Науковий вкник НЛТУ Укра'ни. - 2014. - Вип. 24.2
2. ЕКОЛОГ1Я ТА ДОВК1ЛЛЯ
УДК 581.524.13 Prof. Stanistaw Baran, dr hab.; dr. Grazyna Zukowska;
prof. Anna Wojcikowska-Kapusta, dr hab.; mgr Sylwia Wesotowska-Dobruk; dr. Marta Bik-Matodzinska; dr. Magdalena Sompor-Kulik - University of Life Sciences in Lublin, Institute of Soil Science, Environment Engineering and Management
THE USEFULNESS OF SEWAGE SLUDGE AND MINERAL WOOL FOR SOIL RECLAMATION ON AREAS DEVASTATED DUE TO SULFUR EXTRACTION BY MEANS OF FRASH METHOD1
The paper presents the analysis of the influence of different methods for soilless forms reclamation using sewage sludge and waste mineral wool Grodan on their selected water, physicochemical, and chemical properties. It has been found that tested waste materials (mineral wool with sewage sludge mixture in particular) exerted positive impact, as compared to NPK fertilization, on the production properties of the soilless form, which wasevidenced by the increase in the yield of crops.
Keywords: soilless forms, reclamation, mineral wool, sewage sludge.
Introduction. The sulfur mining causes specific environmental transformation, especially the soil one, which results from chemically active minerals, historically conditioned environment properties, and characteristics of the course of mining process [Drozdz-Hara 1978, Dziewonski 1988, Golda 2000, Jonca 2004, Warzybok 2000]. Native sulfur, sulfides, and sulfur oxides, that are emitted in the process of mining, are potential carriers of sulfuric acid in the soil, which inevitably leads to a decrease in its pH value. Strong acidity creates toxic conditions for most crops by acute deficiency in nutrients as well as increased mobility of phytotoxic elements [Moto-wicka-Terelak, Dudka 1991, Turski 1993].
Soil pollution with sulfur also contributes to the deterioration of its sorption properties due to the loss of exchangeable calcium and magnesium. Sulfuric acid formed as a result of sulfating weakens the protective effect of the sorption complex against nutrients elution, which is the basis of chemical degradation of soils [Baran 2001, Baran 2000, Baran, Turski 1999, Golda 2000, Jonca 2004].
Reclamation of post-exploitation areas in open sulfur mining is a complex and difficult issue, because it concerns the revitalization of sulfated soilless formations that are poor in organic matter and showing bad chemical and physicochemical properties. The present study aimed at evaluating the possibility of using the flotation lime, municipal sewage sludge, and waste mineral wool Grodan from under-cover plantations to recover soilless formations within the area influenced by the sulfur extraction by Frash method.
Methods. The plot experiment (500 m2 area of each plot) was carried out on the area devastated due to the impact of Sulfur Mine "Jeziorko". To de-acidify the devastated soil (weak loamy sand), flotation lime was once used (100 t / ha), and to fer-
1 Publication funded from the budget for science in 2010-2013 as a project No N304 400 139.
2. Екологя та довкшля
85
tilize, mineral wool (Grodan) was applied at different doses on a backsoil of the drainage rate of sewage sludge from municipal sewage Stalowa Wola (100 t DM / ha) (Table 1). Integration of used substances was made with a help of a disc harrow and cultivator. The control consisted of the soilless form de-acidified with flotation lime and annually fertilized with NPK at following doses (kg / ha): 80, 40, 60.
The reclamation mixture of the following grasses was sown onto the plots: meadow fescue (Festuca pratensis) - 41.2 %, red fescue (Festuca rubra) - 19.2 %, perennial ryegrass (Lolium perenne) - 14.7 %, Italian ryegrass (Lolium multiflo-rum) - 12.4 %, cocksfoot (Dactylis glomerata) - 6.5 %, red clover (Trifolium pratense) - 6 %.
Table 1. The plot experiment scheme
_Reclamation ways_
Soil + lime + NPK: 80,40,60 (control)_
Soil + lime + sewage sludge (100 t DM/ha)__
Soil + lime + sewage sludge 100 t DM /ha + wool 200 m3/ha Soil + lime + sewage sludge 100 t DM /ha + wool 400 m3/ha Soil + lime + sewage sludge 100 t DM /ha + wool 800 m3/ha
Samples of soil/soil as well as mineral wool and sewage sludge were subject to following determinations:
• pH value - potentiometry - in H2O and 1moldm-3 KCl;
• hydrolytic acidity (Hh) - Pallman method - in 1 moldm-3 CH3COONa;
• alkaline cations (S) in 0.5 moldm-3 ammonium chloride extract (pH 8.2);
• sorption capacity (T) and saturation of the soil complex with alkaline cations (V) -calculation;
• total carbon content (Ct) - Tiurin method with Simakov modification;
• total nitrogen content - Kjeldahl method - applying distillation apparatus Kjeltech 1002,;
• C: N ratio - calculation;
• selected water properties.
In order to determine the water properties of the soil, intact-structured samples were collected to metal containers of 100 cm3 capacity, that were adjusted to the complete water saturation (-0.098 kPa, i.e. pF 0.0). They were subsequently used for determination of water content at the state of the field water saturation at kPa -15.54 (i.e. at pF 2.2) in low-pressure chambers on ceramic plates.
Determining the water content of the soil in the states of the potential: -490 kPa (3.7 pF - point of complete plant growth inhibition) and -1550 kPa (4.2 pF -permanent fading point) was carried out in the high-pressure chamber by using a cellophane membrane with appropriate parameters, measuring:
• field water capacity of the soil at the soil water potential -15,54 kPa (pF 2.2) was calculated from the ratio of weight of water contained in the soil to dry matter of soil dried at 105 °C;
• retention of producing water was calculated on a base of the field water capacity (15.54 kPa - pF 2.2) and water capacity corresponded to the point of complete plant growth inhibition (-490 kPa - pF 3.7);
• full water capacity was calculated as a sum of the field water capacity and retention of gravitational water.
HayKQBHH bîchhk ll.TIV yKpaïHH. - 2014. - Bun. 24.2
Results from the determinations of retention properties were expressed in g-100 g-1 - % w/w (water weight corresponded to the weight of soil dried at 105 °C).
Results
Properties of the soilless form and wastes applied in the experiment. The
field experience was established on the soilless formation with granulometric composition of weak loamy sand (Table 2). The formation was characterized by strong acidity, poor sorption properties, as well as low contents of organic carbon and nitrogen.
Table 2. Selected properties of the soilless formation, mineral wool, and sewage sludge
Property Unit Soil 0-20 cm Mineral wool Sewage sludge
pH H20 5,75 6,9 6,8
pH 1 mol KCl-dm"1 4,00 6,6 6,4
Hh cmol (+)kg-1 2,25 3,8 4,6
S cmol (+)kg-1 5,01 57,0 50,0
T cmol (+)kg-1 7,26 60,8 54,5
V % 69,03 93,7 91,6
C '-'ore. g-kg"1 2,1 28,4 193,7
Ntot. g-kg"1 0,18 4,1 28,1
C: N 11,5 7,1 6,9
Mineral wool is a natural substance produced from igneous rocks. Studied mineral wool Grodan derived from horticultural under-cover crops has favorable sorption properties, high content of alkaline cations, and high degree of saturation with these elements (Table 2).
This waste has a high water retaining capacity, which can have a very positive impact on the process of biological soil remediation and recovery of degraded soils in devastated areas. It also has a high contents of magnesium and calcium, as well as beneficial levels of nitrogen, phosphorus, and potassium. Phosphorus and potassium contained in tested material are characterized by relatively high bioavailability. The heavy metals content does not invoke any reservation [Baran 2006].
Municipal sewage sludge used in the experiment is characterized by positive sorption properties and high contents of carbon and nitrogen (Table 2). The content of heavy metals is at an acceptable level [Dz.U. No. 134, pos. 1140 of 27 August 2002]. The applied sewage sludge also meets the sanitary requirements.
Water properties of the soilless formation reclaimed using mineral wool Grodan and sewage sludge. Methods of reclamation using waste mineral wool Grodan and sewage sludge on the backsoil of NPK fertilization showed diverse influence on water properties of reclaimed soilless formation.
Very low value of field water capacity in the soilless formation was significantly (234-834 %) and diversely improved due to different methods used for reclamation (Table 3, Figure 1). Taking into account the average value of the field water capacity, the changes qualify these reclamation manners in a following sequence: soil + sewage sludge + mineral wool (278 %) > soil + sewage sludge (136 %) > soil + NPK (100 %).
A decrease of field water capacity was found during the study in the reclaimed soil, except from NPK, for which some increase was recorded. Taking into ac-
count the changes in field water capacity in the relationship: beginning (100 %) - the end of the experiment, tested ways of remediation make a sequence: soil + NPK (17 %) > soil + sewage sludge (-4 %) > soil + sewage sludge + wool (-20 %).
So prominent decrease (despite of the largest increase) field water capacity of soil with mineral wool and sludge during study should be associated with the mineralization of organic matter introduced along with the sludge [Baran 1992, Baran 2006, Baran et al. 2008 a], which affected the increase in macropores, while decrease in mesopores number.
Table 3. The field water capacity (% w/w) of reclaimed soil (mean values)
Reclamation variants Beginning of study 1st year 2nd year 3rd year Mean
Soil + lime + NPK (control) 15,0 14,1 18,4 17,5 16,3
Soil + lime + sewage sludge 22,3 22,3 22,9 21,3 22,2
Soil + lime + sewage sludge + mineral wool 53,1 47,7 38,1 42,4 45,3
l able 4. Retention of prouuc Reclamation variants tion water (% w/w) o Beginning of study reclaim 1st year ea soil (t 2nd year nean vai 3rd year ues) Mean
Soil + lime + NPK (control) 11,3 10,7 14,9 14,2 12,7
Soil + lime + sewage sludge 17,7 16,7 19,6 17,4 17,8
Soil + lime + sewage sludge + mineral wool 47,2 42,4 31,9 29,5 37,7
Figure 1. Influence of reclamation ways on the change in the field water capacity of reclaimed soil (mean values): P) beginning of study; K) end of study; 0) native soil; NPK) soil + lime + NPK; Os) soil + lime + sewage sludge); W+Os) soil + lime + sewage sludge +
mineral wool
Very low value (4.3 %) of production water retention in reclaimed soilless formation got significantly (140-295 %) and diversely improved due to different methods used for reclamation (Table 4, Figure 2): soil + sewage sludge + mineral wool (295 %) > soil + sewage sludge (140 %) > soil + NPK (100 %).
Multidirectional changes in production water retention depending on the reclamation way were observed during the study. When analyzing changes in production water retention in the relation the beginning (100 %) - the end of experiment, tested ways of reclamation can be lined up in the following sequence: soil + NPK (25.0 %) > soil + sewage sludge (2.0 %) > soil + sewage sludge + mineral wool (-37.5 %).
Table 4. Retention of production water (% w/w) of reclaimed soil (mean values)
Reclamation variants
Beginning of study
1st year
2nd year
ryar
Mean
Soil + lime + NPK (control)
11,3
10,7
14,9
14,2
12,7
Soil + lime + sewage sludge
17 7
16 7
19 6
17 4
17 8
Soil + lime + sewage sludge + mineral wool
47,2
42,4
31 9
29 5
37,7
Increasing the dose of mineral wool (200, 400, 800 m proportional increase in retention of production water value i0 formation.
• ha-1) resulted in a in reclaimed soilless
Figure 2. Influence of reclamation ways on retention of production water in reclaimed soil (mean values in per cents). Denotations as in Figure 1
Insufficient (15 %) full water capacity in reclaimed soilless formation increased to varying degrees (132-252 %) depending on the remediation way (Table 5, Figure 3): soil + sewage sludge + mineral wool (252 %) > soil + sewage sludge (132 %) > soil + NPK (100 %).
Within the study period, a decrease in the full water capacity in variants with mineral wool was found, whereas the increase in combination with mineral fertilizer and sewage sludge. When analyzing changes of this property in the relationship the beginning (100 %) - the end of the experiment, tested ways of reclamation formed the following sequence: soil + NPK (12.0 %) > soil + sewage sludge (9.0 %) > soil + sewage sludge + mineral wool (-8.5 %).
Table 5. Full water capacityJ%w/w)o==BSB=mBB^
Reclamation variants
Beginning of study
1s year
2nd year
3rd year
Mean
Soil + lime + NPK (control)
24 1
240
281
27,0
258
Soil + lime + sewage sludge
31,6
o c o
35,3
34,9
34,6
34,1
Soil + lime + sewage sludge + mineral wool
71,3
65,7
57,7
65,3
65,0
Figure 3. Influence of reclamation ways on full water capacity of reclaimed soil (mean values). Denotations as in Figure 1
2. EKO^OOH Ta flOBKÍaaa
89
Physicochemical properties of reclaimed soil using mineral wool Grodan and sewage sludge. The obtained results indicate a substantial improvement (3.5-9-fold) in sorption properties of devastated soilless formation, which was dependent on the way of restoration (Tables 6, 7, Figure 4). Their contribution, as compared to mineral NPK fertilization (control - 100 %) allowed for making the following series: soil + sewage sludge + mineral wool (193 %) > soil + sewage sludge (143 %) > soil + NPK (100 %).
Table 6. Sorption capacity (cmol (+)'kg'1) of reclaimed soil (mean values)
Reclamation variants Beginning of tudy 1st year 2nd year 3rd year Mean
Native soil 5,11
Soil + lime + NPK (control) 23,75 15,31 17,95 15,41 18,11
Soil + lime + sewage sludge 26,43 24,33 26,52 26,36 25,91
Soil + lime + sewage sludge + mineral wool 36,66 30,13 38,85 34,20 34,96
Reclamation variants Date of study H+ S T 1 V % of saturation H+
cmol (+) kg-1 % %
Soil + lime + NPK (control) Beginning End 0,90 3,60 22,85 11,81 23,75 15,41 96,20 76,64 3,80 13,40
Soil + lime + sewage sludge Beginning End 0,90 1,50 25,53 24,86 26,43 26,36 96,60 94,31 3,40 5,70
Soil + lime + sewage sludge + mineral wool Beginning End 1,05 1,50 35,61 32,63 36,66 34,20 97,10 95,36 2,90 5,30
Figure 4. Influence of reclamation ways of sorption capacity of soil (mean values):
0) native soil; NPK) soil + NPK; Os) soil + sewage sludge; W+Os) soil + sewage sludge +
mineral wool
During the experiment, the sorption capacity decrease under the influence of NPK fertilization was recorded (Table 7), while more stable changes in other remediation variants. Change (decrease) of the sorption capacity makes tested reclamation ways lined up in the sequence: soil + NPK (-35.1 %) > soil + mineral wool + sewage sludge (-6.7 %) > soil + sewage sludge (-0.3 %).
Table 7. Sorption properties of soil in tested reclamation variants at the beginning (P) and the end (K) of experiment (mean values)
Reclamation variants
Date of study
H+
S
cmol (+) kg
T I V
%
% of saturation H+
%
Soil + lime + NPK (control)
Beginning End
0,90 3,60
22,85 11,81
23,75 15,41
96,20 76,64
3,80 13,40
Soil + lime + sewage sludge
Beginning End
0,90 1,50
25,53 24 86
26,43 26 36
96,60 94 31
3,40 5,70
Soil + lime + sewage sludge + mineral wool
Beginning End
1,05 1,50
35,61 32,63
36,66 34,20
97,10 95,36
2,90 5,30
Value of sorption capacity of reclaimed soil due to tested wastes should be assessed as high and corresponding to good quality soils. In addition to the significant increase in sorption capacity, saturation of the sorption complex with cations was also improved. Calcium is the dominant cation, the percentage of which corresponds to good quality soils. Proportions of other cations form the following sequence: Ca > Mg > Na > K.
Figure 5. Influence of reclamation ways on calcium cations content in the sorption
complex (mean values)
Studied methods of reclamation using mineral wool and sewage sludge had, as compared to NPK fertilization, the beneficial effects on the content of calcium, magnesium, potassium, and hydrogen cations, which underwent some changes during the study period.
Significant decrease of Ca++ was found in soil fertilized with NPK, the decline in the conditions of sewage sludge with mineral wool use, and a slight improvement under conditions of sewage sludge application (Figure 5). The influence of reclamation ways on Ca++ content arranged in a series: soil + NPK (-48.5 %) > soil + mineral wool + sewage sludge (-6.2 %) > soil + sewage sludge (+0.5 %), which is analogous to that for sorption capacity variations.
Contents of organic carbon and total nitrogen. Content of organic carbon in the native ground (soilless formation) was very diverse and amounted to 2.1 gkg-1 in 0-20 cm, while 1.14 gkg-1 in 20-40 cm layer [Baran et al. 2008].
Tested wastes: mineral wool Grodan, sewage sludge, and NPK fertilization exerted positive impact on organic matter content in reclaimed soil (Figure 6).
For soil of the control object, the organic carbon content in both study dates remained at a similar level and averaged to 4.99 gkg-1. These results may indicate that the improvement of acidity of reclaimed soil (after liming) inhibited the rate of organic matter mineralization. Furthermore, these results confirm that the use of an optimum mineral fertilization, under slightly acidic and near neutral pH, allows to maintain the humus content in cultivated soils at the current level [Myskow 1984].
Fertilizing the reclaimed soil with sewage sludge resulted in a significant increase in Corg content. Proportion of organic content in the soil of the object amounted to 10.14 gkg-1 with increasing by another 0.7 gkg-1 at the end of the second growing season.
L-l L-2 L-3 L-4 L-5
Figure 6. Organic matter content in the soil reclaimed using sewage sludge and mineral wool: L-1) soil + lime + NPK: 80,40,60, L-2) soil + lime + sewage sludge, L-3) soil + lime + sewage sludge + mineral wool 200 m3/ha, L-4) soil + lime + sewage sludge + mineral wool 400 m3/ha, L-5) soil + lime + sewage sludge + mineral wool 800 m3/ha
Achieved results revealed a beneficial effect of mineral wool Grodan used in combination with sewage sludge on the increase in organic carbon content. In the soil of this object, the Corg share (in the 1st date of study) ranged from 9.12 gkg-1 (mineral wool at rate of 200 m3ha-1) to 11.56 gkg-1 (rate of 800 m3ha-1). Increase of the organic carbon content in this variant was considerable when compared to the NPK control and proportional to the introduced dose of mineral wool.
Observed increase in Corg content in objects fertilized with mineral wool are likely to be associated with its beneficial effect on the water properties of soils, which have a direct impact on the conversions of organic matter in soils and indirectly, on the increase of crop yields, thus the increase of vegetation remains supply.
L-l L-2 L-3 L-4 L-5
Figure 7. Total nitrogen content in soil reclaimed using sewage sludge and mineral wool:
L-1) soil + lime + NPK: 80,40,60, L-2) soil + lime + sewage sludge, L-3) soil + lime + sewage sludge + mineral wool 200 m3/ha, L-4) soil + lime + sewage sludge + mineral wool 400 m3/ha, L-5) soil + lime + sewage sludge + mineral wool 800 m3/ha
Remarkable influence of applied reclamation procedures on total nitrogen contents was recorded in the soil reclaimed using tested wastes (Figure 7).
Considering the soil of the control object fertilized with NPK, Ntot. content ranged from 0.50 to 0.57 gkg-1. Addition of sewage sludge at the rate of 100 Mgha-1 had positive effect on substantial increase in Ntot. proportion (average content 0.93 gkg-1). Other studied indicate the increase of the total nitrogen in soils amended with sewage sludge [Baran et al.2008 a; Baran et al. 2012; Zukowska et al.2002].
The use of mineral wool in combination with sewage sludge exerted, as similar as sewage sludge, the effect of increasing the total nitrogen content, thus the average content of Ntot. in the soil of this object amounted to 0.98 and 0.88 gkg-1, respectively for the first and second date of study.
Discussed changes in organic carbon and total nitrogen contents in reclaimed soil were reflected in changes of C: N ratio. The ratio ranged from approximately 9 to 12.5. In the soil of control object, C: N ratio was 9.43 (mean value for 2 dates). Fertilizing the soil applying sewage sludge resulted in insignificant increase in the C: N ratio (only up to 11:4).
Yielding of grass mixture. Reclamation of devastated soil using mineral wool (Grodan) and sewage sludge, as well as NPK fertilization contributed to the improvement of its chemical, water, and physicochemical properties, reflected in an intensive increase in biomass of grass mixture and thus its yielding (Figure 8).
Figure 8. Summarized yields of fresh grass weight harvested within 2004-2009from studied reclamation variants (mean values): Denotations as in Figure 1
The lowest total yield of grass was obtained from the soil fertilized with NPK mineral fertilizers (control), while tested reclamation variants had a positive effect on plant growth. The highest total yield was achieved from the soil with the addition of mineral wool and sewage sludge, whereas the lower with addition of the sewage sludge only. Taking into account the total yield of grass during the study, tested reclamation variants formed a following sequence: soil + mineral wool + sewage sludge > soil + sewage sludge > soil + NPK.
The yield obtained from mineral wool + sewage sludge variant was the most stable over the period of study, while other variants showed a downward trend, which in the end of the study began to stabilize. It was confirmed by the changes in the quantity and quality of organic matter, as well as water and sorption properties.
Crop sequence achieved from the tested ways of reclamation is fully supported by the formation of water and physicochemical properties of the soil being formed, which was observed during the present study. A similar effect of mineral wool and sewage sludge was reported by Gilewska, Otremba [2004] in the study upon reclamation of post-mining soils in KWB Konin. Conclusions:
1. Mineral wool (Grodan) - the waste from under-cover horticultural production -is characterized by favorable sorption properties, high content of alkaline cations, and low hydrolytic acidity. It contains significant amounts of magnesium and calcium, nitrogen, phosphorus, and potassium.
2. Municipal sewage sludge has favorable sorption properties, high content of carbon and nitrogen, while contents of heavy metals are at an acceptable level according to Dz.U. No 137, pos. 924 of 13 July 2010.
3. The use of tested wastes for devastated soilless formation resulted in the improvement of its properties depending on the dose and reclamation method.
4. The increase in the share of mineral wool in the soil caused the improvement of the field water capacity proportional to the dose, whereas tested ways of reclamation form a series: mineral wool + sewage sludge > sewage sludge > NPK.
5. Addition of studied wastes caused, as compared to NPK, the increase of production water retention in the soil with following intensities: mineral wool + sewage sludge > sewage sludge > NPK.
6. Full water capacity in soil reclaimed using tested wastes increased as compared to NPK fertilization with following intensities: mineral wool + sewage sludge > sewage sludge > NPK.
7. Addition of tested wastes to reclaimed soilless formation resulted, as compared to NPK fertilization, the increase of its sorption capacity in the following way: sewage sludge + mineral wool (193 %) > sewage sludge (143 %) > NPK (100 %).
8. Fertilization with mineral wool and sewage sludge resulted in a significant increase in the content of organic carbon and improvement of organic matter resource in reclaimed soil in the following sequence: mineral wool + sewage sludge > sewage sludge > NPK.
9. Applied reclamation procedures resulted in a significant increase in total nitrogen content in the soil, especially under conditions of mineral wool and sewage sludge addition.
10. The use of studied wastes to devastated soilless formation caused the improvement of its properties leading to the increase in a yield of the meadow grass species in a following sequence: sewage sludge + mineral wool (177.8 %) > sewage sludge (158.8 %) > NPK (100.0 %).
References
1. Baran S., Wôjcikowska-Kapusta A, Zukowska G, Bik M, Szewczuk Cz, Zawadzki K.: Welna mineralna i osad sciekowy w ksztaltowaniu zawartosci azotu w rekultywowanym utworze bezgle-bowym. Przemysl Chemiczny. - Vol. 91/6. - S. ^ 1259-1262, 2012.
2. Baran S, Wôjcikowska-Kapusta A, Zukowska G, Bik M.: Wlasciwosci sorpcyjne utworu bezglebowego rekultywowanego osadem sciekowym i weln^ mineraln^. Zesz. Prob. Post. Nauk Rol. -Vol. 533. - S. 39-47, 2008.
3. Baran S, Wôjcikowska-Kapusta A, Zukowska G, Szczepanowska I.: Zmiany zawartosci azotu w glebie lekkiej uzyznionej osadem sciekowym. Zesz. Prob. Post. Nauk Rol.. - Vol. 533. - S. 65-72, 2008 a.
4. Baran S.: The type of sewage sediments and the mineralization process of their organic substance and the zinc content in a plant. Polish Journal of Soil Sc. - Vol. XXV/2. - S. 135-140, 1992.
5. Baran S.: Ocena oddzialywania nawozôw niekonwencjonalnych na wlasciwosci fizykoche-miczne rekultywowanego grunty w obrçbie wplywu Kopalni Siarki "Jeziôrko" oraz wypracowanie wplywu ich optymalizacji. A R Lublin 2001.
6. Baran S., Turski R.: Wybrane zagadnienia z utylizacji i unieszkodliwiania odpadôw. AR Lublin, 1999.
7. Baran S.: Ocena stanu degradacji i rekultywacji gleb. AR Lublin, 2000.
8. Baran S.: 2006. Ability to use used mt of mineral wool in postmining reclamation. Development in Production and Use of New Agrochemicals. Chemistry for Agriculture. - Vol. 7, (Eds. H. Gôrecki, Z. Dobrzanski, P. Kafarski), Chech-Pol Trade, Prague-Brussels. - Pp. 662-670.
9. Drôzdz-Hara M.: Studia nad wplywem zanieczyszczenia siark^ na przemiany gleb uprawnych w s^siedztwie Kopalni Siarki. Rocz. Glebozn. - Vol. XXIX, 2. - S. 141-162, 1978.
10. Dziewonski J.: Oddzialywanie przemyslu siarkowego na srodowisko przyrodnicze woj. tar-nobrzeskiego. Wyd. PAN 'Studia i rozprawy". - Vol. I. - S. 1-159, 1988.
11. Gilewska M., Otremba K. 2004.: Wykorzystanie poprodukcyjnej welny mineralnej w agrome-lioracji gleby wytworzonej z gruntôw pogôrniczych. Rocz. AR w Poznaniu - CCCLVII.
12. Golda T.: Podstawowe uwarunkowania rekultywacji terenow pogorniczych Kopalni Siarki "Jeziorko", Inzynieria Ekologiczna. - Vol. 1. - S. 53-60, 2000.
13. Jonca M.: Mozliwosci odbudowy gleb na gruntach zdewastowanych w obszarze wplywu Kopalni Siarki Jeziorko. AR Lublin. - S. 1-72, 2004.
14. Motowicka-Terelak T., Dudka S.: Degradacja chemiczna gleb zanieczyszczonych siark^ i jej wplyw na rosliny uprawne. Wyd. IUNG Pulawy. - Vol. R (284). - S. 1-95, 1991.
15. Myskow W.: Rolnicze znaczenie prochnicy oraz sposoby regulowania jej ilosci w glebie. IUNG Pulawy, 1984.
16. Rozporz^dzenie Ministra Srodowiska z dnia 13 lipca 2010 w sprawie komunalnych osadow sciekowych (Dz. U. Nr 137; poz. 924).
17. Turski R.: Przyrodnicze aspekty zakwaszania gleb w Polsce. Symp. Nauk. nt. "Przyrodnicze i antropogeniczne przyczyny oraz skutki zakwaszania gleb". AR Lublin. - Vol. 102, 1993.
18. Warzybok W.: Rekultywacja terenow gorniczych Kopalni Siarki "Jeziorko", Materialy Konfe-rencji Naukowo-Technicznej Baranow Sandomierski. Inzynieria Ekologiczna. - Vol. 1. - S. 121-133, 2000.
19. Zukowska G., Flis-Bujak M., Baran S.: Wplyw nawozenia osadem sciekowym na substanj organiczn^ gleby lekkiej pod upraw^ wikliny. Acta Agrophysica. - Vol. 73. - S. 357-367, 2002.
Баран С., Жуковска Г., Вуйщковска-Капуста А., Весоловска-Добрук С. Бж-Малодзтьська М., Сомпор-Кулж М. Придатшсть осаду слчних вод i мшерально! вати для ввдновлення грунпв на здевастованих територiях у процесi видобутку счрки методом Фраша
Проаналiзовано вплив рiзних cnoco6iB рекультиваци негрунтових утворень з ви-користанням осаду сйчних вод i складаеться з вторсировини мшерально! вати Grodan на фантастичш воднi властивостi, фiзико-хiмiчнi та хЬшчш властивостi. З'ясовано бла-готворний вплив додатку дослщжуваних вiдходiв, а особливо минерально! вати 3i спч-ним осадом, на формування властивостей продуктивной негрунтовий утворень. Вира-женням цього стало збiльшення стебел вирощуваних рослин.
Ключовi слова: неГрунтовi утворення, рекультивацш, минеральна вата, стiчний осад.
Baran S., Zukowska G., Wojcikowska-Kapusta A., Wesolowska-Dobruk S., Bik-Malodzinska M., Sompor-Kulik M. Przydatnosc osadu sciekowego i welny mineralnej do odbudowy gleb na terenie zdewastowanym w procesie wydobycia siarki metod^ Frasha
W pracy analizowano wplyw roznych sposobow rekultywacji utworow bezglebowych z wykorzystaniem osadu sciekowego i pouzytkowej welny mineralnej Grodan na wybrane wlasciwosci wodne, fizykochemiczne i chemiczne. Stwierdzono, w porownaniu do nawozenia mineralnego NPK, korzystny wplyw dodatku badanych odpadow, a szczegolnie welny mine-ralnej z osadem sciekowym, na ksztaltowanie wlasciwosci produkcyjnych utworu bezglebo-wego. Wyrazem tego byl wzrost plonu uprawianych roslin.
Slowa kluczowe: utwory bezglebowe, rekultywacja, welna mineralna, osad sciekowy.
УДК 712.41:582.685.4:632.111.8 Проф. Н.А. Алексейченко1, д-р с.-г. наук;
аспир. М.А. Борщевский1'2; вед. науч. сотруд. О.И. Китаев3, канд. биол. наук
ВНУТРИВИДОВАЯ АДАПТАЦИОННАЯ СПОСОБНОСТЬ RHUS TYPHINA L. В УСЛОВИЯХ УРБОЭДАФОТОПОВ КИЕВА
Исследована внутривидовая изменчивость индикаторных морфофизиологических признаков функционального состояния сумаха пушистого (Rhus typhina L.) в техноген-но трансформированных урбоэдафотопах Киева: амплитуда изменчивости фитоиндика-торных признаков и оценка их адаптационного потенциала. Для оценки адаптационных
1 НУ биоресурсов и природопользования Украины, г. Киев;
2 Науч. руководитель: проф. Н. А. Алексейченко, д-р с.-г. наук;
3 Институт садоводства НААН Украины
2. Еколопя та довклля
95