Научная статья на тему 'Термодинамический анализ систем «Металл кислород»'

Термодинамический анализ систем «Металл кислород» Текст научной статьи по специальности «Химические науки»

CC BY
441
109
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ФАЗОВЫЕ ДИАГРАММЫ / ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ / СИСТЕМЫ "МЕТАЛЛ-КИСЛОРОД" / ЖЕЛЕЗО / ХРОМ / МАРГАНЕЦ / НИКЕЛЬ / PHASE DIAGRAM / THERMODYNAMIC MODELING / THE METAL-OXYGEN SYSTEMS / IRON / CHROMIUM / MANGANESE / NICKEL

Аннотация научной статьи по химическим наукам, автор научной работы — Леонович Борис Иванович, Трофимов Евгений Алексеевич, Дильдин Андрей Николаевич

На примере ряда систем «металл кислород» (Cr-O, Mn-O, Fe-O и Ni-O) подробно описана методика термодинамического моделирования систем, включающих различные фазы переменного состава (металлический твёрдый и жидкий раствор, соединения с отклонениями от стехиометрии). Методика опирается на использование подрешёточной модели и полиномиальной модели Редлиха Кистера. Продемонстрированы подходы к термодинамическому описанию жидких и твердых растворов кислорода в металле, а также оксидов различного состава и структурного типа (MeO, Me 3O 4 и Me 2O 3). Представлены выражения для энергий Гиббса рассмотренных фаз. Опираясь на описанные методики, построены фазовые диаграммы четырёх систем, а также температурные зависимости кислородного потенциала для изученных систем. Результаты расчёта сопоставлены с экспериментальными данными. Представленная информация может быть использована для анализа более сложных систем, включая системы, имеющие значение для металлургии.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

THERMODYNAMIC ANALYSIS OF THE METAL OXYGEN SYSTEMS

The method of thermodynamic modeling of systems involving phases of variable composition (solid metal and liquid solution, compounds with deviations from stoichiometry) is described. This method is demonstrated on the example of the metal oxygen systems (Cr-O, Mn-O, Fe-O and Ni-O). The technique relies on the use of the sublattice model and the polynomial Redlich-Kister model. The approaches for thermodynamic description of liquid and solid oxygen solutions in a metal, as well as oxides of different composition and structural type (MeO, Me 3O 4 and Me 2O 3) are demonstrated. Expressions for the Gibbs energies of phases are presented. The phase diagrams of four systems, based on the described techniques, have been created, as well as the temperature dependences of the oxygen potential for the studied systems. The results of calculations are compared to experimental data. The provided information can be used in order to analyze the more complex systems, including those important in industry.

Текст научной работы на тему «Термодинамический анализ систем «Металл кислород»»

УДК 544.015.3

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ СИСТЕМ «МЕТАЛЛ - КИСЛОРОД»

Б.И. Леонович, Е.А. Трофимов, А.Н. Дильдин

На примере ряда систем «металл - кислород» (Сг-О, Мп-О, Fe-O и №-0) подробно описана методика термодинамического моделирования систем, включающих различные фазы переменного состава (металлический твёрдый и жидкий раствор, соединения с отклонениями от стехиометрии). Методика опирается на использование подрешёточной модели и полиномиальной модели Редлиха - Кистера. Продемонстрированы подходы к термодинамическому описанию жидких и твердых растворов кислорода в металле, а также оксидов различного состава и структурного типа (МеО, Ме304 и Ме203). Представлены выражения для энергий Гиббса рассмотренных фаз. Опираясь на описанные методики, построены фазовые диаграммы четырёх систем, а также температурные зависимости кислородного потенциала для изученных систем. Результаты расчёта сопоставлены с экспериментальными данными. Представленная информация может быть использована для анализа более сложных систем, включая системы, имеющие значение для металлургии.

Ключевые слова: фазовые диаграммы, термодинамическое моделирование, системы «металл-кислород», железо, хром, марганец, никель.

Введение

Сплавы и стали специального назначения, как правило, имеют довольно сложный состав. К числу их постоянных компонентов относятся хром, марганец, железо, никель и др. Взаимодействие этих элементов с растворенным кислородом приводит к образованию оксидных фаз. При производстве ферросплавов, лигатур, низколегированных сталей практическое значение имеют уже трехкомпонентные системы «основа - легирующий компонент - кислород». Расчет и анализ таких систем возможен, если известны термодинамические свойства основополагающих бинарных систем «металл - кислород».

Методика исследования

При термодинамическом моделировании фазовых равновесий в металлических сплавах, содержащих кислород, используется формализм и математический аппарат подрешеточной модели, в которой конфигурация раствора определяется совокупностью двух или более подрешеток

[1-5].

Системы «металл - кислород» характеризуются образованием жидких и твердых растворов, а также оксидов различного состава и структурного типа (МеО, Ме304 и Ме2О3). На рис. 1-4 представлены диаграммы фазового равновесия и температурные зависимости кислородного потенциала систем Сг-О, Мп-О, Бе-О и №-0. При расчете областей устойчивости различных фаз были использованы термохимические параметры, приведенные в работах [6-13]. Сопоставление расчетных и экспериментальных значений проведено с использованием данных, представленных в работах [14-25].

Обсуждение результатов

Особенности моделирования фаз различных типов заслуживают обстоятельного обсуждения.

Жидкие расплавы. Жидкая фаза в оксидных системах характеризуется интервалом несмешиваемости между металлическим и оксидным сплавами. Применительно к ионным расплавам состав жидкости, содержащей катионы металла и анионы кислорода, может быть определен следующим образом: (Ме^г)р (О-2,Уа~ч)ц , где Ме*У' означает совокупность катионов с зарядом

+ V, Уа - гипотетическую вакансию с индуцированным зарядом —ц. Подстрочные индексы р и ц определяют электронейтральность и зависят от состава расплава следующим образом:

ц = , (1)

I '

Р =2уо-2 + Ч ■ Ууа-Я.

(2)

В этих формулах yi обозначает концентрацию компонента расплава в пределах своей подре-

шетки. Следующее уравнение показывает связь уо -2 с молярной долей кислорода

х _ Ч ^ У0-2 Л -2 —-.

0 Р + Ч(1" У^ )

(3)

3000

03

о.

>, I-

03

о.

01 с

- О [14] Жидкость

2800 * [14] Сг304 + Ж

о [14] Сг +Ж

ж [14] Сг + Сг2Оз

2600 + [14] Сг + Сг О, ' 3 4

- X [14] Сг2Оз + Ж

2400

2200

2000

1800

I / Ж

2

Ж / 1 / -

Ж [14]

[14]-

а-Сг ¿1 -

Т 3 4

Сг О -

2 3 -

а)

-10 -5

1од Р02, (атм.) б)

Рис. 1. Фазовая диаграмма (а) и температурная зависимость кислородного потенциала (б)

системы «хром-кислород»

Молярная энергия Гиббса бинарной системы «металл - кислород» задается уравнением

0т _^УЫе+»'У О'2 ^Ме+Ч +

+Р^X V +, МV +ч ) + ЧШ[V-2 1п(V-2 ) + У^-Ч 1п( V _Ч )] + (4)

. ' Ме+" ^Ме+" ' 4 и^-2 "^О-27 ' Уа~Ч Уа~Ч'

I , ,

У,,+ чУп-2У„

. Ме+ ^О Уа'4 Ме+" :0-2,Уа~Ч'

где О0

- энергия Гиббса образования (2 + V,) молей жидкого сплава; О0

энергия

Гиббса образования V; моль жидкого металла; Li:j - температурно-зависимые коэффициенты, значения которых выражаются полиномами Редлиха - Кистера:

_ + 4, (У, - ) + L2j (У, - )2+... Ц,} (У, - )п . (5)

п

В приведенных уравнениях и далее в подстрочных индексах запятая разделяет компоненты в одной подрешетке, а двоеточие означает различные подрешетки.

2400 2200 2000

| 1800

н оз о.

? 1600

1400

1200

1000

\ \ -м' \ \10 \ ж +ж \ 1 2 \ \___Ц, \ \ \ \ ' Ж ^^ \ж2\ \ \ Л [16] \ \ ю-1 \ \ \ \ \ \ Р02=1 Э™ Уж\А \ \ \ \ \ \ Ж +газ " \ \ 2

Ж +Мп 0 1 1-х

(З-Мп О м 3 4 +газ

\д 10

\ ЖМп О \7 +|3-Мпз04 104

5-Мп+Мп 0 1-х

Щ -6 Ч ю а-Мпз04 +газ

А

! у-Мп+Мп, О ' 1-х (З-Мп+Мп 0 , г 1-х

/ Мп О+а-Мп О. 1П8 / 1-х 3 4 10 а-Мп 0„ 3 4 +МП2°3

I

о о о о

0,45

0,50 0,55

хо

а)

0,60

-12 -8 -4

1од Р02, (атм.) б)

Рис. 2. Фазовая диаграмма (а) и температурная зависимость кислородного потенциала (б)

системы «марганец-кислород»

2000

1800

1600 -

со о.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1400 -

а>

1200 -

1000

800

0,45

0,50

а)

0,55

0,60

-30 -20 -10

1од Р02, (атм.) б)

Рис. 3. Фазовая диаграмма (а) и температурная зависимость кислородного потенциала (б)

системы «железо-кислород»

2500

05

О.

>>

I-03 о. 0) с

2000 -

1500

а)

10 -8 -6 -4 -2 1од Р02, (атм.) б)

Рис. 4. Фазовая диаграмма (а) и температурная зависимость кислородного потенциала (б)

системы «никель-кислород»

Парциальные молярные энергии Гиббса (химические потенциалы) могут быть вычислены по уравнению

°А:В _ От +

-X У,

дУ,

(6)

дУл дУв

Области жидких расплавов, представленные на рис. 1-4, рассчитаны исходя из предположения о наличии в системах с хромом и никелем одного сорта катионов - Сг+3 или №+2 соответственно. В жидких растворах Fe-0 и Мп-О устойчивыми считались два вида катионов - Ме+2 и Ме+3.

О.ц.к. и г.ц.к. - твердые растворы внедрения. Твердый раствор внедрения можно представить общей формулой (Ме)а(0,Уа)с. В случае г.ц.к.-фазы а = с = 1, для о.ц.к.-фазы а = 1 и с = 3. Образование такого раствора можно также представить смешением гипотетических соединений Меа0с и МеаУас. Молярная энергия Гиббса такого «трехкомпонентного» раствора (при Уме =1) может быть задана уравнением

От _ У0ОМе :0 + УУа°°МеУа + ^Т(У0 1п У0 + УУа 1п УУа ) + (?)

Г 7"0 / 4 7"^/ \2 7"2 1 /^магн ^ '

+У0УУа [LMe:0,Уa + (У0 - УУа )LMe:0,Уa + (У0 - УУа ) LMe:0,Уa ] + От

Магнитная составляющая энергии Гиббса задается формулой

ОГ™. _ RT 1п(р+1) / (х),

где х = Т/Тс; Тс и Р - значения температуры Кюри и магнетона Бора соответственно.

-гмагн. т

При х < 1:

При х > 1:

/ (х) _ 1

79х-1 474

140р 494

1 -1

р ,

/

.3

9

х

15

хх

— +-+-

ч 6 135 600у

(8)

(9)

/ (т) = -

( -5 -15 -25

т т т

-+-+-

10 315 1500

V )

(10)

где ^=1=125 + {^эт!(р -1)' Значение р определяется структурным типом раствора. Для о.ц.к. - растворов р = 0,4 и р = 0,28 для структуры г.ц.к.

Состав твердого раствора определяется мольными долями веществ в каждой подрешетке:

Уо = (а/с^(1 - Хо) и Ус + Уva = 1. (11)

Монооксиды (МеО). В структуре монооксидов переменного состава кислород образует г.ц.к.-решетку, а ионы металла занимают октаэдрические позиции. В общем случае состав фазы может быть описан формулой (Ме+2, Ме+3,Ка)1(О-2)1. При описании нестехиометрического оксида железа (вюстита) была использована модель комбинирования энергий, предложенная Хиллертом [1,

5]:

От = УМе+2 <Э°Ме+2,О-2 + УМе+3 ОМе+3:О-2 + ^УаО-2 + (12)

+КТ(Уме+2Ы Уме+2 + Уме+31П Уме+3 + Ука 1п Ука ) + С^,

где переменные ум +2 и у +3 - доля мест в металлической подрешетке, занятой двухвалентными и трехвалентными ионами. При этом у +2 + у +2 + уКа = 1.

Избыточная энергия Гиббса О^?6 может быть описана полиномом Редлиха - Кистера (5):

<1з6 = у +2 у +3[Х° +2 +3 2 + (у +2 - у +3УМ +2 +3 2] +

т Ме Ме Ме ,Ме :О-2 К-УМе+2 ^Ме+' Ме+2,Ме+3:О-2-1

+уМе+2УУа ^Ме+2,Ка:О-2 + (УМе+2 - УКа ^Ме+2,Ка:О-2] + (13)

+УМе+3 Ука [^Ме+3,Ка:О-2 + (УМе+3 " Ука ^Ме+^КаЮ-2^

Потенциал кислорода нестехиометрического монооксида рассчитывается как разница молярных энергий Ме2О3 и МеО [12]:

Оо = 2ОМе О - 4ОМеО = 4О +3 2 - 4О +2 2 + 2О 2. (14)

О2 Ме2Оз МеО Ме :О 2 Ме :О 2 Ка:О 2 у '

При использовании уравнения (6) и значения О° 2 = 0 формула преобразуется следующим образом:

Л .4 „2 ^

Оо = 4(О° +3 -О° +2) + ЯТ 1п

О2 4 Ме Ме

уМе+3 уКа

V уМе+2 )

+

+2(2уМе+2 - 2уМе+3 " УМе+2УМе+3 ^Ме^М^ + (15)

+4[( УМе+2 "УМе+з)2 + УМе+2 УМе+з( УМе+3 " УМе+2 ~ 2)^Ме+2Ме+3:О-2.

В приведенной модели мольные доли могут быть рассчитаны из долей мест у, с использованием формул:

Х = УМе+2 + УМе+3 и Х =_1__(16)

ХМе =~- и ХО = "-. (16)

1 + У +2 + У +3 1 + У +2 + У +3

Ме+2 Ме+3 Ме+2 Ме+3

Максимальное значение ум +2 =2/3, так что модель для фазы монооксида может таким образом описать диапазон составов для хО от 0,5 до 0,6.

Шпинельные фазы (Ме3О4). Структура шпинели имеет ионы кислорода в г.ц.к. подрешетке с двухвалентными и трехвалентными металлическими ионами в октаэдрических и тетраэдрических позициях. Число мест в октаэдрической подрешетке равно числу мест кислорода, тогда как тет-раэдрическая подрешетка имеет в два раза больше мест. В такой структуре шпинели могут быть заняты только половина октаэдрических мест и одна восьмая тетраэдрических мест. В нормальной шпинели трехвалентные ионы занимают октаэдрические позиции, а двухвалентные - тетра-эдрические.

При термодинамическом моделировании свойств оксидов наиболее сложно описывается магнетит (Ре304). В работе [12] эта фаза описана как с избытком железа, так и с избытком кислорода. При низких температурах магнетит - обращенная шпинель с тетраэдрическими позициями, заполненными Ре+3. При этом октаэдрические места заняты совместно ионами Ре+3 и Ре+2. При повышении температуры магнетит трансформируется в нормальную шпинель и перед плавлением он почти неупорядочен. Таким образом, структура стехиометрического магнетита может быть представлена следующим образом: (Ре+2, Fe+3)l (Ре+2, Ре+3)2(0-2)4.

Молярная энергия Гиббса стехиометрической шпинели в зависимости от состава и температуры может быть описана уравнением

С — 1)' 1>о Г^о I ...о с^о .

От _ УРе+2 УРе+2 °Ре+2:Ре+2:0-2 + УРе+2 УРе+3 °Ре+2:Ре+3:0-2 + ..Л о го . Л о го .

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

+УРе+3 УРе+2 ОРе+3:Ре+2:0-2 + УРе+2 УРе+3 ОРе+3:Ре+2:0-2 +

+RT ( у i +2 1п У^е+2 + УРе+3 1П УРе+3 ) +

+2RT (уРое+21п УРое+2 + УРое+31п УРое+3), (17)

где надстрочные индексы ' и о означают тетраэдрическую и октаэдрическую решетки соответственно.

Введем обозначения: у' +3 _ х, у' +2 _ 1 - х, уо +3 _ 1 - 0,5х, уо +2 _ 0,5х.

Ре Ре Ре Ре

Тогда уравнение для энергии Гиббса будет иметь вид:

От _ Х(1 - ад0^^^ + О^х2^.^ +

+(1 - х)(1 - 0,5х)0Рое+3:Ре+2:0-2 + 0,5х(1 - 0,5х)0Рое+3:Ре+3:0-2 + +RT [ х 1п х + (1 - х) 1п(1 - х)] +

+2RT [(1 - 0,5х) 1п(1 - 0,5 х) + 0,5х 1п0,5х]. (18)

Между ионами различной валентности имеет место обменная реакция. При равновесии упорядочение описывается следующим уравнением [12]:

0,5(0о+2 +2 2 + Оо+2 +3 2 + Оо+3 +2 ) _ RT 1п

' 4 Ре+2:Ре+2:0 2 Ре+2:Ре+3:0 2 Ре+3:Ре+2:0 2 '

' о УРе+3 УРе+2 ' о

Уг +2 ■ У„ +3 V Ре Ре /

(19)

В условиях повышенных температур и высоких значений потенциала кислорода для магнетита характерно отклонение от стехиометрии, что может быть учтено добавлением избытка Ре+3 в октаэдрические позиции соответствующего числа вакансий для поддержания электронейтральности. Измененная структура будет иметь вид (Ре+2, Ре+3^ (Ре+2, Ре+3,Уа)2(0-2)4. Если обозначить концентрацию вакансий уУа, такую структуру можно описать как Ре3-504, где 5=2уУа. На рис. 3 расчет нестехиометрического магнетита проведен по уравнению, полученному обработкой экспериментальных данных [20]. Другие шпинельные структуры считались стехиометрическими.

Оксидные фазы (Ме203). Общее название - корунд. Структура корунда моделируется тремя подрешетками (Ме+2,Ме+3)2(Ме+3,Уа)1(0-2)3. О^+3у 2 определяет величину Оо чистого полуторного оксида Ме203.

Обозначив концентрации компонентов у' первой подрешетки и у" - второй, уравнение для энергии Гиббса гомогенной фазы будет иметь вид:

От _ УМе+2 УМе+3 ОМе+2Ме+3:0-2 + УМе+3 УМе+3 ОМе+3Ме+3:0-2 + +У' +2 УУаОо +2 2 + у' +3 у"УаОо +3 2 +

Ме Уа Ме :Уа:0 -УМе+3'УУа Ме+3:Уа:0-2

уМе+2 + У'^П У'Ме+3) + ^ ^П УМе+3 + УУа 1П УУа ). (20)

На рис. оксидные фазы Ме203 рассчитаны без учета возможности отклонения от стехиометрии.

Заключение

На примере ряда систем Сг-0, Мп-0, Ре-0 и N1-0 описана методика термодинамического моделирования систем, включающих различные фазы переменного состава (металлический твёр-

дый и жидкий раствор, соединения с отклонениями от стехиометрии и др.). Представлены выражения для энергий Гиббса рассмотренных фаз. Построены фазовые диаграммы, а также температурные зависимости кислородного потенциала для изученных систем. Результаты расчёта сопоставлены с литературными экспериментальными данными. Представленная информация может быть использована для анализа более сложных систем, включая системы, имеющие значение для металлургии.

Работа осуществлена при финансовой поддержке РФФИ, грант № 13-08-00545.

Литература/References

1. Hillert.M, Staffanson L.J. The Regular Solution Model for Stoiohiometric Phases and Ionic Melts. Acta Chemica Scandinavica. 1970, vol. 24, no. 10, pp. 3618-3626.

2. Sundman B., Agren J. A Regular Solution Model for Phases with Several Components and Sub-lattices, Suitable for Computer Applications. J. Phys. Chem. Solids. 1981, vol. 42, pp. 297-301.

3. Hillert M., Jansson B., Sundman B., Agren J. A. Two-Sublattice Model for Molten Solutions with Different Tendency for Ionization. Metallurgical Transactions A. 1985, vol. 16A, no. 2, pp. 261266.

4. Sundman B. Modification of the Two-Sublattice Model for Liquids. CALPHAD. 1991, vol. 15, no. 2, pp. 109-119.

5. Barry T.I., Dinsdale A.T., Gisby J.A., Hallstedt B., Hillert M., Jansson B., Sundman B., Taylor J.R. The Compound Energy Model for Ionic Solutions with Applications to Solid Oxides. J. Phase Equilibria. 1992, vol.13, no. 5, pp. 459-475.

6. Povoden E., Grundy A. N., Gauckler L. J. Thermodynamic Reassessment of the Cr-O System in the Framework of Solid Oxide Fuel Cell (SOFC) Research. J. Phase Equilibria and Diffusion. 2006, vol. 27, no. 4, pp. 353-362.

7. Taylor J.R., Dinsdale A.T. A Thermodynamic Assessment of the Cr-Fe-O System. Z. Metallkunde. 1993, vol. 84, no. 5, pp. 335-345.

8. Kjellqvist L., Selleby M., Sundman B. Computer Coupling of Phase Diagrams and Thermochemistry. 2008, no.32, pp. 577-592.

9. Wang M., Sundman B. Thermodynamic Assessment of the Mn-O System. Metallurgical Transaction B. 1992, vol. 23B, no. 12, pp. 821-831.

10. Grundy A.N., Hallstedt B., Gauckler L.J. Assessment of the Mn-O System. J. Phase Equilibria. 2003, vol. 24, no. 1, pp. 21-31.

11. Kjellqvist L., Selleby M. Thermodynamic Assessment of the Fe-Mn-O System. J. Phase Equilibria and Diffusion. 2010, vol. 31, no. 2, pp. 113-134.

12. Sundman B. As Assessment of the Fe-O System. J. Phase Equilibria. 1991, vol. 12, no 1. pp. 127-140.

13. Taylor J.R., Dinsdale A.T. A Thermodynamic Assessment of the Ni-O, Cr-O and Cr-Ni-O Systems Using the Ionic Liquid and Compound Energy Models. Z. Metallkunde. 1990, bd. 81, h. 5, s. 335-345.

14. Toker N.Y., Darken L.S.,. Muan A. Equilibrium Phase Relations and Thermodynamics of the Cr-O System in the Temperature Range of 1500 °C to 1825 °C. Metall. Trans. B. 1991, 22(2), pp. 225232.

15. Tromel G, Fix W., Koch K., Schaberg F. The Phase Diagram of the Manganese-Oxygen System. Erzmetall. 1976, 29, pp. 234-237 (in German).

16. Schmahl N.G., Hennings D.F.K. The Phase Diagram of the Mn3O4-MnO System and Its Pressures of Dissociation. Arch. Eisenhuttenwes., 1969, 40, pp. 395-399 (in German).

17. Keller M., Dieckmann R. Defect Structure and Transport Properties of Manganese Oxides: (I) The Nonstoichiometry of Manganosite (Mn1-5O). Ber. Bunsenges. Phys. Chem, 1985, 89, pp. 883-93.

18. O'Neill H.S., Pownceby M.I. Thermodynamic Data From Redox Reactions at High Temperatures. II. The MnO-Mn3O4 Oxygen Buffer and Implications for the Thermodynamic Properties of MnO and Mn2O3. Contrib.Mineral. Petrol, 1993, 114, pp. 315-20.

19. Wriedt H.A. The Fe-O (Iron-Oxygen) System. J. Phase Equilibria, 1991, vol. 12, no. 2, pp. 170-200.

20. Dieckmann R. Defects and Cation Diffusion in Magnetite (IV): Nonstoichiometry and Point Defect Structure of Magnetite (Fe3-5O4). Ber. Bunsenges. Phys. Chem. 1982, 86, pp. 112-118.

21. Darken L.S., Gurry R.W. The System iron-oxygen. 1. The wustite field and equilibria. J. Amer. Soc., 1945, vol. 67, pp. 1398-1412.

22. Darken L.S., Gurry R.W. The System iron-oxygen. 2. Equilibrium and thermodynamics of liquid oxide and other phases. J. Amer. Soc, 1946, vol. 68, pp. 798-816.

23. Vallet P., Raccah P. On the Studies of Thermodynamic Properties of Ferrous (in French). Mem. Sci. Rev. Metall, 1965, vol. 62, pp. 1-29.

24. Лыкасов А.А., Карел К., Мень А.Н., Варшавский М.Т., Михайлов Г.Г. Физико-химические свойства вюстита и его растворов. Свердловск: УНЦ АН СССР, 1987. 230 с. [Lykasov A.A., Karel K., Men' A.N., Varshavskij M.T., Mikhajlov G.G. Fiziko-himicheskie svojstva vjustita i ego rastvorov (Physicochemical Properties of Wustite and its Solutions). Sverdlovsk: UNC AN SSSR, 1987. 230 p.]

25. G. G. Charette, S. N. Flengas Thermodynamic Properties of the Oxides of Fe, Ni, Pb, Cu, and Mn, by EMF Measurements. J. Electrochem. Soc, 1968, vol. 115, no. 8, pp. 796-804.

Леонович Борис Иванович - кандидат технических наук, доцент. E-mail: [email protected]

Трофимов Евгений Алексеевич - доктор химических наук, доцент кафедры общей металлургии, Южно-Уральский государственный университет, филиал в г. Златоусте. 456209, г. Златоуст, ул. Тургенева, 16. E-mail: [email protected]

Дильдин Андрей Николаевич - кандидат технических наук, доцент кафедры общей металлургии, Южно-Уральский государственный университет, филиал в г. Златоусте. 456209, г. Златоуст, ул. Тургенева, 16. E-mail: [email protected]

Поступила в редакцию 2 декабря 2014 г.

Bulletin of the South Ural State University

Series "Chemistry"

_2015, vol. 7, no. 1, pp. 30-37

THERMODYNAMIC ANALYSIS OF THE METAL - OXYGEN SYSTEMS

B.I. Leonovich, Zlatoust, Russian Federation, [email protected]

E.A. Trofimov, Zlatoust branch of the South Ural State University, Zlatoust, Russian Federation, [email protected]

A.N. Dil'din, Zlatoust branch of the South Ural State University, Zlatoust, Russian Federation, [email protected]

The method of thermodynamic modeling of systems involving phases of variable composition (solid metal and liquid solution, compounds with deviations from stoichi-ometry) is described. This method is demonstrated on the example of the metal - oxygen systems (Cr-O, Mn-O, Fe-O and Ni-O). The technique relies on the use of the sublattice model and the polynomial Redlich-Kister model. The approaches for thermodynamic description of liquid and solid oxygen solutions in a metal, as well as oxides of different composition and structural type (MeO, Me3O4 and Me2O3) are demonstrated. Expressions for the Gibbs energies of phases are presented. The phase diagrams of four systems, based on the described techniques, have been created, as well as the temperature dependences of the oxygen potential for the studied systems. The results of calculations are compared to experimental data. The provided information can be used in order to analyze the more complex systems, including those important in industry.

Keywords: phase diagram, thermodynamic modeling, the metal-oxygen systems, iron, chromium, manganese, nickel.

Received 2 December 2014

i Надоели баннеры? Вы всегда можете отключить рекламу.