References
1. Aliev, R., Abduvoxidov, M., Mirzaalimov, N., and Gulomov., J. (2020). Kremniy asosli quyosh ele-mentlarida rekombinatsiya va generatsiya jarayoni. Science and Education, 1(2), 230-235. doi: 10.24412/2181-0842-2020-2-230-235
2. Gulomov, J., Aliev, R., Nasirov, M., and Ziyoitdinov, J. (2020). Modeling metal nanoparticles influence to properties of silicon solar cells, Int. J. of Adv. Res. 8(Nov), 336-345; doi.org/10.21474/IJAR01/12015
3. Gulomov, J., Aliev, R., Abduvoxidov, M., Mirzaalimov, A., Mirzaalimov, N. (2020). Exploring optical properties of solar cells by programming and modeling. Global Journal of Engineering and Technology Advances, 5(1), 032-038; doi.org/10.30574/gjeta.2020.5.1.0080
4. Aliev, R., Gulomov, J., Abduvohidov, M. et al. (2020) Stimulation of Photoactive Absorption of Sunlight in Thin Layers of Silicon Structures by Metal Nanoparticles. Appl. Sol. Energy 56, 364-370; https://doi.org/10.3103/S0003701X20050035
5. Gulomov, J., Aliev, R., Mirzaalimov, A., Mirzaalimov, N., Kakhkhorov, J., Rashidov, B., & Temi-rov, S. (2021). Studying the Effect of Light Incidence Angle on Photoelectric Parameters of Solar Cells by Simulation. International Journal of Renewable Energy Development, 10(4), 731-736. https://doi.org/10.14710/ijred.2021.36277
6. Гуломов, Д., Алиев, Р., Мирзаалимов, А., Абдувохидов, М., Мирзаалимов, Н., Каххоров, Ж., ... & Иззатиллаев, Х. (2021). Oddiy va nanozarracha kiritilgan kremniy asosli quyosh elementining fotoelektrik parametrlarini yorug'likning tushish bur-chagiga bog'liqligi. Общество и инновации, 2(1), 1222.
7. Aliev, R., Abduvohidov, M., & Gulomov, J. (2020). Simulation of temperatures influence to photoelectric properties of silicon solar cells. Physics & Astronomy International Journal, 4(5), 177-180.
8. Gulomov, J., Aliev, R., Abduvoxidov, M., Mirzaalimov, A., Mirzaalimov, N., & Rashidov, B. (2020). Mathematical model of a rotary 3D format photo electric energy device. World Journal of Advanced Research and Reviews, 8(2), 164-172.
THE LIFETIME OF CHARGE CARRIERS IN SILICON-BASED SOLAR CELLS
Ismoilov U.
Master student Mirzaalimov N.
PhD student Jurayeva S.
Master student Andijan State University Negmatov B. Bachelor student Azimov S.
Bachelor student
Alijonov A.
Bachelor student
Zulunova M.
Bachelor student Andijan machine building institute
Abstract
In this paper, the effect of temperature and input concentration on the lifetimes of electrons and cavities in silicon-based solar cells is theoretically analyzed.
Keywords: life time, silicon, temperature, model, donor, acceptor
Solar elements are now becoming the main source of energy. Because the world is running out of non-renewable energy sources [1]. The best solution for the economy at this time is, of course, renewable energy sources. There are many types of solar cells. The cheapest of these are silicon-based solar cells. Silicon is one of the most common elements in the world [2]. In order to increase the efficiency of a solar cell, we must first know more about its internal properties. For example, when electrons and cavities age, what is the efficiency of solar cells? Of course, if you have a long life. No feature is self-explanatory. They, in turn, are inextricably linked to many processes [3].
The lifetime is the time between particle generation and recombination. So to know more about life expectancy, we need to know more about recombination and generation [4].
Generation is the process of forming electrons and cavities. There are many types of generations. Avalanche, thermogeneration and photogeneration [5].
Photogeneration is the process of generating light. Its mechanism is based on the photo effect. But the photo effect is also divided into two. Internal and external photo effect [6]. An event in the solar system can be called an internal photo effect. It is called the photovoltaic effect by another name. Photogeneration in solar cells depends on the wavelength of light and the thickness of the solar cell, as well as the surface area of the solar cell [7].
Gopt (z, t) = I0Ft (t) Fya (ä, z) exp
z
| a (ä, z') dz
(1)
K„
xy
1 + exp
JVI JV'/-»
x y
1 + exp
■y0
y y
x, y,z = 0) = Fxy
(2)
(3)
Recombination is the reunification of electrons occurs only in solar cells made of substances with a
and cavities. There are three main types of recombina- properly restricted zone. An example of this is GaAs.
tion. SRH, Auger, Radiation and surface recombination n ^ ( 2 \
[8]. g rr = c (np - nreff) (4)
In silicon-based solar cells, the main part of recombination consists of SRH, Auger and surface recombination. This is because radiative recombination
Graph 1. Temperature dependence of the lifetime of an electron in a silicon-based solar cell
Auger recombination is strongly related to the from the conduction band to the valence band, and one concentration of the input, and the mechanism of its of them absorbs the energy and returns to the conduc-formation is as follows. The pair of electrons descend tion band [1].
RA = (Cnn + CpP) (nP - nleff )
Cn (T) =
CP (T) =
AAn + BA, n
AA, P + BAp p
f T\
T VT0 y
f T\
T VT0 y
+ C
A,n
+ C
T
V T0 y
A,P
T
V T0 y
1 + Hn exp 1 + Hp exp
n
N
V No,n f \
.P.
v Nop y
(5)
(6)
(7)
l
Graph 2. Temperature dependence of the SRH life time of electrons in silicon-based solar cells
References
9. Aliev, R., Abduvoxidov, M., Mirzaalimov, N., and Gulomov., J. (2020). Kremniy asosli quyosh ele-mentlarida rekombinatsiya va generatsiya jarayoni. Science and Education, 1(2), 230-235. doi: 10.24412/2181-0842-2020-2-230-235
10. Gulomov, J., Aliev, R., Nasirov, M., and Ziyoitdinov, J. (2020). Modeling metal nanoparticles influence to properties of silicon solar cells, Int. J. of Adv. Res. 8(Nov), 336-345; doi.org/10.21474/IJAR01/12015
11. Gulomov, J., Aliev, R., Abduvoxidov, M., Mirzaalimov, A., Mirzaalimov, N. (2020). Exploring optical properties of solar cells by programming and modeling. Global Journal of Engineering and Technology Advances, 5(1), 032-038; doi.org/10.30574/gjeta.2020.5.1.0080
12. Aliev, R., Gulomov, J., Abduvohidov, M. et al. (2020) Stimulation of Photoactive Absorption of Sunlight in Thin Layers of Silicon Structures by Metal Nanoparticles. Appl. Sol. Energy 56, 364-370; https://doi.org/10.3103/S0003701X20050035
13. Gulomov, J., Aliev, R., Mirzaalimov, A., Mir-zaalimov, N., Kakhkhorov, J., Rashidov, B., & Temi-rov, S. (2021). Studying the Effect of Light Incidence Angle on Photoelectric Parameters of Solar Cells by Simulation. International Journal of Renewable Energy Development, 10(4), 731-736. https://doi.org/10.14710/ijred.2021.36277
14. Гуломов, Д., Алиев, Р., Мирзаалимов, А., Абдувохидов, М., Мирзаалимов, Н., Каххоров, Ж., ... & Иззатиллаев, Х. (2021). Oddiy va nanozarracha kiritilgan kremniy asosli quyosh elementining fotoelektrik parametrlarini yorug'likning tushish bur-chagiga bog'liqligi. Общество и инновации, 2(1), 1222.
15. Aliev, R., Abduvohidov, M., & Gulomov, J. (2020). Simulation of temperatures influence to photoelectric properties of silicon solar cells. Physics & Astronomy International Journal, 4(5), 177-180.
16. Gulomov, J., Aliev, R., Abduvoxidov, M., Mirzaalimov, A., Mirzaalimov, N., & Rashidov, B. (2020). Mathematical model of a rotary 3D format photo electric energy device. World Journal of Advanced Research and Reviews, 8(2), 164-172.