Научная статья на тему 'THE TORQUE OF THE ROTOR BLADES'

THE TORQUE OF THE ROTOR BLADES Текст научной статьи по специальности «Техника и технологии»

CC BY
2
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
differential equations / numerical method / wind / rotor / assembly / wings / pressure / curved area / linear velocity / angular velocity / momentum. / дифференциальные уравнения / численный метод / ветер / ротор / агрегат / крылья / давление / криволинейная площадь / линейная скорость / угловая скорость / импульс

Аннотация научной статьи по технике и технологии, автор научной работы — Najmiddinov Insomiddin Biloldinovich, Urishev Utkir Gulyamovich, Azamov Kodirjon Saidmamatovich

The article of moment gives the equations of a twisting propelling rotor with a vertical axis with a curved wing arising under the pressure of the wind flow. The relationship between dynamic, kinematic and geometric parameters is reflected in the equation.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The torque of the rotor blades

В статье приведены уравнения крутящего винта с вертикальной осью и криволинейным крылом, возникающего под давлением ветрового потока. В уравнении отражена связь между динамическими, кинематическими и геометрическими параметрами.

Текст научной работы на тему «THE TORQUE OF THE ROTOR BLADES»

MEXANIKA

UDC 621.548.

THE TORQUE OF THE ROTOR BLADES

Najmiddinov Insomiddin Biloldinovich Namangan Civil Engineering Institute, Senior Lecturer at the Department of Strength of Materials and Mechanics.

inajmiddinov@gmail. co m

Urishev Utkir Gulyamovich uymorist@mail. ru

Azamov Kodirjon Saidmamatovich Namangan Civil Engineering Institute, Associate Professor of the Department of Strength of Materials and

Mechanics, senior lecturer, [email protected]

Аннотация. Maqolada ikki yarusli vertical o'qli botiq yuzali rotorning shamol bosimidan yuzaga keluvchi harakatlantiruvchi momentining tenglamasi keltirilib chiqarilgan. Uning ifodasida rotorning geometric, dinamik va kinematic parametrlarni bog'lanishlari inobatga olingan

Аннотация. В статье приведены уравнения крутящего винта с вертикальной осью и криволинейным крылом, возникающего под давлением ветрового потока. В уравнении отражена связь между динамическими, кинематическими и геометрическими параметрами.

Annotation. The article of moment gives the equations of a twisting propelling rotor with a vertical axis with a curved wing arising under the pressure of the wind flow. The relationship between dynamic, kinematic and geometric parameters is reflected in the equation.

Tayanch so'zlar: differensial tenglamalar, raqamli usul, shamol, rotor, montaj, qanotlar, bosim, egri maydon, chiziqli tezlik, burchak tezligi, impuls.

Ключевые слова: дифференциальные уравнения, численный метод, ветер, ротор, агрегат, крылья, давление, криволинейная площадь, линейная скорость, угловая скорость, импульс

Key words: differential equations, numerical method, wind, rotor, assembly, wings, pressure, curved area, linear velocity, angular velocity, momentum.

It is known that the rotor may operate in four distinct positions, each associated with a corresponding change in the driving force applied to the wings during one cycle of operation. In this paper, we will analyze the second and third positions and derive their respective expressions.

The second position occurs when the second wing is restricted from moving in the direction of the wind at point B of the first wing, in shape 1. The third position is when the second wing travels from point A of the first wing relative to the direction of the wind, in shape 2.

The thrust moment they are generated by the rotor when in position 2 is influenced by the angle at which the wings are oriented relative to the oncoming wind. This angle significantly impacts the thrust generated, which is determined by how the operating surface of the second wing varies. The first wing is always fully operational. [3],[4]. This is the statement of the

second wing:

Equality begins with finding a solution. Precisely,

{€

S = arc siny-sinq)

Mexanika va Texnologiya ilmiy jurnali 5-jild, 3-son, 2024 Maxsus son

)

MEXANIKA

when equals the value, the angle of inclination of the first wing in the starting position begins with angles at the corners of the first and second wings. As a result, the forming surface of the second wing at a a_s4 angle generates no driving torque. In this case, a_s4 increases as 9 increases, and its value can reach 90 degrees. Consequently, it is completely blocked by the second wing. In Form 1, a_s4 represents an angle. The challenge lies in determining how a_s4 varies when the angle of inclination changes.

Occurs when the value is. When the values of the 9 and 9+120° angles on the second wing increase, the angle of inclination of the first wing at the initial position begins to move toward the second wing. As a result, the surface formed at the base of the corners of the second wing doesn't create driving torque. In this case, the asA, angles increase by (p and their value reaches 90°. This is fully covered by the second wing when in form 1. In form 1, the angles are represented as number asA;, where the question of determining the change in value from <p to when the angle moves from [5] answered.

Fig. 1. Regarding the calculation of the torque of the Rotor 2nd wing in position 2

R R r

Sill

from the drawing R _ r

sin(ZO± 05H4J siti(^Q±GA+^A0Sa4) sin(Z 00LSa4) and in this S1=S H--considering that

or

r

sin(% + asA) = - sill {8 + - <p)

and from it we find the final equation:

as4 = a3 ~ arc sin ( — sin(5 + ß — <p) j

R

Where it is known that expressions r,a_3,S and P are represented by the following equations[6], [7], [8]:

Mexanika va Texnologiya ilmiy jurnali

5-jild, 3-son, 2024 Maxsus son

MEXANIKA

P = arctg

I • k + a

Ushbu tenglama and shakilga bazlanib 2-wing for holding events based on the conditions of izamiz [9], [10], [11], [12]:

aF < aSA < ff,

Here are the values derived from rotor design aF, aG and aB : 13, 14 and 15. Based on the number of equations, it can be concluded that the second-stage wing undergoes three homogeneous dynamic transformations during its second position.

The driving moment of the rotor tier wing in position 3:

Once the tier 2 fan advances behind wing 1, modification <p transfers it to position 3. At the same moment, wing 2 begins to expand again in the direction of the wind from point A, which is its bottom section.

d ■ sintp > r ■ sill(180° — ^i) marks the start of state 3 of the limitations. Even in this instance, it will seem homogenous with the following equation:

aS5 = a2 — arc sin sin (5 + /? —

R

The arc-shaped surface formed on the angular base aS5 enters an active functioning state, whereas the surface built on the angular basis aSA. remains passive. This is critical for determining the limit of the integral.

Mexanika va Texnologiya ilmiy jurnali

5-jild, 3-son, 2024 Maxsus son

MEXANIKA

Fig. 2, we calculate the torque of rotor wing 2 in position 3 using the following conditions:

0 < ass < aF , aF < aS5 < aG in the past

And in the range aG < aS5 < aB to

The equations will be suitable. It is worth noting that in scenario 2, angle ass will represent the integral's beginning coordinate, ass as well as its end coordinate. However, in the ill. r m. ■:';> range, the surface moment caused by the wing autofocus arc will be relatively

c

tiny, because the surface is nearly parallel to the wind direction. The result is that the second wing undergoes two homogenous dynamic changes at the third position of the tier. The term "tier" indicates that the rotor is divided into two tiers. We studied the second wing of one tier here. The second wing of the second tier will have the same characteristics, but with a 600 delay [16], [17], [18], [19]. These equations do not require answers in engineering calculations; instead, they allow you to calculate with the required precision utilizing computer-based approximate solution methods.

LITERATURE

1. Жураев, А., & Дехконов, у. F. Шамол курилмасининг харакатлантирувчи моменти ва кувватининг хисоби, Механика муаммолари. Тошкент, №.

2. Ulugbek, D., & Yodgorjon, T. (2021). Rotors Of Wind Aggregates and Their Construction Problems, International Journal of Progressive Sciences and Technologies (IJPSAT).

3. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. General Equation of the Moment of a Concave Wing. Web of Scholars: Multidimensional Research Journal (MRJ), Volume: 01 Issue: 06 2022 ISNN:(2751-7543), 70-74.

4. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. Practical Equation of Torque for a Concave Wing Rotor Drive. Web of Scholars: Multidimensional Research Journal (MRJ)

Mexanika va Texnologiya ilmiy jurnali 5-jild, 3-son, 2024 Maxsus son

MEXANIKA

Volume: 01 Issue: 06.2022 ISNN:(2751-7543), 230-234.

5. Dekhkonov, U. (2023). ENSURING THE PROFITABILITY OF ROTOR BLADES WITH A CONCAVE SURFACE. Interpretation and researches, 7(16).

6. Дехдонов, у. F., Исабоев, Ш. М., & Холмаджонова, Г. (2023). РОТОР БОТЩ ^АНОТИНИНГ ГЕОМЕТРИК УЛЧАМЛАРИ: РОТОР БОТЩ ^АНОТИНИНГ ГЕОМЕТРИК УЛЧАМЛАРИ.

7. Дехдонов, У. F., & Юлдашев, Ф. Ш. (2023). РОТОР ^АНОТИНИНГ ХАРАКТЕРЛИ ХОЛАТЛАРИДАГИ МОМЕНТЛАРИ: РОТОР ^АНОТИНИНГ ХАРАКТЕРЛИ ХОЛАТЛАРИДАГИ МОМЕНТЛАРИ.

8. Dehkhanov, U. G., & Akbarov, A. I. (2023). OPERATING CONDITIONS OF VERTICAL AXIS WIND UNIT ROTOR WINGS: OPERATING CONDITIONS OF VERTICAL AXIS WIND UNIT ROTOR WINGS.

9. Дехдонов, У. F., & Юлдашев, Ф. Ш. (2023). РОТОР ^АНОТИНИНГ ИККИНЧИ ВА УЧИНЧИ ХОЛАТЛАРИДАГИ ХАРАКАТЛАНТИРУВЧИ КУЧ ТЕНГЛАМАСИ: РОТОР ^АНОТИНИНГ ИККИНЧИ ВА УЧИНЧИ ХОЛАТЛАРИДАГИ ХАРАКАТЛАНТИРУВЧИ КУЧ ТЕНГЛАМАСИ.

10. Дехдонов, У. F., Нажмиддинов, И. Б., & Турсинбоева, М. (2023). ШАМОЛ АГРЕГАТИ РОТОРИНИНГ ЯНГИ КОНСТРУКЦИЯСИ: ШАМОЛ АГРЕГАТИ РОТОРИНИНГ ЯНГИ КОНСТРУКЦИЯСИ.

11. Дехдонов, У. F., Исабоев, Ш. М., & Холмаджонова, Г. (2023). ШАМОЛ АГРЕГАТИ РОТОРИ ^АНОТИНИНГ ГЕОМЕТРИК БОFЛАНИШЛАРИ: ШАМОЛ АГРЕГАТИ РОТОРИ ^АНОТИНИНГ ГЕОМЕТРИК БОFЛАНИШЛАРИ.

12. Дехдонов, У. F., Исабоев, Ш. М., & Абдужабборов, А. А. (2023). Икки ярусли ротор данотларининг ишлаш даври оралидлари: Икки ярусли ротор данотларининг ишлаш даври оралидлари.

13. Даминов, Ж. А., & Дехдонов, У. F. (2021). ШАМОЛ Х,УДУДИ ЭНЕРГЕТИК ПОТЕНЦИАЛИДАН ФОЙДАЛАНИШНИНГ УЗИГА ХОС Х,УСУСИЯТЛАРИ. Механика и технология, 7(2), 21-26.

14. Дехдонов, У. F., Тиллабоев, Ё. К., & Абдужабборов, А. А. (2020). ВЕРТИКАЛ У^ЛИ РОТОРНИНГ ГЕОМЕТРИК, КИНЕМАТИК ВА ДИНАМИК ПАРАМЕТРЛАРИНИНГ УЗАРО ФУНКЦИОНАЛ БОFЛАНИШЛАРИ. Механика и технология, 7, 42-48.

15. Gafurovich, D. U. (2022). Practical equation of torque for a concave wing rotor drive. Journal of Pharmaceutical Negative Results, 7613-7617.

16. Ulugbek, D., Yodgor, T., Utkirbek, O., & Kodirjon, A. (2022). Determining the optimal angular velocity of a vertical axis rotor wind unit.

17. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. (2022). General Equation of the Moment of a Concave Wing. Web of Scholars: Multidimensional Research Journal, 7(6), 7074.

18. Ulugbek, D., Yodgor, T., Utkirbek, O., & Kodirjon, A. (2022). Determining the optimal angular velocity of a vertical axis rotor wind unit.

19. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. (2022). Practical Equation of Torque for a Concave Wing Rotor Drive. Web of Scholars: Multidimensional Research Journal, 7(6), 230-234.

Mexanika va Texnologiya ilmiy jurnali

5-jild, 3-son, 2024 Maxsus son

i Надоели баннеры? Вы всегда можете отключить рекламу.