ISSN 1991-9468 (Print), 2308-1058 (Online)
УДК 37.016:004.932.2
DOI: 10.15507/1991-9468.087.021.201702.322-343
http://edumag.mrsu.ru
THE SPECIFIC ASPECTS OF DESIGNING COMPUTER-BASED TUTORS FOR FUTURE ENGINEERS IN NUMERICAL METHODS STUDYING
S. V. Novikova"*, S. A. Sosnovskyb, R. R. Yakhinaa, N. L. Valitovaa,
E. Sh. Kremleva"
a Kazan National Research Technical University named after A. N. Tupolev-KAI, Kazan, Russia, * sweta72@bk.ru
b German Research Center for Artificial Intelligence, Saarbrucken, Germany
Introduction: the paper considers the topical problem of teaching students - future engineers - by computational methods of mathematics. The focus is on developing students necessary professional competencies. Competencies are described in accordance with the Russian Federal State Educational Standard and the international standard by the European Association for Engineering Education SEFI. In order for students to thoroughly study the subject and have a strong professional competence, it is proposed to use a computer-based tutor. The aim of this research is to develop the special methodology of creating the computer-based tutors for teaching mathematical and engineering disciplines to students of technical specialties within the framework of a competence-oriented approach, to compare the effectiveness of classical teaching computational methods by using manual calculations, and training with the involvement of computer-based tutors. The advantages of computer-based tutors were proved in this paper. Materials and Methods: the basis of the research was methods of system analysis and descriptive and analytical methods, primarily experimental. To identify advantages of the proposed approach the methods of empirical research were used (observation and comparison). To prove the efficiency, classical methods of measurement were used.
Results: based on the competence approach, a methodology of creating a computer tutor has been developed. It covers most the professional competencies that need to be studied. Also, students are guaranteed to receive the necessary competencies in the right sequence. The research showed that the use of specially designed software, such as Computer-based tutors, in the process of mathematical methods studying connected with the computational procedures allows us to achieve: on the one hand, deep digestion by students (as in using manual calculations), on the other hand to accelerate learning process and increase students motivation. As a result of pedagogical experiment on the use the computer-based tutors the progress in studies has been recorded: the percentage of positive ratings increased from 65 to 88 %. Also, the motivation of students to study mathematics was increased by 12 percent on average.
Discussion and Conclusions: the methodology of creation and use of computer-based tutors has high practical significance and allows increasing the effectiveness of teaching mathematics within the competence approach for students of technical specialties. The use of the interactive computer-based tutors focused on mastering professional competencies, is effective for studying mathematical and engineering disciplines by students of technical universities. In particular, a positive effect has been achieved with the introduction of computer-based tutors in the educational process of Kazan National Research Technical University named after A. N. Tupolev-KAI, Kazan, Russia (the University is aimed at training engineers-designers for aerospace industry), Saarland Technical University, Saarbrucken, Germany (the University is focused on training IT engineers), and a number of other Russian and foreign technical universities.
Keywords: professional competencie; numerical method; computer-based tutor; manual calculation; computer-based training
For citation: Novikova S.V., Sosnovsky S.A., Yakhina R.R., Valitova N.L., Kremleva E.Sh. The specific aspects of designing computer-based tutors for future engineers in numerical methods studying. Integratsiya obrazo-vaniya = Integration of Education. 2017; 2(21):322-343. DOI: 10.15507/1991-9468.087.021.201702.322-343
© Novikova S.V., Sosnovsky S.A., Yakhina R.R., Valitova N.L., Kremleva E.Sh., 2017
ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ КОМПЬЮТЕРНЫХ ПРОГРАММ-ТЬЮТЕРОВ ДЛЯ ОБУЧЕНИЯ ЧИСЛЕННЫМ МЕТОДАМ МАТЕМАТИКИ БУДУЩИХ ИНЖЕНЕРОВ
С. В. Новикова1', С. А. Сосновский2, Р. Р. Яхина1, Н. Л. Валитова1, Э. Ш. Кремлева1
1ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева-КАИ», г. Казань, Россия,
* sweta72@bk.ru 2Немецкий научный центр по искусственному интеллекту, г. Саарбрюккен, Германия
Введение: анализируется актуальная проблема обучения студентов - будущих инженеров вычислительным методам математики. Цель статьи - сравнение эффективности классических методик обучения вычислительным методам с использованием ручного счета обучения с привлечением программ-тьютеров и доказательство преимущества последнего.
Материалы и методы: основу исследования составили методы системного анализа, а также описательные и аналитические методы. Для выявления преимуществ предлагаемого в статье подхода использованы методы эмпирического исследования - наблюдения и сравнения, а для доказательства эффективности - классические методы измерения.
Результаты исследования: основываясь на компетентностном подходе, авторы разработали методику создания компьютерной программы-тьютера. Она охватывает большинство профессиональных компетенций, которые студенты должны получить в процессе обучения. Результаты педагогического эксперимента использования в учебном процессе компьютерных программ-тьютеров продемонстрировали повышение среднего балла успеваемости: количество студентов, успешно сдавших экзамен, увеличилась с 65 до 88 %. Также в среднем на 12 % возросла мотивация студентов к изучению математики.
Обсуждение и заключения: разработанная методика создания и использования компьютерных тьютеров имеет высокую практическую значимость и позволяет студентам технических специальностей повысить эффективность обучения математике в рамках компетентностного подхода. Применение интерактивных компьютерных тьютеров, ориентированных на овладение профессиональными компетенциями, эффективно при изучении математических и инженерных дисциплин для студентов технических высших учебных заведений. В частности, получен положительный эффект при внедрении компьютерных тьютеров в учебный процесс Казанского национального исследовательского технического университета им. А. Н. Туполева-КАИ (вуз направлен на подготовку инженеров-конструкторов авиационно-космической отрасли), Технического университета Саарланда (ориентирован на подготовку IT-инженеров) и ряда других российских и зарубежных технических вузов.
Ключевые слова: профессиональная компетенция; вычислительный метод; компьютерная программа-тьютер; вычисление вручную; компьютерное обучение
Для цитирования: Особенности проектирования компьютерных программ-тьютеров для обучения численным методам математики будущих инженеров / С. В. Новикова [и др.] // Интеграция образования. 2017. Т. 21, № 2. С. 322-343. DOI: 10.15507/1991-9468.087.021.201702.322-343
Introduction In particular, in the study of mathema-
Nowdays, in Russia, all educational pro- tics and related engineering disciplines, the
grams of higher professional education are emphasis is on professional competencies,
developed in accordance with the Bologna such as (for example FSES 09.03.04) PC-13:
process, designed to bring together the edu- willingness to use the methods and study
cation system in Europe, Russia and other tools objects of professional activity GPC-1:
participating countries [1]. Monitoring of control the basic concepts, principles,
practical knowledge and skills is carried theories and facts related to computer sci-
out with competence building approach. ence, etc.
The degree of mastering each competency In Europe, the list and content of the
is assessed according to the point-rating competencies for technical and engineering
system [2]. professions regulated by the European
^^ШШШт ИНТЕГРАЦИЯ ОБР/
Society for Engineering Education, known as "SEFI standard". If we compare Russian ones with SEFI Standards, so we can say SEFI Standards are very specific and allow unambiguous quantification of the level of each competence achievement. Therefore, the study and the transfer of such useful experience, as SEFI-standards in Russia are highly relevant [3].
The current problem importance of modern higher technical education, therefore, is to develop ways to increase the level of learning competencies across mathematical disciplines and at the same time minimizing the subjective evaluation component. So, the using computer based training software (special software, training, and simultaneously assessing the level of acquired skills) is a good answer to solve this problem.
The aim of this study is to develop the methodology and practical implementation of specialized computer programs, so-called "computer-based tutors". The tutors are aimed to students mastering the professional competencies specified in educational standards. Additionally, the paper explores the benefits provided by computer-based tutors in comparison with traditional methods of teaching mathematical disciplines.
Literature Review
Kazan National Research Technical University trains specialists in the field of aeronautical engineering. Numerical methods are an essential part of mathematics education in the Kazan National Research Technical University. In particular, the numerical methods are needed for students studying the design of aircraft engines [4; 5], fuselages [6; 7] optimization problems [8], for aircraft flight control tasks [9] etc. In opinion of many students the study of mathematics is the most difficult part of learning [10].
Now days, many university professors are disputing about whether the using computers is effective in numerical methods studying. Some of them insist that computer calculations can reduce time and improve calculations accuracy, while other believe that only classical computations (i.e. manual calculations) allow students
ОВАНИЯ. T. 21, № 2. 2017 Ж^Щ?
to thoroughly understand the calculation algorithm. The last statement, however, largely depends on the teacher's personality and the level of understanding of his explanation for the students [11].
The years of the Optimization Methods and Decision Making Theory teaching in the Kazan National Research Technical University named after A. N. Tupolev-KAI enabled us to compare the different learning approaches [12-14]. It also helped to reveal the strongest points of each one.
The mastering specific knowledge, skills and abilities task gained additional impetus by introduction competence approach into educational process and demanded new solutions. To the fore the criterion of depth of assimilation of each competence. The main point for the practical blocks of mathematical disciplines is skills (operational and informational components), SEFI international standards to the levels of development level-1 (Level 1 comprises the knowledge and skills which are necessary in order to underpin the general Engineering Science that is assumed to be essential for most engineering graduates. Items of basic knowledge will be linked together and simple illustrative examples will be used) and level-2 (Level 2 comprises specialist or advanced knowledge and skills which are considered essential for individual engineering disciplines. Synoptic elements will link together items of knowledge and the use of simple illustrative examples from real-life engineering).
As a result, so-called "computer-based tutor" has been defined as the most effective method of learning. It is a kind of algorithmic calculator that has a user-friendly interface executing step by step a studied algorithm and computational errors detection in parallel. The idea of intelligent computer programs, partially or completely replacing human teachers has been developing in Russia [15-17] and other countries [18-20] for a long time. However, in Europe, researchers made significant progress in their practical development and application in the educational process. For example, in German Research Center for Artificial Intelligence
(Saarbrücken, Germany), MathBridge system, a special intelligent environment has been created for developing e-learning mathematical courses, which enables to create interactive multi-level step-by-step exercises for fundamental mathematical disciplines [21; 22]. This system is successfully applied at the Technological University of Tampere (Tampere, Finland) [23], the University of Saarland (Saarbruecken, Germany) [24], Lyon University Claude Bernard 1 (Lyon, France) [25]. Also at the Claude Bernard University, the computer tutors with embedded objects GeoGebra are used for teaching the so-called "bridge-courses", which facilitate mastering higher mathematics for first-year students.
Materials and Methods
In order to find the best solutions for the implementation of educational practices within the competence approach, it is necessary to take into account not only the completeness and depth of the theoretical knowledge obtained, but also the practical aspects, that is, the skills for mastering the professional engineering competencies. That is the reason why the system analysis methods of modern domestic and foreign pedagogical practice have been used in this study.
The data of pedagogical experiments on the introduction of computer-based tutors into the training process for engineers collected under the international project TEMPUS-MetaMath (Tempus Project No. 543 851-TEMPUS-1-2013-1-DE-TEM-PUS-JPCR) have been analyzed. The author's computer-based tutor has been developed and introduced into the educational process. Based on empirical observations, its strengths and weaknesses have been revealed. As a result of the comparative analysis, it has been revealed that the developed approach provides the best conditions for mastering professional competencies in comparison with traditional methods. On the basis of the Rating system of measurements, a quantitative evaluation of the measure of this advantage has been obtained, which resulted in an increase in the percentage of successful students.
Results
Based on the competence approach, the methodology of creating a computer tutors has been developed. The target component of the methodology is to increase the effectiveness of the professional skills mastering for engineering students. Requirements of employers to the training quality of future engineers are the source for this methodology. The main content principle is the principle of practical training orientation. From a technological point of view, the methodology for creating a computer-based tutor is based on the following principles:
The computer-based tutor does not make calculations automatically and it does not replace a researcher. It does not work like "press the button and you will receive a result". Most points of computer studying opponents are just based on the assertion that the program "does everything instead of student". It is the disadvantage that computer-based tutor doesn't have. This feature provides cognitive and operational component of professional competence in Russian educational standards or competencies to level-1 standards SEFI.
The computer-based tutor has a multilayer structure [26].
The first layer interacts with a student (let's call it the interactive layer). It implements a sequence of algorithm's operations and performs the simplest arithmetic operations requesting the key information from a student. The layer provides development of methodological, operational and informational components, and corresponds to level-2 standard SEFI. It is the lack of the simplest routine calculations in studying that inclines the manual calculations opponents to use computer-based tutors.
The second layer implements the basic calculations (let's call it the operational layer). It makes all calculations completely and it is used to control a student. The inner results of the operational layer are not available to a student. Despite the fact that the layer does not provide assimilation of competencies, it is very important as an objective verification the mastering degree of competencies. The application of com-
petence approach becomes meaningless without an objective assessment.
The operational layer of the computer-based tutor performs all calculations in one stage and it keeps the key calculation results and each step operations in a special storage facility for follow-up control of student's actions.
The interactive tutor's layer works by step-by-step manner according to algorithm's stages. At every step a student answer (input data) is checked wherein standard response is retrieved from internal storage. Going to the next step is possible only if the current step is learnt successfully. This feature provides operational and information component of professional competence in Russian educational standards or competence level-2 SEFI standards.
The computer-based tutor has a friendly interface to monitor progress solution,
For Russian Competence system:
input data and implementing operations. Also, the interface provides information about mistakes that have been made. This function is necessary to assess the competencies mastering level and as an informational component of professional competence.
The evaluation component of the methodology consists in the ability of the computer tutor to independently adequate estimation of the received skills of students on the basis of point and rating system.
The methodology covers most the professional competencies that need to be studied. Also, students are guaranteed to receive the necessary competencies in the right sequence.
Thus, competence-based scheme of operation of a particular computer tutor to study computational potential method can be represented in the following way:
r
ПК-14.К-а ПК-14-О-с —> ПК-14.М-Ь —► ПК-14.И-е —► ITK-14.0-d
j i
For SEFI standard competences:
The functioning of a computer based tutors in the process of mastering professional competencies.
As example, let's consider a computer-based tutor for UV-method. It is used for solving the Classic Transportation Problem (CTP) [27].
According to the educational program (curriculum) of discipline, the following competences must be mastered in the process of studying this unit:
PC(nK-14): to justify design decisions, to carry out the formulation and execution of experiments to test their correctness and effectiveness.
Level-2-f
The contents of the components:
1. Cognitive (C):
a) build mathematical models for typical application tasks.
2. Methodical (M):
b) apply effectively the techniques of finding solutions to research problems.
3. Operational (О):
c) apply the classification to determine the optimal methods of solution;
d) use effectively a ready-made software packages to solve applied problems.
4. Informational (I):
e) apply existing methods of solution for problems of different classes.
SEFI European competences for this section of the course are:
Level-1:
a) apply the functions to a practical problem;
b) represent a system of linear equations in matrix form.
Level-2
c) recognise a linear programming problem in words and formulate it mathematically;
d) understand the concept of duality and be able to formulate the dual to a given problem;
e) convert a linear programming problem into a simplex table;
f) use the dual problem to solve a minimisation problem.
The sequence of the training program units is dictated by the sequence of the development of appropriate competencies. "The Classical transportation problem" competences should be mastered in the following sequence:
For Russian system of competences
• PC-14.C-a (nK-14.K-a)
• PC-14.O-c (nK-14.0-c)
• PC-14.M-b (nK-14.M-b)
• PC-14.I-e (nK-14.H-e)
• PC-14.O-e (nK-14.0-d)
For SEFI competences
1) Level-2-c
2) Level-1-a
3) Level-1-b
4) Level-2-e
5) Level-2-d
6) Level-2-f
It is important to keep this sequence in the design of the computer based tutors
According to the input dimension, the tutor requires to input the transportation
to prevent any lag or skipping necessary competences, however, avoiding the premature flow of the material, when mastered level doesn't allow the student to proceed to the next stage.
Let's consider how these competences are learnt while using a computer based tutor. This tutor teaches numerical iterative method, so the sequence of competences learning can (and in this case should) contain cycles that do not contradict the principle of sequence mastering.
The algorithm for the UV-method includes both calculating steps (scope of delivery calculation and so on) and positioning tasks to define which cell is to modify or which cells must be chosen for solving task. Also, the algorithm has graphical steps such as defining the nodes and arcs of loops. Therefore, the computer-based tutor is able to demonstrate the advantages of suggested approach.
Let's consider the steps of computer-based tutor to understand how the tutor works
Step 1. Data Input. (The interactive layer is functioning).
The applying competences :
For Russian Competence system:
• nK-14K-a
For SEFI standard competences:
• Level-2-c
• Level-1-a
• Level-1-b
An example of tutor functioning:
To begin the program the executable file "KT3.exe" must be run. Then the tutor requires to assign the dimension of CTP (Fig. 1).
tableau with amount of shipping for each cell (Fig. 2, 3).
F i g. 1. Input of CTP's dimension Р и с. 1. Окно задания размерности КТЗ
F i g. 2. A blank window for input Р и с. 2. Пустое окно ввода данных о перевозках
F i g. 3. The data have been input Р и с. 3. Данные о перевозках введены
Solution verification starts when data are input. According to the UV-method the transportation problem has solution only if the condition of balance is satisfied. In other words, there is an equality between output and consumption. A student has to check the balance in advance. If output and consumption are not balanced, so a student has to do some additional operations before solving the problem. The
tutor checks the balance. If input data are not balanced then the error message appears (Fig. 4).
So, it is impossible to continue solving the problem. The student has to change the data so they will be balanced. Then he inputs new data again.
If the data are preprocessed in the right way, then the computer-based tutor will admit the student to the next steps (Fig. 5).
INTEGRATION OF EDUCATION. Vol. 21, no. 2. 2017
F i g. 4. The data have not been balanced Р и с. 4. Данные не сбалансированы
ннв КТЗ методом потенциалов
Определение начального опорного тана. Рабочая область:
1 z 3 *
1 * У 4 0
г к ? 3
з i & J
A A Б 8
¡4 120 fj|| 190 ¿Д
Определение НОП
15(1
Дзнтк введем щменпътп1
ЕЖЭ
Начальные паяные
2 3 -t Si
1 7 4 0 160
г в ? 0 110
3 г 5 3 a im
i -t 5 s a 3D
§ ш 50 190 30
Тек^е опорные планы и потенциалы
F i g. 5. The input data are correct Р и с. 5. Данные введены правильно
ИНТЕГРАЦИЯ ОБРАЗОВАНИЯ. Т. 21, № 2. 2017
The advantages provided on the step 1 are the following.
• Dealing with a computer program is far more comfortable for young people today than making calculations manually [28]. The students have feelings that performing a task with the help of computer is easier. It motivates students and attract interest.
• The computer-based tutor excludes automatically the possibility of using incorrect data in calculations. While you are calculating manually the mistake would be detected only in few steps later. It is impossible to continue calculations without correcting the error of the current step. This condition exempts students from unnecessary work in the future, and at the same time it draws attention to the mistake.
Step 2. The defining an initial Basic
Feasible Solution (BFS). The operational and the interactive layers are functioning. The applying competences:
For Russian Competence system:
• nK-140-c
• nK-14.M-b
For SEFI standard competences:
• Level-2-e
• Level-2-d
An example of tutor functioning:
The operational layer makes calculations the values of amount of shipping in the transportation tableau with the Least-Cost Method [29]. The following internal structures are created to store the results:
• interim results for each stage of the Least-Cost Method;
• the accessory table of each cell to the basis;
• the distributional table with calculated amount of shipping.
The interactive layer suggests determining step by step the elements of the initial BFS with the Least-Cost Method. Each stage is divided into separate operations. On each step, the validity of each operation is controlled by comparing stored data with student input data.
• The Stage 1 of defining an initial BFS is the shipping amount calculation for the pair of supplier-customer with the lowest transportation cost.
Operation 1. To define minimum transportation cost. In case the answer is correct, the cell of the distributional table with this value is rubricated (Fig. 6; 7). If the answer is incorrect, the interactive layer provides a message, and it is required to carry out the current operation again.
F i g. 6. The value entry of the minimum cost Р и с. 6. Ввод значения минимальной стоимости с проверкой
INTEGRATION OF EDUCATION. Vol. 21, no. 2. 2017
7 ' PiuKiiht КТЭ Ml! шдам fit rtHlihiJKil
Определение начального опорного inона
Рабочая область"
1 г .1 4 HI
1 t> 7 - |» ISO
2 в i » » 110
3 г s 1 0 mo
1 •i 5 н II 90
bj 120 SQ 1 sfi ЕПИ
Определение^объема перееожл
Начальные санные
1 г 3 4 Dl
1 7 t « ISO
г s ? s в 110
i г s i 0 ioo
4 1 Ъ i 0
hf 120 » 13Q s:
Тонущие опорные планы и потенциалы'
F i g. 7. The cell for amount of shipping assignment Р и с. 7. Клетка для назначения объема перевозки
Operation 2. Determination of the amount of shipping for the cell with the minimum cost. If the value entry is correct, so the interactive layer displays a message about the right decision. It stores the calculated volume from the inner table
of the operational layer to the dynamic distribution table which is viewed at the right bottom of the window (Fig. 8). In the main distributional table the data is updated in accordance with the intermediate calculations results of the operational layer (Fig. 9).
F i g. 8. Entry the maximum shipping amount Р и с. 8. Ввод максимально возможного объема перевозки с проверкой
ИНТЕГРАЦИЯ ОБРАЗОВАНИЯ. Т. 21, № 2. 2017
Т PtHirihe K(J мМйДом rwicHLU-idJiii«
Ог/ределение объема перевозки Рабочая об пасть
г. = 'х
1 ? ] 4 oi
1 к Г А ьп
г ( 7 1 1 Ш
|Э г ¡8 д IIB
щ 4 ft • 91
м 170 ГрО ! НИ
Oiper.t) пение нОП
1-ача.тьнь-с- и jj II it.:
г А
1 т [1 1£П
г 6 т С 111
3 г ч 0 "СС
4 - м » 1« ( 90
ы 1LJ
Tchyuie опорные -ла-sJ * ги-сншюлы
г ) I
я
г
1
<
F i g. 9. Updating the interactive layer's tables Р и с. 9. Обновление таблиц интерактивного слоя
If the student's value entry is incorrect, the operation is repeated. The steps of the Least-Cost Method are repeated until the
initial BFS is built. Totally, student must implement the (m + n1) steps of the same type (Fig. 10).
7" Реюенне КТЗ методом потенциалов
Определение объема перевозка
Ваши начальные данные
г г 3 4 oi
1 е 7 -1 3
2 6 1 9 (1
з г 5 3 3
1 1 5 3 3
Определение НОП
Определение объема перевозни Определание потенциалов
Начальные данные
Текущие опорные планы и потенциалы:
1 г 3 А aj
I 7 А 3 150
г 6 ? 9 3 110
3 г s з 3 100
■1 5 в 3 30
Ы 120 50 133 90
1 г 3 1
1 ЕО S3
г 110
3 100
■1 го 50 го
F i g. 10. The initial BFS has been built Р и с. 10. Опорный план построен
The advantages provided in Step 2 are the following:
• The student reiterates homogeneous computational procedures that help to drill the using the method skills into the students. However, there is no risk of computational error accumulation, which is very typical for manual calculations.
• The computer-based tutor does not allow the student to deviate from the algorithm, and it monitors the correct input at each operation. It allows practicing the ability of the method using for second-nature.
• The results of decisions are rendered in real time that gives a comprehensive picture of the calculations.
Step 3. The dual variables calculation. (The operational and interactive layers are functioning). The applying competences:
For Russian Competence system:
• nK-14.H-e
• nK-14.0-d
For SEFI standard competences:
• Level-2-d
• Level-2-f
An example of tutor functioning:
The operational layer calculates the dual variables [30] of lines U and columns V of the transportation table. It is based on the table of element signs belonging to the set of the BFS. The table has been obtained in the previous step. As well, the operational layer uses the input data, i.e. the cost of transportation between the points of production and consumption. Based on the calculated values of the dual variables, the operational layer produces elementary calculations to determine the opportunity cost A... Then, it calculates the integrated
logical criterion of optimality. As a result, two dynamic data vectors, one matrix and one logical value are generated:
• U, the vector of dual variables for rows;
• V, the vector of dual variables for columns;
• A, the matrix of opportunity cost;
• the logical criterion of optimality.
The interactive layer provides a student
with the information in tables which is necessary for the calculations. To make correct calculations of dual variables, the student has to be able to use the data obtained on the previous step, and the input data (Fig. 11). The student must fill in the column u. and the row v. with the corresponding values of dual variables. Besides computer-based tutor does not hint what data should be used for calculations and how it should be used. After filling in the corresponding cells of the transportation tableau by the obtained values, the data validation is performed by comparing the data from the internal vectors U and V of the operational layer (Fig. 12).
7" Решение КТЗ методом потенциалов
Определение пспЩнциспое Заполните столбец ui и строку vj:
EBB
Ваши начальные нанныв
VI
"i i г 3 4 Ы
1 6 7 л и
г б 7 9 В
э г s i 8
Л А 5 а 11
Ч
Определение НС
Определение объема перевози
предела ние потенциал'.
1 г Э А ei
1 7 J 0 160
г 6 7 3 0 110
э г 5 Э 0 100
А 4 5 В 0 SD
Ь| 120 50 ш
Текущ>«е onoptwe планы и потенциалы:
1 г 3 1
1 00 90
г 110
3 100
t го 50 го
F i g. 11. The prepared data for calculating dual variables Р и с. 11. Подготовленные данные для расчетов потенциалов
If data filling is totally correct, the student will be able to go to the next step. Otherwise, the step has to be repeated.
The advantages provided in Step 3 are the following:
• The student has only the necessary data for calculation. All redundant data remain hidden by the computer-based tutor. On the other hand, the calculation process at this step is quite intricate, and it requires
a clear understanding the sequence of using portant aspects of the making calculations, available data. Such selective approach and avoid errors, and at the same time to allows the student to focus only on the im- feel features independently.
EIS
Онреоеление пошенцнтоа Заполните столбец ui и строку vj:
Ваши начальные данные
vi и 1 А 0
"1 1 г 3 А ai
п 1 « 7 А 0
■5 г Б 7 3 0
г 5 3 0
-А ^ А Ь в 0
bi
Определение НОП_
зеленив объема перевозки
пределекие потенц^ши
Начальные данные
1 г 3 А oi
1 7 4 0 15(1
г 6 7 5 0 110
) г 5 з л 100
■1 Б 8 о 30
hi ISO 50 196 90
Текущие опорные планы и потенциалы
1 г 3 1
1 60 90
2 110
3 100
-t го so го
F i g. 12. The entry values are ready to test Р и с. 12. Введенные значения готовы для проверки
• Control of calculation correctness does not allow going to the next step without mastering this one.
Step 4. Making decision if the received BFS is optimal. (The interactive layer is functioning).
For Russian Competence system:
• m-M^
• TO-M^b
For SEFI standard competences:
• Level-1-a
An example of tutor functioning:
The decision of optimality is based on information about the signs of the opportunity cost matrix A elements. The student is provided with the calculated the opportunity cost matrix A elements. A required answer to the only question is if plan in this case is optimal. The correctness of the choice is determined by comparison the response with the existing logical criteria of optimum of the operational layer (Fig. 13).
It is a logical step. The wrong answer does not entail a return to the beginning
of calculations, but the total error count increases.
Step 5. Determining the loop to improve the basis. (The operational and the interactive layer are functioning). Step is positional and it does not require any calculations. The applying competences:
For Russian Competence system:
• TO-M^b
For SEFI standard competences:
• Level-1-a
An example of tutor functioning:
Based on the values of opportunity cost matrix elements and the distributional table with the current basis, the operational layer determines the coordinates of the table cells within the loop. Using parity indication, the operating layer determines a mark for each selected cells. As a result, the following arrays are created:
• The array which is the sequence of loop cell coordinates;
• The array with loop cell marks.
INTEGRATION OF EDUCATION. Vol. 21, no. 2. 2017
7' Решение KÏ3 методом потенциалов
Проверка тана на оимиитьность Является пи опорный план оптимальным?
□В®
Да
Нет
Значения дельт
vi 0 i 4 в
«i t г 3 ai
0 1 -6 -6 л в
-s г -1 -1 9
0 ■г 3 г
0 il а 4
Ñ
_Определение НОП_
Определение потеяциалов
проверка оптимальности
Начальные паяные:
t г 3 4
i 7 А 0 150
г 6 7 3 0 110
3 г 5 3 0 100
4 4 5 0 0 90
bj ISO 50 190 90
Текущие опорные планы и потенциалы
M 0 i А 0
"1 1 г 3 4
0 1 60 90
-5 г 110
-г 3 100
-ь 4 го 50 го
F i g. 13. The interactive form of optimality validation Р и с. 13. Интерактивная форма проверки оптимальности
The interactive layer provides the student with the necessary data tables and offers to mark out the cells of the loop with the mouse. The cells allocated by the student are encircled in red (Fig. 14). Allocation of cells can be performed in any order. The allocated cells are compared with the ar-
T Решение КТЗ методом rrcie наняло в
ray of cells' coordinates of the loop of the operational layer. In the case of correct indication of positions, the found loop is drawn on the working form and the loop's nodes are automatically marked on the base of the mark array of the operational layer. Then the student goes to the next step (Fig. 15).
ЮВВ
Переход к mjue.xty опори омv niany Выделите остальные клетки, входящие в цикл:
Значения целы
vi 0 1 4 ti
¡d 1 г з -i ai
0 1 -6 -6 0 »
-5 2 -t -, o_ 5
-г 3 0 -г з г
-4 4 0 0 0 4
bj
Олре делен ие НОП
Опрепег
Проверк мальности
Определена ni клетки цикла
етки цицлг
Начальные данные.
1 г 3 4 ai
я 7 4 t 160
г е ? 9 It 110
э г 5 3 0 100
4 А 5 0 0 90
ы 120 50 190 90
Текущие олерные планы и потенциалы
Vf 0 i IT 0
щ t 2 |3 4 1
0 1 «« 90
■5 г lip
■г 3 100
-i 4 20 50 го
F i g. 14. The positional loop's cell identification Р и с. 14. Позиционное определение клеток цикла
1' PcllicHWC КТЗ методом П01СИЦН»Л0Ш
Переход к лучшему опорному mпну Текущий опорные план
В01
1 г 3 Л в!
1 fid < jVH
г пе-
3 TOD
1 го so го
bj
начальные данные:
ûrïpfXjÊ/iËKvi& НОП иесегениу оОЪаз/й гтеревогк.
Определеннапотен
Проверка опт
' i: ••
нне первое к
ле дующие клетки цикла Определение тетты
1 г 3 4 4i
t я 7 а О ш
г 6 т а о 110
г 5 :5 I) 100
ч ■ч s è а so
Ь) 120 50 190 99
Текущие опорные планы и потенциалы.
ьл 0 1 4 «
ч 1 г 3 4
0 1 6« so
-5 г 110
■г 3 100
ч го so го
F i g. 15. Visualizing the selected loop with notes Р и с. 15. Визуализация выделенного цикла с пометками
Otherwise you must specify the position again.
The advantages provided in Step 5 are the following:
• The step does not require calculations, but presenting it as a separate stage of the algorithm as a whole, the computer-based tutor focuses the student on the importance of this step.
• The visualization of the determining positions of cell cycle process allows the student to present the loop as a whole. Incorrect indication of the position can be determined by the visual level, without recourse to the verification procedure.
• Checking the correct positioning does not allow going to the next step without mastering this. Incorrect definition of the cell cycle can lead potentially to false-optimal results.
Step 6. Improving the initial BFS. (Operational layer and Interactive layer are functioning). The applying competences:
For Russian Competence system:
• nK-14.H-e
• nK-14.0-d
For SEFI standard competences:
• Level-2-d
• Level-2-f
An example of tutor functioning:
The operational layer calculates the correction the elements (value) of loop cell
traffic volumes and adjusts the loop. As a result, the following data are generated:
• The correction value;
• An improved BFS after the correction.
The interactive layer provides the student with a window to enter the calculated value of the offset. If the value has been calculated correctly the interactive layer adjusts the current basis on the active form (Fig. 16).
When there is successful completion of this step it will return to Step 2.
The advantages provided in Step 6 are the following:
• The correctness calculation control does not allow going to the next step without mastering this one.
• The step algorithm reiteration and simultaneous inability to perform further error calculations allow students to learn the algorithm thoroughly and only in its correct implementation.
Step 7. Displaying the results of material mastering. (The interactive layer is functioning). This step represents a tool of quantitative assessment of mastering level competencies and it is necessary for the adequate estimation of the received skills of students on the basis of point and rating system. The calculation can be performed for Russian and European system of competencies.
INTEGRATION OF EDUCATION. Vol. 21, no. 2. 2017
Решение НТЗ методом потенциалов
Переход к лучшему опорному тину
Введите значение тетты: -'-
Текущий опорный план
7ifттà введена
1 3 1 ai
1 60 *
2 HQ - *
3 ion
A го bit ZD
bi
1 1
Projects
_Определение НОП_
Определение обьема перевозки
Определение потенциалов
Проверка оптимальности
Определение "ервои клетки цикл; Следующие клетки цикла Определение тетты
Начальные данные
2 3 А ai
I ? А 0 150
г 6 ? 5 и 110
3 г s з с 100
4 ISSU SO
bi 120 50 ISC SO
Текущие опорные планы и потенциалы
vi 0 i 4 0
ni 1 г 3 А
1 so so
-s 2 110
-г 3 IPS
■1 A го so го
F i g. 16. Inputting the correction value with checking Р и с. 16. Ввод величины коррекции с проверкой
An example of the operation of the machine. Once an optimal plan (Fig. 17) is obtained as a result of multiply sequences
of repeating the steps 2-6, the interactive layer shows overall statistics on the errors made in the calculations (Fig. 18).
Переход к пчгги'мг оиориож nvmy
Текущий дпдрнуй план
_Определение НОЛ_
г 3 4 ai определение объему перевозки
1 150 Определение потенциалов
2 40
3 1110 PMjittl в зление первой клетки иикла
4 21 50 PWiKMj ппьи ■ . . ■-■.:..:
bi Определение теп-1
1_
>e*o£WM к лучшему плану
teHa = 9D 20
Начальные данные1
1 г 3 4 ai
1 ? А 0 150
г Б J 5 0 110
3 2 5 3 О 100
1 4 5 е а 90
N 120 50 19В 90
Текущие- опорные планы и потенциалы
vi 4 5 А 0
Ч 1 2 3 -1
0 1 159
0 г SO 70
2 3 100
0 А to 50 20
F i g. 17. The message about calculation completion Р и с. 17. Сообщение о завершении вычислений
ИНТЕГРАЦИЯ ОБРАЗОВАНИЯ. Т. 21, № 2. 2017
7* Решение КТЭ методом потенциалов
Задача решена, онпашащный план найден! Вами было совершено 9 ошибок! Течлиий опорный план
ГШ®
1 г 3 ai
! ISO
г 40 70
з IUI
А го 5« го
t>j
Определен
едующие.клет!
1ЦИКЛ
Опре
1енке гет;ы с п/чшемс пл
telia = 30 20
Начальные панные
Текущие опорные планы и потенциалы
г 3 4 tu
Ш ? 4 0 150
S 6 ? S 0 110
3 г 5 з о too
4 А 5 t 0 90
bj m Ed 140 30
vi 4 5 А 0
"i 1 2 3 J
0 1 150
0 г 40 70
г э Ш
0 А го so Я)
F i g. 18. Information about the errors Р и с. 18. Информация о допущенных ошибках
The pedagogical experiment on the introduction of a computer tutor into the educational process was implemented at Applied Mathematics and Informatics Department of Kazan National Research Technical University named after A. N. Tu-polev-KAI for 3rd year students studying on the Bachelor program "Applied Mathematics and Informatics", "Informatics and Computers", and "Software engineering". The results were evaluated according to two criteria:
• Improving the quality of training (on the point and rating system)
• Increase the students motivation to study mathematics (based on a special questionnaire by Lyon University Claude Bernard 1).
As a result of using the computer-based tutors in the training in computational optimization methods and in Making Decision Theory methods of technical universities students, the progress in studies has been recorded: the percentage of positive ratings increased from 65 to 88 %. The interest of students in mathematics increased by 12 percent on average. These results are explained by the following benefits of the computer-based tutors over the classical method of manual calculations:
1. Automatic exclusion errors in intermediate calculations.
2. The multiple repetitions of routine computational procedures without the threat of the accumulation of errors.
3. The high-quality visualization of solutions.
4. The automatic analysis of the solutions (counting errors, identifying the most serious errors, the most frequent errors, etc.).
Discussion and Conclusions
The method of computer-based tutors creation and use is intended for application in the educational process of technical universities when teaching students mathematical and engineering disciplines.
The use of computer equipment allows increasing the effectiveness of teaching mathematics within the competence approach by:
1) a full accounting all required competencies in the construction of the software blocks of the tutor;
2) a strict keeping the sequence of competencies mastering and program units with tasks for students;
3) objective quantitative assessment of the competencies mastering level.
The results of this research can be applied to create both auditory and remote computer mathematical courses on the basis of specialized e-learning systems (MathBridge is the implementation on the base of Saarland Technical University), multifunctional e-learning systems (MOODLE is the implementation on the base of University Claude Bernard Lyon 1), or as independent e-learning units implemented
in high-level programming languages. The last version of the implementation is used in the educational process at Applied Mathematics and Informatics Department of Kazan National Research Technical University named after A. N. Tupolev-KAI for 3rd- year students studying on the Bachelor program "Applied Mathematics and Informatics", "Informatics and Computers" and "Software engineering".
REFERENCES
1. Zakharova I.V., Syromyasov A.O. Native standarts of higher education: the evolution of the mathematical content and comparison with the finnish analogues. Vestnik Tverskogo gosudarstvennogo universiteta. Ser.: Pedagogika ipsihologija = Herald of Tver State University. Series: Pedagogy and Psychology. 2016; 2:170-185. Available at: http://elibrary.ru/item.asp?id=26555968 (accessed 12.02.2017). (In Russ.)
2. Zakharova I.V., Kuzenkov O.A., Soldatenko I.S. [MetaMath project of the Tempus program: application of modern educational technologies for improving mathematical education within the framework of engineering directions in Russian universities]. Sovremennye informacionnye tehnologii i IT-obrazovaniye = Modern information technologies and IT education. 2014; 10:159-171. Available at: http://university.tversu. ru/foreign/metamath/kuzzaksol.pdf (accessed 12.02.2017). (In Russ.)
3. Alpers B. Das SEFI Maths Working Group "Curriculum Framework Document" und seine Realisierung in einem Mathematik-Curriculum für einen praxisorientierten Maschinenbaustudiengang. In: A. Hoppenbrock, R. Biehler, R. Hochmuth, & H.-G. Rück (Eds.). Lehren und Lernen von Mathematik in der Studieneingangsphase. Herausforderungen und Lösungsansätze. Germany: Springer Spektrum. 2016. pp. 645-659. Available at: https:// keynote.conference-services.net/resources/444/5118/pdf/ CERME10_0522.pdf (accessed 12.02.2017).
4. Novikova S.V. Application of an adaptive correction algorithm to control a gas turbine engine under conditions of noises. Russian Aeronautics. 2006; 4(49):37-40. Available at: https://www.scopus.com/record/ display.uri?eid=2-s2.0 -34248660260&origin=inward&txGid =9951BA49F5A8450C561EAF0CC82 EA2D2. wsnAw8kcdt7IPYLO0V48gA%3a19 (accessed 12.02.2017).
5. Novikova S.V. Structural optimization of the neural network model for the gas turbine engine monitoring. Russian Aeronautics. 2016; 2(59):263-270. DOI: 10.3103/S1068799816020185
6. Kostin V.A., Valitova N.L. Coefficients of equilibrium equations in solving a problem of reconstructing deformation curves for slightly conical thin-walled structures. Russian Aeronautics. 2007; 3(50):243-247. DOI: 10.3103/S1068799807030026
7. Kostin V.A., Snegurenko A.P. On constructing strain diagrams of airframe units by the data of the real experiment. Actual problems of aviation and aerospace systems processes models experiment. 2000; 1(9):66-71. DOI: 10.3103/S1068799807030026
8. Galiyev Sh.I., Lisafina M.S. Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain. Computational Mathematics and Mathematical Physics. 2013; 11(53): 1748-1762. DOI: 10.1134/s0965542513110080
9. Rodnishev N.E., Novikova S.V., Denisov K.G. Developing methods and computer technologies for learning, identification and optimization of nonlinear stochastic systems. IFAC Proceedings Volumes (IFAC-PapersOnline). 2012; 11(45):51-56. Available at: http://www.sciencedirect.com/science/article/pii/ S1474667015375753 (accessed 12.02.2017).
10. Becker F.S. Why don't young people want to become engineers? Rational reasons for disappointing decisions. European Journal of Engineering Education. 2010; 35(4):349-366. DOI: 10.1080/03043797.2010.489941
11. Romanov D.K., Dauksha L.M. Psychological aspects of perception and inderstanding of teachers by university students. Integratsiya obrazovaniya = Integration of Education. 2016; 2(20):228-237. DOI: 10.15507/1991-9468.083.020.201602.228-237
12. Savkina A.V., Nushtayeva A.V., Boriskina I.P. [Information of the course "Algebra and Geometry" by intelligent learning system Math-Bridge]. Obrazovatelnye tehnologii i obshhestvo = Educational Tech-
nology & Society. 2016; 4(19):479-487. Available at: http://ifets.ieee.org/russian/depository/v19_i4/pdf/18. pdf (accessed 12.02.2017). (In Russ.)
13. Sosnovsky S.A., Girenko A.F., Galeyev I.H. [Informatisation of the mathematical component of STEM education in the framework of the MetaMath project]. Obrazovatelnye tehnologii i obshhestvo = Educational Technology & Society. 2014; 4(17):446-457. Available at: http://ifets.ieee.org/russian/periodi-cal/journal.html (accessed 12.02.2017). (In Russ.)
14. Sharamazanov R.M., Savkina A.V., Savkina A.V. [The architecture of multi-agent systems (MAS) training on the basis of LMS MOODLE]. Natsionalnaya associacija uchenyh = The National Association of Scientists. 2015; 7-2 (12):78-82. Available at: http://elibrary.ru/item.asp?id=25071982 (accessed 12.02.2017). (In Russ.)
15. Syromyasov A.O. [Computer technology in teaching mathematics to students the direction of "Software Engineering"]. Obrazovatelnye tehnologii i obshhestvo = Educational Technology & Society. 2014; 4(17):518-525. Available at: http://ifets.ieee.org/russian/depository/v17_i4/pdf/8.pdf (accessed 12.02.2017). (In Russ.)
16. Savkina A.V. [Virtual laboratories in distance learning]. Obrazovatelnye tehnologii i obshhestvo = Educational Technology & Society. 2014; 4(17):507-517. Available at: http://ifets.ieee.org/ russian/ depository/ v17_i4/pdf/7.pdf (accessed 12.02.2017). (In Russ.)
17. Rodnishchev N.E., Medvedeva S.N. [E-Course "Probability Theory and Mathematical Statistics"]. Khroniki obedinennogo fonda jelektronnyh resursov «Nauka i obrazovaniye» = Chronicles of the combined fund of electronic resources. Science and Education. 2014; 11(66):8. Available at: http://elibrary.ru/item. asp?id=24125137 (accessed 12.02.2017). (In Russ.)
18. Sosnovsky S.A., Dietrich M., Andrès E., Goguadze G., Winterstein S., Libbrecht P., Siekmann J., Melis E. Math-Bridge: Bridging the gaps in European remedial mathematics with technology-enhanced learning. In: T. Wassong, D. Frischemeier, P. R. Fischer, R. Hochmuth, P. Bender, editors. Mit Werkzeugen Mathematik und Stochastik lernen - Using Tools for Learning Mathematics and Statistics. Berlin/Heidelberg, Germany: Springer, 2014. pp. 437-451. Available at: http://www.springer.com/us/book/9783658031039 (accessed 12.02.2017).
19. Kremer M., Brannen C., Glennerster R. The challenge of education and learning in the developing world. Science. 2013; 340(6130):297-300. DOI: 10.1126/science.1235350
20. Goguadze G. Representation for interactive exercises. Proceedings of the 16th Symposium, 8th International Conference. Held as Part of CICM '09 on Intelligent Computer Mathematics. Grand Bend, Canada, 2009. DOI: 10.1007/978-3-642-02614-0_25
21. McLaren B.M., Sosnovsky S., Aleven V. Preface - Emerging technologies and landmark systems for learning mathematics and science: dedicated to the memory of Erica Melis. Part 1. Artificial Intelligence in Education. 2014; 24(3):211-215. DOI: 10.1007/s40593-014-0021-0
22. Sosnovsky S., McLaren B.M., Aleven V. Preface - Emerging technologies and landmark systems for learning mathematics and science: dedicated to the memory of Erica Melis. Part 2. Artificial Intelligence in Education. 2014; 24(4):383-386. DOI: 10.1007/s40593-014-0021-0
23. Salonen J., Nykanen O., Ranta P., Nurmi J., Helminen M., Rokala M., Palonen T., Alarotu V., Koski-nen K., Pohjolainen S. An implementation of a semantic, web-based virtual machine laboratory prototyping environment. Lecture Notes in Computer Science. 2011; 7032:221-236. Available at: https://tutcris.tut.fi/ portal/files/1867480/salonen_an_implementation_of_a_semantic.pdf (accessed 12.02.2017).
24. Narciss S., Sosnovsky S., Schnaubert L., Andrès E., Eichelmann A., Goguadze G., Melis E. Exploring feedback and student characteristics relevant for personalizing feedback strategies. Computers and Education. 2014; 71:56-76. DOI: S0360131513002662
25. Trouche L., Cazes C., Jarraud P., Rauzy A., Mercat Ch. Transition lycée-université, penser des dispositifs d'appui. Revue internationale des technologies en pédagogie universitaire. 2011; 2(2):37-47. Available at: http://math.univ-lyon1.fr/~mercat/articles/RITPU_v08_n01-02_37.pdf (accessed 12.02.2017).
26. Karampiperis P., Sampson D. Adaptive learning resources sequencing in educational hypermedia systems. Obrazovatelnye tehnologii i obshhestvo = Educational Technology & Society. 2005; 8 (4):128-147. Available at: http://www.ifets.info/journals/8_4/13.pdf (accessed 12.02.2017).
27. Kerem B., Gunduz U., Ahmet Ç. "Classic transportation problems", logistics engineering handbook, Taylor, Don G. (ed.), Boca Raton, FL, USA: CRC Press, 2008; 16/1-16/32. Available at: http://www.academia. edu/996342/Classic_transportation_problems (accessed 12.02.2017).
28. Balina T.N. [The psycho-pedagogical aspects of computer training]. Vestnik Taganrogskogo instituta upravlenija i jekonomiki = Bulletin of the Taganrog Institute of Management and Economics. 2009; 1:105-108. Available at: http://elibrary.ru/item.asp?id=12957000 (accessed 12.02.2017). (In Russ.)
29. Ahmad Hlayel Abdallah. The best candidates method for solving optimization problems // Journal of Computer Science. 2012; 8(5):711-715. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.676.692&rep=rep1&type=pdf (accessed 12.02.2017).
Submitted 02.03.2017; revised 10.04.2017; published online 30.06.2017.
About the authors:
Svetlana V. Novikova, Professor, Chair of Applied Mathematics and Computer Science, Kazan National Research Technical University named after A. N. Tupolev-KAI (10 K. Marks St., Kazan 420111, Russia), Dr.Sci. (Engineering), ScopusID: 55355243900, Researcher ID: В-6505-2017, ORCID: https://orcid. org/0000-0001-8207-1010, sweta72@bk.ru
Sergey A. Sosnovsky, Chief Researcher of the Department of e-learning technologies, German Research Center for Artificial Intelligence (DFKI) (3 Stuhlsatzenhausweg, Saarbrücken 66123, Germany), Ph.D. (Engineering), ORCID: https://orcid.org/0000-0001-8023-1770, sergey.sosnovsky@dfki.de
Rouzilya R. Yakhina, Associate Professor, Chair of Foreign Languages, Kazan National Research Technical University named after A. N. Tupolev-KAI (10 K. Marks St., Kazan 420111, Russia), Ph.D. (Philology), ORCID: http://orcid.org/0000-0002-7371-064X, shroza1981@yandex.ru
Natalia L. Valitova, Associate Professor, Chair of Applied Mathematics and Computer Science, Kazan National Research Technical University named after A. N. Tupolev-KAI (10 K. Marks St., Kazan 420111, Russia), Ph.D. (Engineering), ORCID: http://orcid.org/0000-0002-8408-1885, valinata@rambler.ru
Elmira Sh. Kremleva, Seniour lecturer, Chair of Applied Mathematics and Computer Science, Kazan National Research Technical University named after A. N. Tupolev-KAI (10 K. Marks St., Kazan 420111, Russia), ORCID: http://orcid.org/0000-0003-0858-0575, e-smile29.04@mail.ru
Contribution of the authors:
Svetlana V. Novikova - scientific supervisor of the project.
Sergey A. Sosnovsky - developed the training trajectory and evaluated the results of the program-tutor introduction in the educational process.
Rouzilya R. Yakhina - made a significant contribution to the translation of the text into English.
Natalia L. Valitova - participated in the development and technical support of the computer-based tutor.
Elmira Sh. Kremleva - actively participated in the implementation of the computer-based tutor in the learning process.
СПИСОК
ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Захарова И. В., Сыромясов А. О. Отечественные стандарты высшего образования: эволюция математического содержания и сравнение с финскими аналогами // Вестник Тверского государственного университета. Сер.: Педагогика и психология. 2016. №№ 2. С. 170-185. URL: http://elibrary.ru/item. asp?id=26555968 (дата обращения: 12.02.2017).
2. Захарова И. В., Кузенков О. А., Солдатенко И. С. Проект MetaMath программы Темпус: применение современных образовательных технологий для совершенствования математического образования в рамках инженерных направлений в российских университетах // Современные информационные технологии и ИТ-образование. 2014. №№ 10. С. 159-171. URL: http://university.tversu.ru/foreign/metamath/ kuzzaksol.pdf (дата обращения: 12.02.2017).
3. Alpers B. Das SEFI Maths Working Group "Curriculum Framework Document" und seine Realisierung in einem Mathematik-Curriculum für einen praxisorientierten Maschinenbaustudiengang // Lehren und Lernen von Mathematik in der Studieneingangsphase. Herausforderungen und Lösungsansätze. Wiesbaden, Germany: Springer Spektrum, 2016. Pp. 645-659). URL: https://keynote.conference-services.net/resources/444/5118/ pdf/CERME10_0522.pdf (дата обращения: 12.02.2017).
4. Novikova S. V. Application of an adaptive correction algorithm to control a gas turbine engine under conditions of noises // Russian Aeronautics. 2006. Vol. 49, no. 4. Pp. 37-40. URL: https://www.scopus.com/ record/display.uri?eid=2-s2.0-34248660260&origin=inward&txGid=9951BA49F5A8450C561EAF0CC82E A2D2.wsnAw8kcdt7IPYL00V48gA%3a19 (дата обращения: 12.02.2017).
5. Novikova S. V. Structural optimization of the neural network model for the gas turbine engine monitoring // Russian Aeronautics. 2016. Vol. 59, no. 2. Pp. 263-270. DOI: 10.3103/S1068799816020185
6. Kostin V. A., Valitova N. L. Coefficients of equilibrium equations in solving a problem of reconstructing deformation curves for slightly conical thin-walled structures // Russian Aeronautics. 2007. Vol. 50, no. 3. Pp. 243-247. DOI: 10.3103/S1068799807030026
7. Kostin V. A., Snegurenko A. P. On constructing strain diagrams of airframe units by the data of the real experiment // Actual problems of aviation and aerospace systems processes models experiment. 2000. № 1 (9). Pp. 66-71. DOI: 10.3103/S1068799807030026
8. Galiyev Sh. I., LisafinaM. S. Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain // Computational Mathematics and Mathematical Physics. 2013. Vol. 53, no. 11. Pp. 1748-1762. DOI: 10.1134/s0965542513110080
9. Rodnishev N. E., Novikova S. V., Denisov K. G. Developing methods and computer technologies for learning, identification and optimization of nonlinear stochastic systems // IFAC Proceedings Volumes (IFAC-PapersOnline). 2012. Vol. 45, issue 11. Pp. 51-56. URL: http://www.sciencedirect.com/science/ article/pii/S1474667015375753 (дата обращения: 12.02.2017).
10. Becker F. S. Why don't young people want to become engineers? Rational reasons for disappointing decisions // European Journal of Engineering Education. 2010. № 35(4). Рр. 349-366. DOI: 10.1080/03043797.2010.489941
11. Романов Д. К., Даукша Л. М. Психологические особенности восприятия и понимания преподавателей студентами университета // Интеграция образования. 2016. Т. 20, № 2. С. 228-237. DOI: 10.15507/1991-9468.083.020.201602.228-237
12. Савкина А. В., НуштаеваА. В., БорискинаИ. П. Информатизация курса «Алгебра и геометрия» с помощью интеллектуальной обучающей системы Math-Bridge // Образовательные технологии и общество (Educational Technology & Society). 2016. Т. 19, № 4. C. 479-487. URL: http://ifets.ieee.org/ russian/depository/v19_i4/pdf/18.pdf (дата обращения: 12.02.2017).
13. Сосновский С. А., Гиренко А. Ф., Галеев И. Х. Информатизация математический компоненты инженерного, технического и естественнонаучного обучения в рамках проекта MetaMath // Образовательные технологии и общество (Educational Technology & Society). 2014. Т. 17, №. 4. C. 446-457. URL: http://ifets.ieee.org/russian/periodical/journal.html (дата обращения: 12.02.2017).
14. Шарамазанов Р. М., Савкина А. В., Савкина А. В. Архитектура многоагентной системы (МАС) обучения на базе LMS MOODLE // Национальная ассоциация ученых. 2015. № 7-2 (12). С. 78-82. URL: http://elibrary.ru/item.asp?id=25071982 (дата обращения: 12.02.2017).
15. Сыромясов А. О. Компьютерные технологии в преподавании математики студентам направления «Программная инженерия» // Образовательные технологии и общество (Education Technology & Society). 2014. Т. 17, № 4. С. 518-525. URL: http://ifets.ieee.org/russian/depository/v17_i4/pdf/8.pdf (дата обращения: 12.02.2017).
16. Савкина А. В. Виртуальные лаборатории в дистанционном обучении // Образовательные технологии и общество (Education Technology & Society). 2014. Т. 17, № 4. С. 507-517. URL: http://ifets. ieee.org/russian/depository/v17_i4/pdf/7.pdf (дата обращения: 12.02.2017).
17. Роднищев Н. Е., Медведева С. Н. Электронный курс «Теория вероятностей и математическая статистика» // Хроники объединенного фонда электронных ресурсов. Наука и образование. 2014. № 11(66). С. 8. URL: http://elibrary.ru/item.asp?id=24125137 (дата обращения: 12.02.2017).
18. Math-Bridge: Bridging the gaps in European remedial mathematics with technology-enhanced learning / S. Sosnovsky [et al.] // Mit Werkzeugen Mathematik und Stochastik lernen - Using Tools for Learning Mathematics and Statistics. Berlin : Heidelberg, Germany : Springer, 2014. Pp. 437-451. URL: http://www.springer.com/us/book/9783658031039 (дата обращения: 12.02.2017).
19. KremerM., Brannen C., Glennerster R. The challenge of education and learning in the developing world // Science. 2013. № 340(6130). Рр. 297-300. DOI: 10.1126/science.1235350
20. Goguadze G. Representation for Interactive Exercises // Proceedings of the 16th Symposium, 8th International Conference. Held as Part of CICM '09 on Intelligent Computer Mathematics. Grand Bend, Canada, 2009. DOI: 10.1007/978-3-642-02614-0_25
21. McLaren B. M., Sosnovsky S., Aleven V. Preface - Emerging technologies and landmark systems for learning mathematics and science: dedicated to the memory of Erica Melis. Part 1 // Artificial Intelligence in Education. 2014. № 24(3). Рр. 211-215. DOI: 10.1007/s40593-014-0021-0
22. Sosnovsky S., McLaren B. M., Aleven V. Preface - Emerging technologies and landmark systems for learning mathematics and science: dedicated to the memory of Erica Melis. Part 2 // Artificial Intelligence in Education. 2014. № 24(4). Pp. 383-386. DOI: 10.1007/s40593-014-0021-0
23. An implementation of a semantic, web-based virtual machine laboratory prototyping environment / J. Salonen [et al.] // Lecture Notes in Computer Science. 2011. No. 7032. Pp. 221-236. URL: https://tutcris. tut.fi/portal/files/1867480/salonen_an_implementation_of_a_semantic.pdf (дата обращения: 12.02.2017).
24. Exploring feedback and student characteristics relevant for personalizing feedback strategies / S. Narciss [et al.] // Computers and Education. 2014. No. 71. Pp. 56-76. DOI: 10.1016/j.compedu.2013.09.011
25. Transition lycée-université, penser des dispositifs d'appui / Luc Trouche [et al.] // Revue internationale des technologies en pédagogie universitaire. 2011. No. 2 (2). Pp. 37-47. URL: http://math.univ-lyon1. fr/~mercat/articles/RITPU_v08_n01-02_37.pdf (дата обращения: 12.02.2017).
26. Karampiperis P., Sampson D. Adaptive learning resources sequencing in educational hypermedia systems // Образовательные технологии и общество. 2005. No. 8 (4). Pp. 128-147. URL: http://www. ifets.info/journals/8_4/13.pdf (дата обращения: 12.02.2017).
27. Kerem B., Gunduz U., Ahmet §. "Classic transportation problems", logistics engineering handbook, Taylor, Don G. (ed.), Boca Raton, FL, USA: CRC Press 2008, 16/1-16/32 URL: http://www.academia. edu/996342/Classic_transportation_problems
28. Балина Т. Н. Психолого-педагогические аспекты компьютерного обучения // Вестник Таганрогского института управления и экономики. 2009. № 1. С. 105-108. URL: http://elibrary.ru/item. asp?id=12957000 (дата обращения: 12.02.2017).
29. AhmadHlayelAbdallah. The Best Candidates Method for Solving Optimization Problems // Journal of Computer Science. 2012. No. 8 (5). Pp. 711-715. URL: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.676.692&rep=rep1&type=pdf (дата обращения: 12.02.2017).
Поступила 02.03.2017; принята к публикации 10.04.2017; опубликована онлайн 30.06.2017.
Об авторах:
Новикова Светлана Владимировна, профессор кафедры прикладной математики и информатики ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева-КАИ» (420111, Россия, г. Казань, ул. К. Маркса, д. 10), доктор технических наук, ScopusID: 55355243900, Researcher ID: В-6505-2017, ORCID: https://orcid.org/0000-0001-8207-1010, sweta72@bk.ru
Сосновский Сергей Александрович, ведущий научный сотрудник отдела электронных технологий обучения Немецкого научного центра по искусственному интеллекту (DFKI) (66123, Германия, г. Саарбрюккен, ул. Штульзатценхаусвег, д. 3), доктор технических наук, ORCID: https://orcid. org/0000-0001-8023-1770, sergey.sosnovsky@dfki.de
Яхина Рузиля Раифовна, доцент кафедры иностранных языков ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева-КАИ» (420111, Россия, г. Казань, ул. К. Маркса, д. 10), кандидат филологических наук, ORCID: http://orcid.org/0000-0002-7371-064X, shroza1981@yandex.ru
Валитова Наталья Львовна, доцент кафедры прикладной математики и информатики ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева-КАИ» (420111, Россия, г. Казань, ул. К. Маркса, д. 10), кандидат технических наук, ORCID: http://orcid. org/0000-0002-8408-1885, valinata@rambler.ru
Кремлева Эльмира Шамильевна, старший преподаватель кафедры прикладной математики и информатики ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева-КАИ» (420111, Россия, г. Казань, ул. К. Маркса, д. 10), ORCID: http://orcid.org/ 0000-0003-0858-0575, e-smile29.04@mail.ru
Заявленный вклад авторов:
Новикова Светлана Владимировна - научное руководство.
Сосновский Сергей Александрович - разработка траектории обучения; анализ и оценивание результатов внедрения программы-тьютера в учебный процесс.
Яхина Рузиля Раифовна - перевод текста на английский язык.
Валитова Наталья Львовна - участие в разработке и техническом сопровождении программы-тьютера.
Кремлева Эльмира Шамильевна - активное участие во внедрении программы-тьютера в учебный процесс.
Все авторы прочитали и одобрили окончательный вариант рукописи.