Владикавказский математический журнал 2010, Том 12, Выпуск 2, С. 15-23
УДК 517.98
ГОМОМОРФИЗМЫ *-АЛГЕБР ЛОКАЛЬНО ИЗМЕРИМЫХ ОПЕРАТОРОВ
Б. С. Закиров
Рассматриваются ^-гомоморфизмы *-алгебр локально измеримых операторов, присоединенных к алгебре фон Неймана. Устанавливаются связи между свойствами вполне аддитивности, нормальности и непрерывности в топологии сходимости локально по мере для таких ^-гомоморфизмов.
Ключевые слова: алгебра фон Неймана, локально измеримый оператор, сходимость локально по мере.
1. Введение
Одним из основных объектов теории некоммутативного интегрирования является *-алгебра ЬБ(М) всех локально измеримых операторов, присоединенных к алгебре фон Неймана М [1, 2]. Относительно топологии Ь(М) сходимости локально по мере ЬБ(М) является полной топологической *-алгеброй. Если М и N — конечные алгебры фон Неймана, то непрерывность ^-гомоморфизма и из (ЬБ(М),Ь(М)) в (ЬБ^),Ь^)) равносильна нормальности и [3]. В настоящей работе изучается связь между свойствами вполне аддитивности, нормальности и непрерывности ^-гомоморфизма без предположения конечности алгебр М и N. Устанавливается, что свойства нормальности и вполне аддитивности ^-гомоморфизма и — равносильны. Каждое из этих свойств обеспечивает непрерывность и, однако они не являются необходимыми условиями для непрерывности и. Кроме того, для непрерывного ^-гомоморфизма и, устанавливается равенство и(/(ж)) = /(и(ж)) для любых самосопряженных операторов ж £ ЬБ(М) и непрерывных комплексных функций /, заданных на (-то, +то).
Используется терминология и обозначения теории алгебр фон Неймана из [4] и теории локально измеримых операторов из [1, 2].
2. Предварительные сведения
Пусть Н — гильбертово пространство над полем С комплексных чисел, В(Н) — *-алгебра всех ограниченных линейных операторов, действующих в Н, 1 — тождественный оператор в Н, М — подалгебра фон Неймана в В(Н), 2(М) — центр алгебры фон Неймана М, Р(М) = {р £ М : р2 = р = р*} — решетка всех проекторов из М. Через РЙП(М) будем обозначать множество всех конечных проекторов из М.
Замкнутый линейный оператор х, присоединенный к алгебре фон Неймана М, имеющий всюду плотную область определения Э(х) С Н, называется измеримым относительно М, если существует такая последовательность {рп}^=1 С Р (М), что рп | 1, рп(Н) С Э(х) и р^ = 1 — рп £ Рйп(М) для каждого п = 1, 2,...
© 2010 Закиров Б. С.
Множество Б(М) всех измеримых относительно М операторов является ^-алгеброй с единицей 1 над полем С относительно перехода к сопряженному оператору, умножения на скаляр и операций сильного сложения и сильного умножения, получаемых замыканием обычных операций (см. [5]). Ясно, что М является ^-подалгеброй в Б(М).
Замкнутый линейный оператор ж, присоединенный к алгебре фон Неймана М, имеющий всюду плотную область определения Э(ж) С Н, называется локально измеримым относительно М, если существует такая последовательность {<гп}^=1 центральных проекторов из М, что хп | 1 и жгп £ Б(М) для всех п = 1, 2,...
Множество ЬБ(М) всех локально измеримых относительно М операторов является ^-алгеброй с единицей 1 над полем С относительно тех же алгебраических операций, что и Б(М) (см. [1]). При этом Б(М) является ^-подалгеброй в ЬБ(М). В случае, когда М имеет конечный тип или когда М — фактор, алгебры Б(М) и ЬБ(М) совпадают.
Если ж £ ЬБ(М) и ж = и|ж| — полярное разложение оператора ж, где |ж| = (ж*ж)2, и — соответствующая частичная изометрия из В(Н), то и £ М и |ж| £ ЬБ(М). Спектральное семейство проекторов {ед(ж)}д6к самосопряженного оператора ж £ ЬБ(М) всегда содержится в Р(М), при этом же^д^еДж) £ М для всех А,^ ^ 0.
Через ЬБ^(М) (соответственно, ЬБ+(М)) будем обозначать множество всех самосопряженных (соответственно, положительных) операторов из ЬБ(М).
Пусть М — коммутативная алгебра фон Неймана. В этом случае на М существует точный нормальный полуконечный след т и М — ^-изоморфна ^-алгебре Ьте (П, Е,^) всех существенно ограниченных комплексных измеримых функций, заданных на измеримом пространстве (П, Е,^) (равные почти всюду функции отождествляются). При этом ^(А) = т(Ха), А £ Е, где ха(ш) = 1 для ш £ А и ха(ш) = 0, если ш £ А, Ха —
класс эквивалентности из Ьте(П, Е, ^), содержащий функцию ха. Кроме того, *-алгебры
ЬБ(М) и Б(М) совпадают и отождествляются с ^-алгеброй Ь0(П, Е, ^) всех измеримых комплексных функций, заданных на (П, Е,^) (равные почти всюду функции отождествляются) [5]. Рассмотрим в Ь0(П, Е,^) топологию £(М) сходимости локально по мере, т. е. хаусдорфову топологию, наделяющую Ь0(П, Е, ^) структурой полной топологической *-алгебры, базис окрестностей нуля которой образуют множества вида:
W(В, е, 5) = {/ £ Ь0(П, Е,^) : 3 Е £ Е, Е С В, ^(В \ Е) < 5,
/ХЕ £ Ь~(П Е^ У/Хе|кте(П,Е^) < е^
где е, 5 > 0, В £ Е, ^(В) < то.
Очевидно, что окрестности нуля W(В, е, 5) — замкнуты и обладают свойством заполненности, т. е. из условий / £ W(В, е, 5), д £ Ь^(П, Е,^), ||д||ь<»(п,£,м) ^ 1 следует, что д/ £ W(В, е, 5).
Сходимость сети {/а} к / в топологии £(М) (обозначение: /а ——) /) означает, что /аХв —— /Хв по мере ^ для любого В £ Е с МВ) < то. Ясно, что топология *(М) не изменится при замене следа т на другой точный нормальный полуконечный след на М, поэтому топология £(М) однозначно определяется самой коммутативной алгеброй фон Неймана М.
Пусть теперь М — произвольная алгебра фон Неймана. Отождествим ее центр 2(М) с ^-алгеброй Ьте(П, Е,^) и Б(2(М)) с ^-алгеброй Ь0(П, Е,^). Обозначим через Ь+(П, Е, ^) множество всех измеримых функций, заданных на (П, Е,^) и принимающих значения в расширенной полупрямой [0, то] (равные почти всюду функции отождествляются). Ясно, что Ь+(П, Е,^) = {/ £ Ь0(П, Е,^) : / ^ 0} С Ь+ (П, Е,^).
Пусть & — размерностная функция на Р(М) со значениями в Ь+(П, Е,^) [5]. Для произвольных чисел є, 5 > 0 и произвольного множества В Є Е с ^(В) < то положим:
V(В, є, 5) = |ж Є Ь5(М): 3р Є Р(М), г Є Р(2(М)), 2рд Є Рйп(М),
жр Є М, ||жр||м ^ є, Є Ш(В, є, 5) и &(2рд) ^ є^,
где || ■ Ум — С*-норма в М. В [1] показано, что система множеств
{{ж + V(В, є, 5)} : ж Є Ь5(М), є,5 > 0, В Є Е, ^(В) < то} (1)
определяет в Ь5(М) хаусдорфову векторную топологию і(М), в которой множества (1) образуют базу окрестностей оператора ж Є £5(М). При этом (Ь5(М),і(М)) есть полная топологическая *-алгебра и топология і(М) не зависит от выбора размерностной функции &. Топология і(М) называется топологией сходимости локально по мере [1].
Замечание 2.1. Если и Є Р(2(М)) П Ш(В, є, 5), то иж Є V(В, є, 5) для всех ж Є £5 (М).
Действительно, если ж Є £5(М), р = 2 = ид, то 2рд = 0, (иж)р = 0, 2х Є Ш(В, є, 5) и &(грх) =0 ^ єг, т. е. иж Є V(В, є, 5).
Нам понадобится следующий полезный критерий для сходимости сетей в топологии і(М).
Предложение 2.2 ([2, §3.5]). (і) Сеть {ра}а&Л С Р (М) сходится к нулю в топологии і(М) в том и только в том случае, когда найдется такая сеть |2а|аЄл С Р(2(М)), что
т (ЛЛ\ ґ- Л ± *ШМ)) п ггА( Л тм))
2аРа Є Рйп(М) для всех а Є А, 2Д ---— 0 и &(2ара) -— 0.
(іі) Сеть {жа}аєЛ С Ь5(М) сходится к нулю в топологии і(М) в том и только в том случае, когда ед (|жа|) -—) 0 для любого А > 0.
3. Функциональное исчисление в *-алгебре Ь5(М)
Пусть М — алгебра фон Неймана, действующая в гильбертовом пространстве Н. Пусть р Є Р(М), Ь = р(Н), ж Є М, жр£ = рж£, £ Є Ь. Тогда жр Є В(Ь) и Мр = {жр : ж Є М} есть алгебра фон Неймана в В (Ь), при этом отображение п : рМр — Мр, задаваемое равенством п(ржр) = жр есть *-изоморфизм из рМр на Мр ([4, III, 3.14]).
Для каждого ж Є Ь5(М) положим (п(ж))(£) = рж(£), где £ Є Ь П Э(ж). Тогда пж Є Ь5(Мр) и п есть *-изоморфизм из рЬ5(М)р на Ь5(Мр). В дальнейшем мы отождествляем *-алгебры рЬ5(М)р и Ь5(Мр), а саму алгебру Ь5(Мр) будем записывать как Ь5 (рМр).
Предложение 3.1. Для каждого 0 = р Є Р(М) топология і(М) индуцирует в Ь5 (рМр) топологию і (рМр).
< Пусть{да}аєЛ С Р(рМр) и -—) 0. Согласно предложения 2.2 (і), найдется такая сеть {га}аЄл С Р(2(М)), что 2аЄ РЙП(М) для любого а Є А, (-—)) 0 и
в (ХМ.) “-—)) 0.
Проектор га = рха принадлежит 2(рМр), при этом гада = Є Рйп(рМр). Извест-
но, что 2(рМр) = р2(М), при этом алгебра фон Неймана р2(М) *-изоморфна алгебре фон Неймана х(р)2(М), где х(р) — центральный носитель проектора р (этот изоморфизм
Ф
задается отображением рх — х(р)х, 2 Є 2(М)). Поэтому центр 2(рМр) *-изоморфен х(р)2 (М).
Отождествим алгебры 2(рМр) и г(р)2(М). При этом топология 4(2(рМр)) сходимости локально по мере в ЬБ(2(рМр)) есть топология 4(г(р)2(М)) сходимости локально по мере в ЬБ(г(р)2(М)).
Ясно, что 0Р(д) := г(р)0(д), д £ Р(рМр), есть размерностная функция на Р(рМр), где 0 — исходная размерностная функция на Р(М). Имеем, что 0Р(гада) = 0р(£ада) =
,г(р)0(^а^а) *(2:(Р———)) 0. Кроме того, р - Га = р(1 - 2«) —— <г(р),гд *(г(———м)) 0. Поэтому, в
силу предложения 2.2(1), получим, что да (Р—Р 0. Аналогично устанавливается, что из
Фмр *(—)
сходимости да —— 0, {да} С Р(рМр), следует сходимость да —— 0.
Пусть теперь {жа} С ЬБ (рМр) и жа -—) 0. Согласно предложению 2.2(11), имеем,
что ед(|жа|) -—) 0 для любого А > 0, где {ед(|жа|)} — спектральное семейство проекторов для |жа|. Обозначим через {еД(|жа|)} спектральное семейство проекторов для |жа| в ЬБ (рМр), А > 0. Ясно, что {ед(|жа|)} = р—{еД (| жа |)} для всех А > 0. В силу доказанного
выше, имеем, что р — еД(|жа|) (Р—Р) 0 для всех А > 0. Поэтому из предложения 2.2 (11)
*(р—р) „ Л ^Р—Р)
вытекает, что жа —— 0. Аналогично показывается, что сходимость жа —— 0 влечет
сходимость жа -(—— 0 для {жа} С ЬБ (рМр). >
Хаусдорфова топология 4(М) наделяет ЬБ(М) структурой топологического векторного пространства и обладает следующими свойствами [6]:
(Т1) Инволюция ж — ж* — непрерывна.
(Т2) Для любой окрестности нуля и существует такая окрестность нуля V С и, что аж6 £ V и 8ирара £ и, если ж £ V, а, 6 £ М, ||а|| ^ 1, ||6|| ^ 1, {ра} — возрастающая сеть проекторов из V.
(^^3) Если {ра}абА С Р(^М^), ра ^ 0, то жара ^ 0 для л^эбой сети {жа}абА С
ЬБ (М).
(Т4) Если {ра}абА С Р(М), ра | 0, причем ра £ Рйп(М) или ра £ Р(2(М)) при
(—)
всех а, то ра —— 0.
Верно и обратное, т. е. отделимая векторная топология в ЬБ(М), обладающая свойствами (Т1)—(Т4), совпадает с топологией 4(М) [6].
Из свойств (Т3), (Т4) вытекает следующее полезное свойство топологии 4(М).
Предложение 3.2. Пусть {,г*}*6/ — семейство ненулевых центральных попарно ортогональных проекторов из Р(2(М)), 8ир*6/ г* = г, жа, ж £ ЬБ(М). Тогда жаг ——) жг в
(—)
том и только в том случае, когда жаг* —— жг* для всех г £ I.
Используя предложение 3.2, получим следующее нужное нам свойство апроксимации операторов из ЬБ(М) с помощью операторов из М.
Предложение 3.3. Если ж £ ЬБ(М), то ед(|ж|) —-—' 0 и жеп(|ж|) —-—' ж.
< Согласно [2, II, § 2.3] существует такая последовательность {<гп}^=1 С Р(2(М)), что гп | 1 и гпед(|ж|) £ Рйп(М) для всех п = 1, 2,... Зафиксируем номер т и рассмотрим последовательность дп = (гт+1 — гт)ед(|ж|). Ясно, что гпдп £ Рап(М), при этом | 0,
в частности, гДд *(———)) 0. Кроме того, 0 ^ 0(гпдп) ^ 0(гт+1 — гт)ед(|ж|) | 0, т. е.
*(•£(—)) ^м) , ,, ■((—)
0(гпдп) —— 0. Из предложения 2.2(1) следует, что дп —— 0, и потому ед(|ж|) —— 0
(предложение 3.2). При этом ж — жеп(|ж|) = жед(|ж|) ——— 0. >
Следствие 3.4. Замыкание М*(—) алгебры М в (ЬБ(М),4(М)) совпадает с ЬБ(М).
< Если ж £ Р5+(М), то жеп(ж) £ М и, в силу предложения 3.3, ж £ М*(М^. Поскольку любой элемент из £5(М) есть линейная комбинация четырех положительных элементов из £5(М), то £5(М) = М*(М}. >
Обозначим через С (Ж) *-алгебру всех непрерывных комплексных функций на множестве Ж. Пусть ж £ £5^(М), / £ С (Ж) и {ел(ж)}лек — спектральное семейство проекторов для ж. Рассмотрим в гильбертовом пространстве Н линейное подпространство
+ ГО
£(/(ж)) = {£ £ Н : | |/(А)|2^е«(А) < то
— ГО
где е^,п(А) = (ел(ж)£,п), £,П £ Н. Линейный оператор /(ж) : Э(/(ж)) — Н, определяемый равенством
+го
(/(ж)£,П)= I /(А) ^е«,ч(А), £ £ э(/(x)), П £ Н
— ГО
принадлежит £5(М) [2, II, §2.3], при этом /(ж)ел(ж) = ел(ж)/(ж) для всех А £ Ж и /(ж)е—л(ж)ел(ж) = /(же^л(ж)ел(ж)), А ^ 0. Если ж £ £5+(М), 0 ^ / £ С(Ж), то /(ж) £ £5+(М). Кроме того, е„(ж)(Н) С Э(/(ж)) и /(же„(ж)) = /(ж)е„(ж) ^ /(ж)е„+1(ж) =
/(жеп+1(ж)). Из предложения 3.3 следует, что /(жеп(ж)) -(—) /(ж). Поскольку конус £5+(М) положительных операторов замкнут в (£5(М),4(М)) [1], то /(жеп(ж)) Т /(ж)
[7, V, §4].
Предложение 3.5. Пусть ж £ £5+(М), 0 ^ / £ С(Ж), рп £ Р(М), рп Т 1, рпж = жрп £ М, п = 1, 2,... Тогда /(жрп) = /(ж)рп = рп/(ж) £ М для всех п = 1, 2,... и /(жрп) Т /(ж).
< Обозначим через А максимальную коммутативную ^-подалгебру в £5(М), содержащую ж и {рп}ГО=1. Поскольку (£5(М),4(М)) — топологическая *-алгебра, то А — замкнуто в (£5(М),4(М)). Кроме того, Аь = АПМ есть максимальная коммутативная подалгебра фон Неймана в М, содержащая {ел(ж)} и {рп}, при этом Ан = {у £ А : у* = у} является условно полной векторной решеткой относительно частичного порядка, индуцируемого из £5н(М). Пусть Р(Аь) — полная булева алгебра всех проекторов из Аь, Q = ^(Р(А)) — стоуновский компакт для Р(Аь) и СГО(^) — алгебра всех непрерывных функций ^ : Q — [-то, +то], для которых ^>—1(±то) — нигде не плотное множество в Q. Известно, что Ан есть фундамент в СГО^), при этом алгебра С^) всех непрерывных действительных функций на Q содержится в Ан (см., например, [8, I, 1.4.6]). Поскольку жеп(ж) £ Аь, то /(жеп(ж)) £ Аь [9, §1, п. 1.5], при этом /(жеп(ж)) Т /(ж) в £5н(М) и
/(жеп(ж)) -(—► /(ж), в частности, /(ж) £ Ан. Это означает, что /(жеп(ж)) Т /(ж) в Ан.
Для функции ж(4) из Ан С СГО^), 4 £ Q, рассмотрим функцию у(4) = /(ж(4)), которая, очевидно, принадлежит СГО^). Пусть Сп — открыто-замкнутое множество в Q, отвечающее проектору еп(ж) и С = иГО=1 Сп. Тогда С — открытое всюду плотное множество в Q, при этом [/(жеп(ж))](4) — у(4) для всех 4 £ С. Следовательно, /(жеп(ж)) Т у в Ан, и потому у = /(ж). Аналогично показывается, что /(жрп) Т у. Поскольку /(жрп) = Рп/(жрп), то Рп/(ж) = ру = /(жр„) для всех п = 1, 2,... >
4. ^-гомоморфизмы *-алгебр локально измеримых операторов
Пусть М, N — произвольные алгебры фон Неймана, и — ^-гомоморфизм из £5(М) в Р5(Ж). Из равенства и(ж*ж) = и(ж)*и(ж) следует, что и(£5+ (М)) С £5+(Ж) и
U(LSh(M)) С LSh(N). Кроме того, U(P(M)) С P(N) и U(M) С N. *-гомоморфизм U : LS(M) — LS(N) называется нормальным (соответственно, вполне аддитивным), если U(supa жа) = supa U(жа) (соответственно, U(sup E) = sup U(E)) для любой возрастающей ограниченной сверху сети {жа} С LSh(M) (соответственно, для любого семейства E попарно ортогональных проекторов из M).
Теорема 4.1. Пусть U — *-гомоморфизм из LS(M) в LS(N). Тогда
(а) U — нормально в том и только в том случае, когда U — вполне аддитивно;
(б) если U — нормально, то U — непрерывно из (LS(M),t(M)) в (LS(N),t(N));
(c) если M либо N — конечная алгебра фон Неймана и U : (LS(M),t(M)) — (LS(N), t(N)) — непрерывно, то U — нормально.
< (a) Очевидно, что нормальность ^-гомоморфизма U влечет его вполне аддитивность. Обратно, пусть U — вполне аддитивный ^-гомоморфизм, 0 ^ жа Т ж, жа,ж £ LSh(M). Поскольку 0 ^ U(жа) ^ U(ж), то в LSh(N) существует точная
верхняя грань 6 = sup U(жа) ^ U(ж). Положим уа = (Vж + 1)-1жа(^ж + 1)-1. Тогда
a
0 ^ ya ^ 1, ya Т У, где у = ж(ж + 1)-1. Следовательно, 0 ^ za = U(уа) возрастающая сеть в Nh, za ^ U(у) ^ U(1) £ P(N) и в Nh существует точная верхняя
грань z = sup za. При этом, U(\/ж + 1)zU(Vж + 1) = supa U(\/ж + 1)zaU(Vж + 1) =
supa U(\/ж + 1 уал/ж + 1) = supa U(жа) = 6.
Для каждого положительного нормального линейного функционала р на N определим линейный функционал /^(a) = p(U(a)) на M. Ясно, что /^ — положителен и вполне аддитивен. Из ([4, V, 5.11]) следует, что / — нормален. Поэтому p(U(у)) = /^(у) = supa /^(ya) = supa p(U(ya)) = p(z). Следовательно, ^(U(y)) = ^(z) для всех ф из пред-сопряженного пространства N* к алгебре N, и потому U(у) = z, что влечет равенство 6 = U (^ж + 1 )zU (^ж + 1) = U (^ж + 1 у^ж+Г) = U (ж).
(6) Пусть U — нормальный ^-гомоморфизм из LS(M) в LS(N). Из ([10, IV, §3]) следует, что существует такой центральный проектор z £ P (M), что ker U = {ж £ LS(M) : U(ж) = 0} = zLS(M) = LS(zM) и U : LS(z^M) — LS(N) есть инъективный ^-гомоморфизм, при этом A = U(LS(M)) является правильной ^-подалгеброй в LS(N), т. е. точные верхние грани для возрастающих ограниченных сетей в Ah совпадают с точными верхними гранями этих сетей, взятыми в LSh(N).
Пусть p = U(1), N1 = pNp. Сужение Ui ^-гомоморфизма U на M есть нормальный ^-гомоморфизм из M в N1, и потому U(z^M) = U1(M) есть подалгебра фон Неймана в N1, при этом *-алгебра A — ^-изоморфна LS(z^M) и является правильной *-подалгеброй в LS(N1). Из предложения 3.1 следует, что t(N) индуцирует в LS(N1) топологию £(N1). Поскольку A — правильная ^-подалгебра в LS(N1), то топология t(A), индуцируемая топологией £(N1) в A, обладает свойствами (T1)—(T4). Следовательно, топология в LS(z^M), порождаемая системой множеств {U-1(G) : G £ t(A)}, совпадает с топологией t(z^M) [6]. Это означает, что ^-гомоморфизм U : (LS(z^M),t(z^M)) —
(LS(N),t(N)) — непрерывен. Если жа £ LS(M) и жа -—) 0, то z^q, -—) 0, и потому
U(жа) = U(z^a) -—) 0. Следовательно, U — непрерывный ^-гомоморфизм.
(с) Пусть сначала M — конечная алгебра фон Неймана, {pa} С P(M) и pa | 0. Из
свойства (T4) вытекает, что pa -—) 0, и потому U(pa) -—) 0. Поскольку конус LS+(N) замкнут в (LSh(N),t(N)) и {U(pa)} — убывающая сеть в LSh(N), то infa U(pa) = 0. Это означает, что ^-гомоморфизм вполне аддитивен, и потому он нормален (см. п. (а)).
Пусть теперь N — конечная алгебра фон Неймана, а M не является конечной алгеброй. Выберем наибольший конечный центральный проектор zo из P(M). Проектор z$
является собственно бесконечным ([4, IV, 4.8]), и поэтому существуют такие проекторы p, q € P(Mz—), что p + q = z—, pq = 0, p ~ q ~ z— ([4, IV, 4.12]), где запись p ~ q означает эквивалентность проекторов p и q. Выберем частичные изометрии u, v € Mz—, для которых z— = u*pu, z— = v*qv. Ясно, что U(u), U(v) — частичные изометрии в N, при этом
U (u)*U (p)U (u) = U (z—) = U (v)*U (q)U (v),
т. е. проекторы U(p), U(q), U(z—) — попарно эквивалентны в N. Поэтому для каждого нормального конечного следа т на N имеем, что т(U(p)) = т(U(q)) = т(U(z—)). Поскольку N — конечная алгебра фон Неймана, то на N существует разделяющее семейство нормальных конечных следов ([4, VII, 7.14]). Следовательно, U(z—) = U(p) = U(q), при этом U(z—) = U(p + q) = 2U(z—), т. е. U(z—) = 0 и U(ж) = U(xzo) для всех ж € LS(M).
Пусть {pa} С P(M) и pa I e € P(M). Тогда paz0 | ez0, и, в силу свойства (T4),
paZo -(—) ez. Поскольку ^-гомоморфизм U — непрерывен и P(N) = Pfln(N), то U(pa) = U(p«zo) -— U(ezo) = U(e) и U(pa) -— sup U(pa). Следовательно, U(suppa) = sup U(pa),
a a a
т. е. U — вполне аддитивно, и потому U — нормально (см. п. (а)). >
Замечание 4.2. Пункты (6) и (с) теоремы (4.1), в случае конечных алгебр фон Неймана M и N, получены в [3].
Из п. (а) и доказательства п. (b) теоремы (4.1) вытекает следующее
Следствие 4.3. Если U : LS(M) — LS (N) — вполне аддитивный * -гомоморфизм, то ядро ker U — замкнуто в (LS(M),t(M)), а образ ImU — замкнут в (LS(N),t(N)).
< Замкнутость ядра kerU в (LS(M),t(M)) вытекает из непрерывности U. Далее, используя обозначения доказательства п. (b) теоремы (4.1), имеем, что алгебра (LS(z—M),t(z—M)) — топологически полна. Следовательно, полно множество A = U(LS(z—M)) в (LS(N), t(N)), и поэтому образ Im U — замкнут в (LS(N), t(N)). >
В [3] показано, что, в случае конечных алгебр фон Неймана M и N, замкнутость ker U и Im U обеспечивает вполне аддитивность *-гомоморфизма U. Для произвольных алгебр фон Неймана такая импликация уже неверна.
Действительно, пусть M = B(H), dim H = то, K — множество всех ненулевых положительных линейных функционалов на B(H), п^ : B(H) — B(H^) — *-представление B(H) в B(Яр), ассоциированное с р € K, п = 0пр, L = 0Яр. Тогда п есть точное *-представление M в N = B (L), при этом п не является нормальным *-гомоморфизмом (иначе, все р € K будут нормальными, что неверно). Ясно, что в этом случае LS(M) = M, LS(N) = N и топологии сходимости локально по мере совпадают со сходимостью по C*-нормам У ■ ||м и У ■ ||n. Поэтому п : (LS(M),t(M)) — (LS(N),t(N)) есть непрерывный *-гомоморфизм. При этом, ядро kerп = {0} — замкнуто в (LS(M),t(M)), а образ Imп — замкнут в (N, || ■ ||n) = (LS(N),t(N)). Однако, п не является вполне аддитивным *-гомоморфизмом.
Кстати, из этого примера следует, что непрерывность *-гомоморфизма U : (LS(M),t(M)) — (LS(N),t(N)) не влечет, вообще говоря, его нормальность (ср. с п. (с) теоремы 4.1).
Теорема 4.4. Если U : (LS(M),t(M)) — (LS(N),t(N)) — непрерывный *-гомомор-физм, то U(f (ж)) = f (U(ж)) для всех f € C(R) и ж € LSh(M).
< Заменяя алгебру N на U(1м)NU(1м) и используя предложение 3.1, можно считать, что U(1м) = 1n. Предположим сначала, что ж € LS+(M) и f ^ 0. Поскольку U(M) С N, то из ([9, §1, п. 1.5]) следует, что U(f^„(ж))) = f(U^„(ж^))) = f (U ^)U (e„ (ж))).
В силу предложения 3.3 и непрерывности U, имеем, что e„(ж) -—) 1м, f (жб„(ж)) =
f (ж)бп(ж) —— f (ж), p„ = U(e„(ж)) —— 1n и U(f ^„(ж))) —— U(f (ж)). Поскольку p„ ^ p„+i, то p„ | 1. Отсюда, согласно предложению 3.5, получим, что
f (U^)UЫж))) = f (U^)p„) = f (U(ж))^ —— f (U(ж)).
Следовательно, U(f(ж)) = f(U(ж)).
Пусть теперь f — любая действительная функция из C(R), f+ = f V 0, f- = (—f) V 0. Тогда
U (f (ж)) = U (Д(ж) — f-(ж)) = f+(U (ж)) — f-(U (ж)) = f (U (ж)).
Аналогично, для комплексной функции f € C(R) сохраняется равенство U(f(ж)) = f (U (ж)).
Пусть ж € LSh(M) и ж+, ж- — положительная и отрицательная, соответственно, части для ж. Тогда U(f (ж)) = U(f (ж+) — f (ж-)) = f (U(ж+)) — f (U(ж-)).
Обозначим через з(ж) носитель оператора ж. Поскольку з(ж+)^(ж-) = 0, то
U(s^+))U(в(ж-)) = 0 и U^+)U(«(ж+)) = U(ж+), U(ж-)U(в(ж-)) = U(ж-). Следовательно, s(U(ж+)) ^ U(«(ж+)), s(U(ж-)) ^ U(в(ж-)), и потому s(U^+))s(U(ж)) = 0. Отсюда вытекает нужное равенство
f(U(ж)) = f(U(ж+) — U(ж-)) = f(U(ж+)) — f(U(ж-)) = U(f(ж)). >
Автор выражает глубокую признательность профессору В. И. Чилину за полезное обсуждение результатов.
Литература
1. Yeadon F. J. Convergence of measurable operators // Proc. Camb. Phil. Soc.—1974.—Vol. 74.—P. 257268.
2. Муратов М. А., Чилин В. И. Алгебры измеримых и локально измеримых операторов.—Кшв: Пращ 1н-ту матемематики НАН Украши, 2007.—Т. 69.—390 с.
3. Закиров Б. С. Критерий непрерывности гомоморфизмов колец измеримых операторов // Узб. матем. журн.—2000.—№ 5-6.—C. 25-30.
4. Stratila S., Zsido L. Lectures on von Neumann algebras.—England: Abacus Press, 1975.—477 p.
5. Segal I. E. A non-commutative extension of abstract integration // Ann. Math.—1953.—№ 57.—P. 401457.
6. Чилин В. И. Частично упорядоченные бэровские инволютивные алгебры // Итоги науки и техники. Сер. Совр. пробл. мат. Новейшие достижения.—М.: ВИНИТИ, 1985.—Т. 27.—C. 99-128.
7. Шефер Х. Топологические векторные пространства.—М.: Мир, 1971.—360 c.
8. Кусраев А. Г. Мажорируемые операторы.—М.: Наука, 2003.—619 c.
9. Диксмье Ж. C*-алгебры и их представления.—М.: Наука, 1974.—400 с.
10. Сарымсаков Т. А., Аюпов Ш. А., Хаджиев Дж., Чилин В. И. Упорядоченные алгебры.—Ташкент: Фан, 1983.—304 с.
Статья поступила 14 мая 2009 г.
Закиров Ботир Сабитович Ташкентский институт инженеров железнодорожного транспорта, доцент УЗБЕКИСТАН, 100167, Ташкент, ул. Адылходжаева, 1 E-mail: [email protected]
HOMOMORPHISMS OF ALGEBRAS OF LOCALLY MEASURABLE OPERATORS
Zakirov B. S.
Involutive homomorphisms of ^-algebras of locally measurable operators affiliated with von Neumann algebra are considered. Connections between properties of completely additivity, normality and continuity of an involutive homomorphism are established.
Key words: von Neumann algebra, locally measurable operator, convergence locally in measure.