ЛЕСОИНЖЕНЕРНОЕ ДЕЛО
контролируемых параметров изделия и др., надо в комплексе рассматривать направления и рекомендации повышения эффективности качества входного контроля запасных частей (рис. 2).
Библиографический список
1. Быков, В.В. Концептуальные и технологические основы системы технического сервиса: монография / В.В. Быков. - 2004. - 312 с.
2. Ерхова, К.И. Входной контроль качества запасных частей для лесных машин / К.И. Ерхова // Технология и оборудование лесопромышленного производства. - 2011. - № 356. - С. 126-129.
3. Дорохов, А.С. Качество машиностроительной продукции: реальность и перспективы / А.С. Дорохов // Ежемесячный производственный, научнотехнический и учебно-методический журнал. Сер. Ремонт, восстановление, модернизация. - 2005. - № 8. - С. 2-4.
4. http://www.pozhtechnika.com
УЛУЧШЕНИЕ КАЧЕСТВА ПРИРАБОТКИ ДЕТАЛЕЙ
дизелей во время обкатки с применением противоизносного антифрикционного
рЕмОНТНО-ВОССТАНОВИТЕЛЬНОГО СОСТАВА
В.В. БЫКОВ, проф. каф. технологии машиностроения и ремонта МГУЛ, д-р техн. наук, Е.А. ЦЫПЦЫН, ООО «Технореммаш», канд. техн. наук,
А.С. НОСИХИН, асп. МГАУ им. В.П. Горячкина
В настоящее время актуальность темы повышения ресурса различных машин и механизмов неуклонно возрастает. На работы по обеспечению работоспособности подвижных соединений в тяжелых условиях эксплуатации, восстановлению изношенных деталей, снижению интенсивности различных видов изнашивания деталей дизелей в технически развитых странах ежегодно расходуется до 4-5 % национального дохода [1].
Это связано не только с ужесточением режимов эксплуатации дизелей, но также с отсутствием во многих случаях методов обоснованного выбора конструкционных и смазочных материалов, защитных покрытий и способов химико-термической обработки по достаточно объективным критериям для конкретных условий работы трибосоединений.
Известно, что путем улучшения качества поверхностей трения при восстановлении деталей и выбора рациональных режимов эксплуатации машин можно значительно повысить ресурс отремонтированных дизелей. Ресурс дизеля в целом зависит от износостойкости и работоспособности отдельных составляющих элементов.
За последние годы машиностроительные заводы проделали большую работу по повышению ресурса и качества изготовления деталей дизелей. Однако в целом межремонтный ресурс дизелей составляет 50-60 % от нормативного [2].
Наибольшее количество отказов дизелей наблюдается в начальный период эксплуатации. Одна из причин такого явления - низкое качество приработки деталей. Многие
Таблица 1
данные о ресурсах дизелей
Марка дизеля Ресурс дизеля, моточасы
нового отремонтированного в % к новому
Д-240 5803 2920 50
СМД-62 3600 2200 61
А-41 3974 2430 61
А-01 3952 2370 60
Д-180 2500 1611 64
ЛЕСНОЙ ВЕСТНИК 3/2012
65
ЛЕСОИНЖЕНЕРНОЕ ДЕЛО
исследователи [3, 4] придают большое значение приработке деталей не только в связи с необходимостью подготовки соединений к восприятию эксплуатационных нагрузок, но и потому, что правильная приработка оказывает большое влияние на ресурс дизелей.
Исследования, проведенные в нашей стране и за рубежом, показывают, что одним из наиболее эффективных способов достижения качества приработки деталей дизелей и снижения времени обкатки является применение специальных антифрикционных покрытий и приработочных присадок к маслу, топливу и воздуху [5, 6]. Благодаря простоте и экономичности эти способы все больше привлекают внимание исследователей и практиков.
Изучение вопросов приработки особенно актуально для ремонтных предприятий, так как агрегаты и узлы дизелей здесь собирают из деталей с частичным износом, восстановленных и новых. Необходимость приработки как технологической операции обусловлена тем, что даже при совершенной сборке и соответствии шероховатости и волнистости рабочих поверхностей требованиям чертежей практически невозможно другими технологическими операциями достичь оптимальных трибологических характеристик поверхностных слоев трущихся деталей. Приработка в значительной степени определяет безотказность дизеля, особенно в начальный период эксплуатации, и при минимуме приработочного и установившегося износа трибосоединений обеспечивает повышение ресурса дизеля.
Сегодня требования к качеству моторных масел непрерывно расширяются и ужесточаются в зависимости от форсирования нагрузочных и скоростных режимов эксплуатации дизелей, уменьшения металлоемкости и удельной емкости системы смазки, качества применяемого дизельного топлива и условий эксплуатации.
При эксплуатации машин и механизмов происходят значительные химические и физические изменения масел, т. е. изменения их состава и свойств, что влияет на эксплуатационные свойства масел. Для предотвращения подобных изменений в большинство смазочных масел вводят специальные вещества и их ком-
позиции. В зависимости от состояния и растворимости в масле эти вещества получили разное название. Органические маслорастворимые продукты называют присадками, они составляют самую распространенную группу присадок к маслам. Твердые нерастворимые вещества, как правило неорганического происхождения, называют антифрикционными добавками, ряд полимерсодержащих композиций именуют модификаторами, имеются также кондиционеры и рекондиционеры металла и т. д.
Среди ресурсоувеличивающих препаратов появилось несколько видов добавок в масляную систему двигателя, призванных обеспечить снижение потерь на трение и скоростей износа деталей двигателя. Наиболее интересными представляются препараты минерального происхождения, так называемые геомодификаторы трения, позволяющие получить увеличенный ресурс двигателя на завершающем этапе производства - обкатке. Таковым препаратом является противоизносный антифрикционный (ПИАФ) состав, позволяющий на этапе обкатки не только увеличить ресурс деталей и двигателя в целом, но и сократить время приработки деталей, уменьшить их износ, повысить мощность двигателя и уменьшить расход топлива при дальнейшей эксплуатации. Ускорению приработки и улучшению качества приработанных поверхностей способствует ПИАФ состав, т.к. он содержит наиболее эффективные компоненты смазывающего и пластически-деформирующего действия - серпентин и магнетит.
Магнетит - минерал, сложный окисел состава FeO4Fe2O3; содержит 31 % -FeO, 69 % - Fe2O3; 72,4 % -Fe; часто присутствуют примеси MgO, Cr2O3, Al2O3, MnO, ZnO и др. Магнетит - феррит с кристаллической структурой обращенной шпинели. Кристаллизуется в кубической системе, обычно образует октаэдрические, реже додекаэдрические кристаллы и зернистые агрегаты. Спайность отсутствует, хрупок, твердость по минералогической шкале 5,5-6. Плотность 4800-5300 кг/м3.
Наличие твердых частиц магнетита в масле должно вести к интенсивному износу поверхностей трения. Однако мелкие абразивные частицы не только не интенсифицируют
66
ЛЕСНОЙ ВЕСТНИК 3/2012
ЛЕСОИНЖЕНЕРНОЕ ДЕЛО
изнашивание, но и тормозят его [7]. В ряде случаев размер частиц меньше 5 мкм считается безопасным и даже полезным. Объясняется это полирующим эффектом. Механические примеси, содержащиеся в работавшем масле, в котором ослаблено диспергирующее действие присадок, представляют собой комплексы, в сердцевине которых находятся твердые абразивные частицы, покрытые многослойной коллоидной защитой, состоящей из полярноактивных продуктов окисления масла. Положительное влияние этих частиц проявляется в том, что они интенсифицируют теплопередачу между поверхностями трения, повышают электропроводность масляной пленки, нивелируют шероховатости на поверхности.
Кроме того, микроабразив усиливает физико-химические процессы в зоне трения, вызывая незначительные деформации поверхностных слоев и появление новых поверхностей, которые являются активными участками протекания химических реакций и диффузионных процессов [8].
Исследования Г.И. Бортника и Г.П. Шпенькова [9] показали, что микроабразивные частицы размером 3 мкм и менее ускоряют протекание начальной фазы избирательного переноса (ИП) - образование сервовитного слоя и тем самым ускоряют процесс приработки деталей. Наличие до 1,5 % таких частиц в смазочном масле снижает коэффициент трения, ускоряет образование оптимального микрорельефа на всей площади касания.
Интенсивность абразивного изнашивания зависит от многих факторов, в том числе от коэффициента трения между абразивом и изнашиваемой поверхностью. При образовании на поверхности металла в процессе трения пленки даже малой толщины уменьшается коэффициент трения между абразивом и металлом, что ведет к уменьшению пластической и упругой деформации основного металла, а следовательно, и величины абразивного износа.
Известно, что в начальный период (холодная обкатка) необходимо ускорять формирование микрорельефа трущихся поверхностей, а затем (горячая обкатка) снижать интенсивность износа с одновременным мо-
дифицированием физико-механических трущихся слоев деталей [10].
Исходя из этого сделан вывод о возможности использования механического воздействия мелкодисперсного абразива для ускорения приработки поверхностей трения на маслах с ПИАФ составом.
В период холодной обкатки частицы магнетита усиливают физико-химические процессы в зоне трения, способствуют более интенсивному сглаживанию микронеровностей поверхностей трения, облегчают и ускоряют процесс приработки во время холодной обкатки.
Серпентин относится к слоистым силикатам. Они состоят из двух сеток [Si2O5]2- , соединеных вместе катионами в компактные пакеты состава [Si4O10]4-. Особенностью каждой сетки [Si2O5]2- является наличие нескомпенсированного электростатического заряда, обусловленного тем, что с одной стороны сетки из кремнекислородных тетраэдров имеют одну свободную валентность, что определяет появление только на одной стороне сетки тетраэдров отрицательного заряда. В сдвоенных пакетах [Si4O10]4- отрицательные заряды обеих сеток направлены внутрь пакета и скомпенсированы катионами Mg . Фактически в слоистых пакетах [Si4O10]4- между двумя сетками состава [Si2O5] 2- располагается брусито-вый слой Mg(OH)2 (рисунок).
Специфическое строение слоистых силикатов - наличие пакетов, состоящих из гексагональных сеток-слоев, связанных друг с другом очень слабыми связями, определяет и свойства этих минералов: низкую твердость, весьма совершенную спайность и расщепляемость на тонкие пластинки. Механизм действия серпентина аналогичен механизму действия твердых смазочных материалов (графита, дисульфида молибдена и др.).
При повышении температуры поверхностей трения более 473К (горячая обкатка)
Рисунок. Схематическое строение кристаллической решетки слоистых силикатов
ЛЕСНОЙ ВЕСТНИК 3/2012
67
ЛЕСОИНЖЕНЕРНОЕ ДЕЛО
Таблица 2
Режимы обкатки дизелей Д-180
Наименование этапа Частота вращения коленчатого вала, мин-1 Крутящий момент, Нм Время обкатки, мин
Типовая технология на масле М-10ДМ На масле М-10ДМ с ПИАФ составом
40-500 15 15
Холодная обкатка 900 - 25 10
Горячая обкатка на 500 - 10 10
холостом ходу 1300 - 10 5
275 10 5
550 15 10
Горячая обкатка под При полной подаче 810 15 10
нагрузкой топлива 885 5 -
0 5 -
Всего 110 60
серпентин образует на поверхностях трения, в местах их контакта, тонкую антифрикционную пленку, которая способна выдержать более высокую нагрузку, чем смазочная пленка минерального масла. При этом соприкасающиеся неровности не срезаются, а пластически деформируются под пленкой серпентина. Значительно уменьшаются сила и температура трения.
Характер изменения этих параметров показывает, что процесс приработки протекает в более благоприятных условиях и завершается значительно раньше по сравнению с чистым эксплуатационным маслом, т.е. серпентин и магнетит, входящие в состав РВС, позволяют форсировать процесс приработки деталей и получить повышенные физико-механические свойства поверхностей трения.
Таким образом, применение прира-боточных масел с ПИАФ составом во время обкатки двигателя способствует уменьшению приработочного износа, скорость изнашивания деталей в период эксплуатации за счет наличия на поверхностях трения серпентина также уменьшается.
В подтверждение данных свойств ПИАФ состава были проведены стендовые испытания дизелей Д-180 в ООО «Промтрак».
Исследования проводили по следующей технологии. На масле М-10ДМ по типовой технологии и на масле М-10ДМ с ПИАФ составом по ускоренной технологии с последующими сорокачасовыми испытаниями под нагрузкой (Мнагр. = 400Нм) было обкатано на обкаточнотормозном стенде КИ-5541М по 1 двигателю.
Качество приработки деталей дизелей оценивали по стабилизации момента механических потерь; шероховатости гильз цилиндров; площади приработки шатунных вкладышей; величине износа поршневых колец, шатунных вкладышей; гильз цилиндров, шатунных шеек коленчатого вала; визуальным осмотром. Перед обкаткой, после обкатки и после сорокачасовых испытаний дизелей был проведен микрометраж гильз цилиндров индикаторным нутромером с точностью измерения 0,001 мм и шатунных шеек коленчатого вала индикаторной скобой с точностью измерения 0,001 мм. Весовой износ поршневых колец и шатунных вкладышей определяли на аналитических весах ВЛА-200, с точностью измерения 10-4 г Шероховатость гильз цилиндров определяли с помощью профилографа-профилометра мод.201.
В результате испытаний было установлено следующее: время стабилизации момента механических потерь на масле М-10ДМ с ПИАФ составом происходит за 20-25 мин холодной обкатки, а на масле М-10ДМ - более чем за 35 мин. Кроме того, среднее значение момента трения за первые 20 мин приработки на масле М-10ДМ с ПИАФ составом на 12 % меньше, чем на чистом масле М-10ДМ.
Стендовый приработочный износ за время обкатки на масле М-10ДМ с ПИАФ составом меньше, в сравнении с чистым маслом М-10ДМ: 1- поршневые кольца на 12 %; 2- гильзы цилиндров на 23 %; 3- шатунные шейки коленчатого вала на 57 %; 4- шатунные вкладыши на 38 %.
68
ЛЕСНОЙ ВЕСТНИК 3/2012