For citation-. Hu Zekui, Yang Jinyu, Mei Shunqi, Alexey Guryev, Burial Lygdenov. Effect of electroless plating time on hardness and brittleness force of electroless Ni-B coatings on GCr15 surface // Grand Altai Research & Education — Issue 2 (20)'2023 (DOI. 10.25712/ASTU.2410-485X.2023.02) — EDN. https://elibrary.ru/wwwocd
UDK 669.17
Effect of electroless plating time on hardness
and brittleness force of electroless Nl-B coatings
on GCr15 surface*
Hu Zekui1, Yang Jinyu1, Mei Shunqi1, Alexey Guryev1'2'3, Burial Lygdenov1'4
1 Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, 430073, China; 2 Zhejiang Pinnuo machinery Co., Ltd, Zhejiang Xinchang, 312500, China; 3 Zhejiang Taitan Co., Ltd, Zhejiang Xinchang, 312500, China; 4 Zhejiang Xinchang Sanxiong Bearing Co., Ltd, Zhejiang Xinchang, 312500, China E-mail: [email protected], [email protected]
Аннотация. Electroless Ni-B coatings were deposited on GCr15 steels by electroless deposition method. In this study, the effect of electroless plating time on hardness and brittleness of the deposits were analyzed. The surface morphology was observed with an OLYMPUS DSX510 metallographic microscope; the hardness of the plating layer was measured with an HV-1000 microhardness tester; and the brittleness of the plating layer was tested with a Rockwell hardness tester. The results show that the electroless plating time increases, the surface of Ni-B plating becomes more dense, the hardness increases, the brittleness increases, and cracks easily appear.
Ключевые слова: electroless Ni-B plating time; GCr15 steel; hardness; brittleness
GCr15 ШШШ Ni-B
mm1, шш^1, rnjm1, ^шт^шшш^1,2,3, шштшштя1,4
1 ШХ^Й^Ж Ж 430073;
2 Ш^ШШ^Й^, шша 312500, ФШ;
3 шша 312500, ФШ;
4 шша 312500, Фа.
E-mail. [email protected], [email protected]
тш. GCr15 1я±шя7 Ni-B шт.
Ш OLYMPUS DSX510 шшшмшшмт;
* This article was funded by the National and Hubei Province high-end Textile equipment Intelligence Base Plan
(111HTE2022002, HWZ201819)
** (111HTE2022002, HWZ201819)
Ш HV-1000 ЖШШ^ШММШ; Ш&ЙШ^ИШМШЙ. ШШ:
{кттттж Ni-в ШМшшш, шшп, ШШХ ш&тмт.
ШЩ: Ni-B НШ; GCr15 Щ; Ш; Шй
0 ЩЙ
GCri5 m^ik, п^, шшшш,
т^тттш [1]. Ni-в шад, д
Я&ШМШй, Шй, ЁШШМйТОШШй, [2],
Й^Г^ЖШ^ШШ&ШШШ* [3]. Barati Q [4] ЯШТШ^Ш МШ&ТШШ Ni-в ЖЖ&ШМЪЯШ. Barman M [5] Щ%тМ№М№Ж
%1\1ттвтттжтшж\тжш
шшитш GCri5 тш, шет^даш, ЯШМ
ih ^4h I Ni-в Ш. Ni-в ШШШШ.ЖШЙШ
nfo. ЖШ OLYMPUS DSX510 HV-1000 МШШЮ^ ЖйШ^Я
Ni-B ШШШЖйЫШ.
1 яшпжш 1.1 шш
жшм^М! GCr15 тшъ^ш Ni-в irnw, ш^ышшк^^
20mm X 15mmX5mm, 180HV. 1 [6].
Ш1 GCr15 Mlh¥m#^(wt%) Table 1. GCr15 steel chemical composition table (wt%)
C Cr Mn Si Ni Cu P S O Fe
0.95 1.44 0.36 0.27 0.06 0.07 0.13 0.004 0.0004 Bal.
1.2 Ш&Ш
Ш GCr15 ШШй 160#, 320#, 600#, 1000# Ш, ШВ, Ш W2.5, W0.5
М^ [7]. ШВ, 60VUU (Na2CO3,
20—30g/L, NaOH, 10g/L, Na3PO4 • 12H2O, 50g/L) 15min,
Ш, ФЖ&, 30% 1 min [8], М&Ш, ФЖ&. МВШ№
&ШШАШШФ.
1.3 ^ШьВ^ШЯ
Ni-в шшштхъшш 2 ш. шшшштш штттшшм, ъ-т^ш&м, ^rn^^^rn^^, мжшш
ph ШМ. ph 13 90г ЫМЖШШ, ЯШМ 1h (Ш
1) ^ 4h 2).
m2 Ni-B
Table 2.
Ni-B electroless plating bath composition and process parameters
NiCl2 6H2O 30
NaBH4 1
C2H8N2 60
Pb(NO3)2 0.03
NaOH 40
PH >13
Ж (h) 1,4
SS (°C) 90
2
2.1 кшнтшмшш
ШЙ OLYMPUS DSX510 1,2 ЖШШШ (foK: 50цш),
Ш 1,2
Ш lh № Ni-B 4h
Ni-B ШШ «№»
ш i Ni-в шмШМШ (lh)
Fig. 1. Surface morphology of Ni-B coating (1h)
ш 2 Ni-в шмшмшт
Fig. 2. Surface morphology of Ni-B coating (4h)
2.2 кшнтттш
rn& Hv-1000 тшъжшш 1,2 ШШШШШЙ., ш 3,4 т ж, шттттттм., шш [9]. 1 одташ^ 681HV,
2 728HV.
Ш 4 'ШШМШШ 1
шшт 1h шмшшшмшмш-хш, щшжшшшкж
Fig. 3. Surface hardness of Ni-B coating (1h) Fig. 4. Surface hardness of Ni-B coating (4h)
2.3
It^KUt, I50g
&ЖЛ, 30s ШЛ. mm OLYMPUS DSX510 ШШШШШШШ
Ш&ШШ'Ш (Ш: 400ЦШ). ш 5,6 ffi^.
Ш 1h & Ni-B ШМЖШШ^ВДЖШШ, Ш 4h & Ni-B
ЯЭДМШШ. Ш,
^шшш^тшш, шж^^^МЙ, шм^тйтн^т
ЙВ, шмодшт^шшшж*, шштжшт
шш.
Ш 5 Ni-B ШМШ (1h) Fig. 5. Surface indentation of Ni-B coating (1h)
Ш 6 Ni-B ШМШ (4h) Fig. 6. Surface indentation of Ni-B coating(4h)
3 mnm
acri5 mtïïmtmmmM 1 /tm 4 /t, m
[1] Li D., Cui X., Wen X., et al. Effect of CeO2 nanoparticles modified graphene oxide on electroless Ni-P coating for Mg-Li alloys [J]. Applied Surface Science, 2022, 593: 153381.
[2] Yan L., Yan S., He Y., et al. Effects of propylamine and ethylenediamine intercalation of a-ZrP on the corrosion resistance and tribological properties of electroless Ni-B coatings [J]. Surface and Coatings Technology, 2023, 471: 129883.
[3] Vitry V., Hastir J., Mégret A., et al. Recent advances in electroless nickel boron coatings [J]. Surface and Coatings Technology, 2022, 429: 127937.
[4] Barati Q., Hadavi S.M.M. Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends [J]. Surfaces and Interfaces, 2020, 21: 100702.
[5] Barman M., Barman T.K., Sahoo P. Effect of borohydride concentration on tribological and mechanical behavior of electroless Ni-B coatings [J]. Materials Research Express, 2019, 6(12): 126575.
[6] Mei S., Zhou C., Hu Z., et al. Preparation of a Ni-P-nanoPTFE Composite Coating on the Surface of GCr15 Steel for Spinning Rings via a Defoamer and Transition Layer and Its Wear and Corrosion Resistance [J]. Materials, 2023, 16(12): 4427.
[7] urn-, ^mm, r^rn. 7075 m^mm j
fè^, 2022, 32(01):58-63. D0I:10.13228.
[8] Yazdani S., Vitry V. RSM models approach for optimization of the mechanical properties of electroless Ni-B-nanodiamond coating: An experimental and molecular dynamic simulation study [J]. Surface and Coatings Technology, 2023, 452: 129133.
[9] Xiao Zhi, Yang Jinyu, Hu Zekui, et al. Effect of PH value on properties of electroless Ni-P-Al203 composite coating on GCr15 surface [J]. Grand Altai Research & Education, 2022 (2 (18)): 72-76.
References
[1] Li D., Cui X., Wen X., et al. Effect of Ce02 nanoparticles modified graphene oxide on electroless Ni-P coating for Mg-Li alloys [J]. Applied Surface Science, 2022, 593: 153381.
[2] Yan L., Yan S., He Y., et al. Effects of propylamine and ethylenediamine intercalation of a-ZrP on the corrosion resistance and tribological properties of electroless Ni-B coatings [J]. Surface and Coatings Technology, 2023, 471: 129883.
[3] Vitry V., Hastir J., Mégret A., et al. Recent advances in electroless nickel boron coatings [J]. Surface and Coatings Technology, 2022, 429: 127937.
[4] Barati Q., Hadavi S.M.M. Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends [J]. Surfaces and Interfaces, 2020, 21: 100702.
[5] Barman M., Barman T.K., Sahoo P. Effect of borohydride concentration on tribological and mechanical behavior of electroless Ni-B coatings [J]. Materials Research Express, 2019, 6(12): 126575.
[6] Mei S, Zhou C, Hu Z, et al. Preparation of a Ni-P-nanoPTFE Composite Coating on the Surface of GCr15 Steel for Spinning Rings via a Defoamer and Transition Layer and Its Wear and Corrosion Resistance. [J]. Materials, 2023, 16(12): 4427.
[7] Zhu Huiyi, Mao Jianhui, Yin Lingpeng.Effect of chemical plating on the organisation and properties of nickel-phosphorus alloy coating on 7075 aluminium alloy [J]. China Metallurgy,2022,32(01):58-63. D01:10.13228.
[8] Yazdani S., Vitry V. RSM models approach for optimization of the mechanical properties of electroless Ni-B-nanodiamond coating: An experimental and molecular dynamic simulation study[J]. Surface and Coatings Technology, 2023, 452: 129133.
[9] Xiao Zhi, Yang Jinyu, Hu Zekui, et al. Effect of PH value on properties of electroless Ni-P-Al203 composite coating on GCr15 surface [J]. Grand Altai Research & Education, 2022 (2 (18)): 72-76.