DOI: 10.6060/ivkkt.20186112.5826
СИНТЕЗ И СТРОЕНИЕ ГЕКСАТИОЦИАНАТОПЛАТИНАТА(^) КАЛИЙТЕТРАЭТИЛАММОНИЯ
В.В. Шарутин, О.К. Шарутина, А.Р. Ткачева
Владимир Викторович Шарутин
Управление научной и инновационной деятельности, НИУ Южно-Уральский государственный университет, проспект В.И. Ленина, 76, Челябинск, Российская Федерация, 454080 E-mail: [email protected]
Ольга Константиновна Шарутина, Алена Романовна Ткачева
Кафедра теоретической и прикладной химии, НИУ Южно-Уральский государственный университет, проспект В.И. Ленина, 76, Челябинск, Российская Федерация, 454080 E-mail: [email protected], [email protected]
Взаимодействием гексакис(изоцианато)платината(1У) калия с хлоридом тетра-этиламмония в водном растворе ацетонитрила синтезирован и структурно охарактеризован гексакис(изоцианато)платинат(1У) калийтетраэтиламмония [(C2H5)4N][K][Pt(CNS)6]. Медленное испарение растворителя привело к образованию крупных красно-коричневых кристаллов. Структура полученного соединения идентифицирована методом РСА. РСА кристалла I проведен на дифрактометре D8 QUEST фирмы Bruker (MoKa-излучение, l = 0,71073 А, графитовый монохроматор). [CuH2eN7KPtS6, M = 712,92, Сингония моноклинная, пространственная группа C2/c, a = 10,432(8), b = 14,767(13), c = 16,300(13) А, V = 2510(4) А3, Z = 4, / = 6,272 мм-1, F(000) = 1384, размер кристалла 0,86x0,66x0,50 мм]. Тетраэдрическая конфигурация тетраэтиламмонийного катиона несколько искажена (углы CNC 105,5(5)°—111,8(4)°, длины связей N-С 1,503(5)-1,519(5) А). Ионы платины в анионах I имеют октаэдрическую координацию (транс-углы SPtS составляют 180°), величины цис-углов при атоме платины SPtS приближаются к значению 90° (88,47(4)°-91,53(4)°). Длины связей Pt-S в группах Pt(CNS)6 близки между собой и составляют 2,373(2)-2,37(2) А. Центросимметричные октаэдрические гексакис(изоцианато)платинатные анионы связаны в единое целое посредством мостиковых изоцианатных лигандов и катионов калия, который гексакоординирован шестью атомами азота изоцианатных групп (N-K 2,828(4)-2,896(4) А), однако транс-углы NKN (128,44(15)°-146,9(2)°) далеки от идеальных значений для октаэдра. Мостиковые тиоцианатные лиганды связывают катионы платины и калия. Амбидентатные тиоцианатные лиганды одновременно координируются с катионами K+ атомами азота. С помощью мостиковых тиоцианатных лигандов образуется трехмерный координационный полимер. Полученная структура представляет собой трехмерную сетку, в ячейках которой расположены катионы тет-раэтиламмония (Et4N)+.
Ключевые слова: гексатиоцианатоплатинат(ГУ) калийтетраэтиламминия, синтез, рентгенострук-турный анализ
SYNTHESIS AND STRUCTURE OF POTASSIUM TETRAETHYLAMMONIUM HEXATHIOCYANATOPLATINATE(IV)
V.V. Sharutin, O.K. Sharutina, A.R. Tkacheva
Vladimir V. Sharutin
Department of Science and Innovation, South Ural State University, Lenin ave., 76, Chelyabinsk, 454080, Russia
E-mail: [email protected]
Olga K. Sharutina, Alena R. Tkacheva
Department of Theoretical and Applied Chemistry, South Ural State University, Lenin ave., 76, Chelyabinsk,
454080, Russia
E-mail: [email protected], [email protected]
Potassium tetraethylammonium hexathiocyanatoplatinate(IV) (Et4N)(K)[Pt(SCN)6] (I) was synthesized by the reaction of potassium hexathiocyanatoplatinate(IV) with tetraethylammonium chloride in acetonitrile aqueous solution. Slow evaporation of the solvent led to the formation of large red-brown crystals. The product structure was determined by XRDA. The X-ray diffraction pattern of crystal I was carried out on a Bruker D8 QUEST diffractometer (MoKa radiation, A = 0.71073 Â, graphite monochromator). [C1H2N7KPtS6, M = 712.92, Crystal system monoclinic, space group C 2/c, a = 10.432(8), b = 14.767(13), c = 16.300(13) Â, V = 2510(4) Â3, Z = 4, [i = 6.272 mm1, F(000) = 1384, crystal size 0.86*0.66*0.50 mm]. The tetrahedral configuration of the tetraethylammonium cation is slightly distorted (CNC angles are 105.5(5)°-111.8(4)°, bond lengths N-С are 1.503(5)-1.519(5) Â). Platinum ions in anions have octahedral coordination (trans-angles SPtS are 180°, cis-angles SPtS are (88.47(4)°-91.53(4)°). The bond lengths Pt-S are equal to 2.373 (2)-2.37(2) Â. Potassium cations are coordinated by six nitrogen atoms of thiocya-nate groups (distances N K (2.828(4)-2.896 (4) Â). Trans-angles NKN (128.44 (15)°-146.9 (2)°) are far from ideal values for the octahedron. Bridged thiocyanate ligands are bonded cations of the platinum and potassium. Ambidentate thiocyanate ligands are simultaneously coordinated to the K+ cation by nitrogen atoms. By means of the bridged thiocyanate ligands a three-dimensional coordination polymer is formed. The resulting structure is a three-dimensional grid, in the cells of which the cations of tetraethylammonium (Et4N)+ are located.
Key words: potassium tetraethylammonium hexathiocyanatoplatinate(IV), synthesis, X-ray diffraction
analysis
Для цитирования:
Шарутин В.В., Шарутина О.К., Ткачева А.Р. Синтез и строение гексатиоцианатоплатината(1'У) калийтетраэтилам-
мония. Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 12. С. 63-67
For citation:
Sharutin V.V., Sharutina O.K., Tkacheva A.R. Synthesis and structure of potassium tetraethylammonium hexathiocya-
natoplatinate(IV). Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 12. P. 63-67
INTRODUCTION
It is known that complex compounds of platinum are effective catalysts for many chemical processes and convenient objects for the study of ligand exchange reactions. For example, in the presence of platinum complexes alkynes are oxidized by the air oxygen through a triple bond to dicarbonyl compounds [1]. Ligand exchange reactions are observed in tetrachloro- and tetraorganophosphonium hexa-chloroplatinate solutions in dimethylsulfoxide [2]. Among various structurally characterized complexes
of platinum the complexes with thiocyanate ligands are practically not studied [3].
In continuation of the studies of the synthesis and structure features of platinum complexes [4-16], we carried out the reaction of tetraethylammonium chloride with potassium hexathiocyanatoplatinate(IV). The structure of the obtained complex was determined by X-ray diffraction analysis (XRDA).
EXPERIMENTAL
The mixing of water-acetonitrile solutions of equimolar amounts of tetraethylammonium chloride
and potassium hexathiocyanatoplatinate(IV) is accompanied by a change in the color of the reaction mixture to red-brown.
Synthesis of (Et4N)(K)[Pt(SCN)6] (I). A solution of 130 mg (0.785 mmol) of tetraethylammonium chloride in 60 mL of a 1: 1 mixture of water-acetonitrile was poured into a solution of 488 mg (0.785 mmol) of potassium hexathiocyanatoplati-nate(IV) in 60 mL of water-acetonitrile (1: 1). The solution was concentrated, the crystals formed were filtered and dried. The red-brown crystals I (399 mg (56%), Tm = 187 ° C) were obtained. Anal. found, %: C 23.55; H 2.84. Anal. calc. for C:4H20NyKPtS6 %: C 23.59; H 2.81.
The X-ray diffraction pattern of crystal I was carried out on a Bruker D8 QUEST diffractometer (Mo„ radiation, X = 0.71073 Â, graphite mono-chromator). A glass thread was used as the sample holder. At one end of the glass thread, a single-crystal was glued, and the second end of the thread was fixed in a standard goniometric head of the diffractometer. The data were collected, edited and parameterized by the SMART and SAINT-Plus [17]. All calculations for the determination and refinement of the structure were performed by the programs SHELXL / PC [18], OLEX2 [19]. The structure is determined by a direct method and refined by the method of least squares in the anisotropic approximation for non-hydrogen atoms. The crystallographic data and the results of structure refinement are given in Table. Complete tables of atomic coordinates, bond lengths and valence angles are deposited in the Cambridge structural data bank (N1577805; [email protected] or
http ://www.ccdc.cam.ac.uk/data_request/cif).
RESULTS AND DISCUSSION
Slow evaporation of the solvent leads to the formation of large red-brown crystals of potassium tetraethylammonium hexathiocyanatoplatinate(IV): [Et4N]Cl + K2[Pt(SCN)6] ^
^ (Et4N)(K)[Pt(SCN)6] + KCl
Platinum complexes with hexathiocyanatoplati-nate anions and ammonium cations [20] or metal-containing cations of complex structure [21] were described in the literature.
According to X-ray diffraction data, complex I includes tetraethylammonium, potassium, and hex-athiocyanatoplatinate anions. The tetrahedral configuration of the (Et4N)+ cation is slightly distorted: the valence angles of CNC vary in the interval 105.5(5)°-111.8(4)°. The lengths of NNC bonds differ insignificantly (1.503(5)-1.519(5) Â), and their values are approximately equal to the lengths of the
similar bonds in tetraorganammonium cations [14]. Thiocyanate ligands in the [Pt(SCN)6]2- anion are coordinated to the platinum ion, as expected, by sulfur atoms. The octahedral coordination of the platinum ion is slightly distorted: the SPtS trans-angles are 180°, the SPtS cis angles are approximately equal to the ideal value of 90° (88.47(4)°-91.53(4)°). The Pt-S bonds are close to each other and equal 2.375(2)-2.380(2) A. The PtSC angles (103.2°-105.7°) differ slightly from the tetrahedral angle. The SCN-ligands have almost linear structure (SCN angles are 175.3(5)°-178.1 (4)°).
Ambidentate thiocyanate ligands are simultaneously coordinated to the K+ cation by nitrogen atoms. Each potassium cation is coordinated by six ligands (Fig. 1).
Table
Crystallographic date, experimental parameters and
structure refinements for compound I Таблица. Кристаллографические данные, параметры
Parameter
Formula weight 712.92
Crystal system Monoclinic
T, K 293(2)
Space group C 2/c
a, Â 10.432(8)
b, Â 14.767(13)
c, Â 16.300(13)
a, ° 90
P, °. 91.96(3)
Y, ° 90
V, Â3 2510(4)
Z 4
Pcalc, g/cm3 1.887
Imo, mm-1 6.272
F(000) 1384
Crystal size, mm 0.86x0.66x0.50
9,grad. 3.029 - 26.37
Index ranges -13 < h < 13, -18 < к < 18, -18 < l < 20
Measured reflections 20196
Independent reflections 2571
Refinement variables 138
GOOF 1.059
Final R indexes Ri = 0.0252
F2 > 2c(F2) wR2 = 0.0642
Final R indexes [all date] R1 = 0.0301 wR2 = 0.0692
Largest diff.peak/hole / e/Â3 -1.515 / 1.319
pt<u
Fig. 1. A fragment of coordination polymer I with thiocyanate bridges
Рис. 1. Фрагмент координационного полимера I с тиоцианат-ными мостиками
The N-K distances (2.828(4)-2.896(4) À) are close to the sum of the covalent radii of these atoms (2.66 À). However, the octahedral coordination of potassium is highly distorted, since the NKN transangles (128.44(15)°-146.9(2)°) are far from the ideal value of 180°. The KNC angles are 154.0°-168.0°.
ЛИТЕРАТУРА
1. Шарутин В.В., Шарутина О.К., Сенчурин В.С. Взаимодействие дифенилацетилена с дииодидом платины в растворе диметилсульфоксида в присутствии атмосферного кислорода. Бутлеров. сообщ. 2013. Т. 36. Вып. 11. С. 98. DOI: 10.1134/S1070363215050229.
2. Sharutin V.V., Senchurin V.S., Sharutina O.K., Gushchin A.V. Synthesis and Structure of Platinum Complexes [Ph4P]+[PtCl3(DMSO)]- and [Ph4P]+[PtCk(DMSO)]-. Russ. J. Inorg. Chem. 2013. V. 58. N 1. P. 36. DOI: 10.1134/ /S0036023613010191.
3. Cambridge Crystallographic Data Center. 2017. www.ccdc. cam.ac.uk.
4. Sharutin V.V., Senchurin V.S., Fastovets O.A., Pakurina A.P., Sharutina O.K. Tetrafenylantimony(V) gexachloroplati-nate, tetrachloroaurate, and gexachlorostannate [Ph4Sb]+2[PtCl6]2-, [Ph4Sb]+[AuCl4]-, [Ph4Sb]+2[SnCl6]2-: Synthesis and Crystal Structures. Russ. J. Coord. Chem. 2008. V. 34. N 5. P. 367-373. DOI: 10.1134/S1070328408050096.
5. Шарутин В.В., Сенчурин В.С., Шарутина О.К., Гущин А.В. Синтез и строение комплексов платины: [PhiSb]+2[PtBr6]2-, [Bu4N]+2[PtBr6]2-, [Ph4Sb(DMSO)]+ +[PtBr5(DMSO)]- и [Bu4N]+[PtBr5(DMSO)]-. Бутлеров. сообщ. 2012. Т. 30. Вып. 4. P. 55.
6. Крылова Л.Ф., Матвеева Л.М. Идентификация стерео-изомерных комплексов Pt(II) и Pd(II) с аминомасляной кислотой. Журн. структ. химии. 2005. Т. 46. Вып.1. С. 75-88.
7. Sharutin V.V., Senchurin V.S., Sharutina О.К., Somov N.V., Gushchin A.V. Synthesis and structure of the platinum complexes: [Bu4N]+[PtBr5(DMSO)]-, [Ph4P]+[PtBr5(DMSO)]- , and [Ph3(n-Am)P]+[PtBr5(DMSO)]-. Russ. J. Coord. Chem. 2011. V. 37. N 11. P. 857.
8. Sharutin V.V., Senchurin V.S., Pakusyna A.P., Fastovets O.A., Ivanov A.V. Synthesis and structure of cis-dichloro(triphenyl-stibine)(dimethylsulfoxide)platinum(II). J. Inorg. Chem. 2010. V. 55. N 1. P. 64. DOI: 10.1134/ /S0036023610010122.
\
V
Fig. 2. A fragment of coordination polymer I in the crystal cell Рис. 2. Фрагмент координационного полимера I в ячейке кристалла
CONCLUSIONS
Thus, complex I is a coordination polymer in which the bridged SCN- ligands bind two metal cations (Pt and K). The resulting structure is a three-dimensional grid, in the cells of which the cations of tetraethylammonium (Et4N)+ are located (Fig. 2).
The study was carried out with financial support under the state task No. 4.6151.2017/8.9.
REFERENCES
1. Sharutin V.V., Sharutina O.K., Senchurin V.S. The interaction of diphenylacetylene with platinum diiodide in a solution of dimethyl sulfoxide in the presence of atmospheric oxygen. Butlerov Soobshch. 2013. V. 36. N 11. P. 98. DOI: 10.1134/S1070363215050229 (in Russian).
2. Sharutin V.V., Senchurin V.S., Sharutina O.K., Gushchin AV. Synthesis and Structure of Platinum Complexes [Ph4P]+[PtCls(DMSO)]- and [Ph4P]+[PtCk(DMSO)]-. Russ. J. Inorg. Chem. 2013. V. 58. N 1. P. 36. DOI: 10.1134/ /S0036023613010191.
3. Cambridge Crystallographic Data Center. 2017. www.ccdc. cam.ac.uk.
4. Sharutin V.V., Senchurin V.S., Fastovets O.A., Pakurina A.P., Sharutina O.K. Tetrafenylantimony(V) gexachloroplati-nate, tetrachloroaurate, and gexachlorostannate [Ph4Sb]+2[PtCl6]2-, [Ph4Sb]+[AuCl4]-, [Ph4Sb]+2[SnCl6]2-: Synthesis and Crystal Structures. Russ. J. Coord. Chem. 2008. V. 34. N 5. P. 367-373. DOI: 10.1134/S1070328408050096.
5. Sharutin V.V., Senchurin V.S., Sharutina O.K., Gushchin A.V. Synthesis and structure of Pt-complexes [Ph4Sb]+2[PtBr6]2-, [Bu4N]+2[PtBr6]2-, [Ph4Sb(DMSO)]+[PtBr5(DMSO)]- и [Bu4N]+[PtBr5(DMSO)]-. БВыктс Soobshch. 2012. V. 30. N. 4. P. 55 (in Russian).
6. Krylova L.F., Matveeva L.M. Identification of stereoisomeric complexes of Pt (II) and Pd (II) with aminobutyric acid. Zhurn. Strukt. Khim. 2005. V. 46. N 1. P. 75-88 (in Russian).
7. Sharutin V.V., Senchurin V.S., Sharutina О.К., Somov N.V., Gushchin A.V. Synthesis and structure of the platinum complexes: [Bu4N]+[PtBr5(DMSO)]- [Ph4P]+[PtBr5(DMSO)]- , and [Ph3(n-Am)P]+[PtBr5(DMSO)]-. Russ. J. Coord. Chem. 2011. V. 37. N 11. P. 857.
8. Sharutin V.V., Senchurin V.S., Pakusyna A.P., Fastovets O.A., Ivanov A.V. Synthesis and structure of cis-dichloro(triphenyl-stibine)(dimethylsulfoxide)platinum(II). J. Inorg. Chem. 2010. V. 55. N 1. P. 64. DOI: 10.1134/ /S0036023610010122.
9. Шарутин В.В., Шарутина О.К., Ткачёва А.Р.
Хамидуллин Р. М., Андреев П.В. Синтез и строение комплексов платины: [MeCH=CHCH2PPh]2[PtCl6], [MeOCH2PPh3]2[PtCl6], [NH2(CH3)2]2[PtCl6]. Бутлеров. сообщ. 2016. Т. 47. Вып. 8. C. 150.
10. Шарутин В.В., Сенчурин В.С., Шарутина О.К., Ткачёва А.Р. Синтез и строение комплексов платины с хлоридами органилтрифенилфосфонием и ДМСО. Журн. общей химии. 2018. Т. 88. Вып. 7. С. 80-86.
11. Sharutin V.V., Sharutina O.K., Senchurin V.S. Synthesis and Structure of Platinum Complexes [BrnP][PtBr6] and [Bu4P][PtBr5(DMSO-S)]. Russ. J. Gen. Chem. 2016. V. 86. N 9. P. 2100-2109. DOI: 10.1134/S1070363216090206.
12. Шарутин В.В., Сенчурин В.С., Sharutina O.K. Дигидросульфид бис(диметилсульфоксидо)платины (DMSO)2Pt(SH)2. Вестн. ЮУрГУ. Сер. «Химия». 2012. Т. 9. Вып. 24. С. 46-50.
13. Шарутин В.В., Сенчурин В.С., Пакусина В.С., Фа-стовец О.А. Реакции хлоридов трифенилбензил-фосфония и тетрафенилстибония с тетрахлороплатина-том калия в диметилсульфоксиде. Журн. общ. химии. 2010. Т. 80. Вып. 9. С. 1434-1438.
14. Amico D., Via L., Garœa-Argôez A. Antiproliferative activity of platinum(II) complexes containing triphe-nylphosphine: Correlation between structure and biological activity. J. Polyhedron. 2015. V. 85. P. 685-689. DOI: [email protected].
15. Шарутин В.В., Сенчурин В.С., Мосунова Т.В. Синтез и строение комплекса платины [PH3PC6H11-CYCLO][PtBr5(DMSO-S)]. Вестн. ЮУрГУ. Сер. «Химия». 2017. Т. 9. Вып. 4. С. 61-66. DOI: 10.14529/chem170410.
16. Ткачёва A.P. Синтез и строение комплекса платины [(C2H5)4N]2[PtCl6]. Вестн. ЮУрГУ. Сер. «Химия». 2017. Т. 9. Вып. 4. С. 74-76. DOI: 10.14529/chem170412.
17. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA. 1998.
18. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA. 1998.
19. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009. V. 42. P. 339-341. DOI: 10.1107/S0021889808042726.
20. Nikolaeva S.N., Antomonov E.V., Lorberth J., Petrosyan V.S. Vibrational Spectra and Normal Coordinate Analysis of Hexathiocyanatoplatinate(IV), Crystal Structure of [Py2CH2][Pt(SCN)6]. Chem. Sci. 1998. V. 53. N 1. P. 13.
21. Silha T., Nemec I., Herchel R., Trâvnicek Z Structural and magnetic characterizations of the first manganese(III) Schiff base complexes involving hexathiocyanidoplatinate(IV) bridges. Cryst. Eng. Comm. 2013. V. 15. N 26. P. 5351. DOI: 10.1039/C3CE40524A.
9. Sharutin V.V., Sharutina O.K., Tkacheva A.P., Khamidullin R.M., Andreev Р.У.Шарутин В.В., Шарутина О.К., Ткачёва А.Р. Хамидуллин Р. М., Андреев П.В. Synthesis and structure of platinum complexes: [MeCH=CHCH2PPh3]2 PtCl6], [MeOCH2PPh3]2[PtCl6], [NH2(CH3)2]2[PtCl6]. Butlerov Soobchsh. 2016. V. 47. N 8. P. 150 (in Russian).
10. Sharutin V.V., Senchurin V.S., Sharutina O.K., Tkacheva A.P. Synthesis and structure of platinum complexes with or-ganottyltriphenylphosphonium and DMSO chlorides. Zhurn. Obshch. Khim. 2018. Т. 88. N 7. P. 80-86 (in Russian).
11. Sharutin V.V., Sharutina O.K., Senchurin V.S. Synthesis and Structure of Platinum Complexes [Bu4P][PtBr6] and [Bu4P][PtBr5(DMSO-S)]. Russ. J. Gen. Chem. 2016. V. 86. N 9. P. 2100-2109. DOI: 10.1134/S1070363216090206.
12. Sharutin V.V., Senchurin V.S., Sharutina O.K. Bis (dimethyl-sulfoxido) platinum dihydrosulfide (DMSO) 2Pt (SH>. Vest. YuRGU. Ser. Khimiya. 2012. V. 9. N 24. P. 46-50 (in Russian).
13. Sharutin V.V., Senchurin V.S., Pakusina V.S., Fastovets O.A. Reactions of triphenylbenzylphosphonium chlorides and tetraphenylstibonia with potassium tetrachloroplatinate in dimethyl sulfoxide. Zhurn. Obshch. Khim. 2010. V. 80. N 9. P. 1434-1438 (in Russian).
14. Amico D., Via L., Garcrn-Ai^ez A. Antiproliferative activity of platinum(II) complexes containing triphe-nylphosphine: Correlation between structure and biological activity. J. Polyhedron. 2015. V. 85. P. 685-689. DOI: [email protected].
15. Sharutin V.V., Senchurin V.S., Mosunova T.V. Synthesis and structure of the platinum complex [PH3PC6H11-CYCLO][PtBr5(DMSO-S)]. Vest. YuURGU. Ser. Khimiya. 2017. V. 9. N 4. P. 61-66 (in Russian). DOI: 10.14529/chem170410.
16. Tkacheva A.R. Synthesis and structure of the platinum complex [(C2H5)4N]2[PtCl6]. Vest. YuRGU. Ser. Khimiya. 2017. V. 9. N 4. P. 74-76 (in Russian). DOI: 10.14529/chem170412.
17. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA. 1998.
18. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA. 1998.
19. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009. V. 42. P. 339-341. DOI: 10.1107/S0021889808042726.
20. Nikolaeva S.N., Antomonov E.V., Lorberth J., Petrosyan V.S. Vibrational Spectra and Normal Coordinate Analysis of Hexathiocyanatoplatinate(IV), Crystal Structure of [Py2CH2][Pt(SCN)6]. Chem. Sci. 1998. V. 53. N 1. P. 13.
21. Silha T., Nemec I., Herchel R., Travnicek Z Structural and magnetic characterizations of the first manganese(III) Schiff base complexes involving hexathiocyanidoplatinate(IV) bridges. Cryst. Eng. Comm. 2013. V. 15. N 26. P. 5351. DOI: 10.1039/C3CE40524A.
Поступила в редакцию 07.05.2018 Принята к опубликованию 22.10.2018
Received 07.05.2018 Accepted 22.10.2018