крен заданный с учетом погрешностей
4. Методические указания к лабораторным работам по дисциплине «Оптико-электронные комплексы со встроенным ЭВМ» / Под ред. Зенкова Г.Н. - Л.: ИТМО, 1982.
Суслов Владимир Дмитриевич - СПб ОКБ «Электроавтоматика» имени П. А. Ефимова», зам. генерального директора, [email protected] Козис Дмитрий Владимирович - РАА «Спецтехника», директор, кандидат технических наук,
УДК 681.5.01
ОСОБЕННОСТИ ДВИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ В УСЛОВИЯХ ОГРАНИЧЕННОЙ ТЯГИ ДВИГАТЕЛЯ Б.В. Видин, О.В. Ульянова
Исследуется нелинейная система дифференциальных уравнений, описывающая движение центра масс летательного аппарата в вертикальной плоскости при прямолинейной траектории. Получены оценки значений скорости и дальности в зависимости от ограничений на ресурс управления тягой двигателя. Ключевые слова: динамика летательного аппарата, ресурс управления, ограничения.
Введение
Движение центра масс летательного аппарата в скоростной системе координат в вертикальной плоскости на прямолинейном участке траектории после выбора направления описывается [1 ] системой уравнений
dV р C pV2 S . 9
m-= P cos a - C х-S - mg sin 9 ,
dt x 2
d9 dh . „ dx „ dm
— = 0 , — = V sin 9 , — = V cos 9 , -= -q, q > 0 ,
dt dt dt dt
где m - масса летательного аппарата; V - длина вектора скорости; 9 - угол наклона траектории, 9 = const; а - угол атаки, а = const; h - высота полета; x - дальность полета; q - секундный расход массы топлива; P - тяга двигателя, P < K; K - ресурс управления (величина, ограничивающая тягу двигателя, изменение тяги двигателей возможно в пределах строго ограниченного интервала, обусловленного количеством топлива (используется нижняя граница данного интервала), S - площадь крыльев летательного аппарата (ЛА), p(h) - плотность атмосферы, зависящая от высоты полета, í \ -h/
p(h) = Ce /R, R - радиус Земли, Cx - коэффициент лобового сопротивления, Cy - коэффициент подъемной силы, при этом
dCx п dCy —x > 0; —¿-> 0 5а 5а
В качестве управляющей функции выбирается тяга двигателя P((). Ставится задача найти P(() так, чтобы решение системы (1) удовлетворяло начальным условиям t = t0 : V = V), h = h0, x = x0, m = m0, P = P0 (2)
и конечным условиям t = t': h = hk, x = xk, m = mk, где t' - заранее неизвестный момент времени.