Научная статья на тему 'Synthesis and properties of new surfactants based on cotton–seed oil triglycerides, ethanolamines and ortophosphoric acid'

Synthesis and properties of new surfactants based on cotton–seed oil triglycerides, ethanolamines and ortophosphoric acid Текст научной статьи по специальности «Химические науки»

CC BY
199
148
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
cotton-seed oil triglycerides / ethanolamines / monoethylolamide / monoethylolamide phosphate / etanolaminophosphate complexes / surfactants / petroleum collecting / dispersing. / триглицериды хлопкового масла / этаноламины / моноэтилоламид / моноэтилоламидофосфат / этаноламинофосфатные комплексы / поверхностная активность / нефтесобирание / нефтедиспергирование

Аннотация научной статьи по химическим наукам, автор научной работы — I. A. Zarbaliyeva

By interaction of cotton-seed oil triglycerides with monoethanolamine monoethylolamide of cotton-seed oil acid fraction is obtained which is further phosphated by orthophosphoric acid. The obtained phosphate-derivative is reacted with mono-, diand triethanolamine synthesizing respective ethanolamine complexes. The structure and composition of these complexes were identified by NMR (1H and 13C) and IR-spectroscopy methods. Some of the physico-chemical indices of the ethanolamine complexes have been determined. By stalagmometric measurements their high surface activity at the water–kerosene border has been shown. Laboratory tests revealed strong petroleum collecting and dispersing properties of these complexes that enable to remove thin petroleum films from the water surface.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СИНТЕЗ И СВОЙСТВА НОВЫХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ НА ОСНОВЕ ТРИГЛИЦЕРИДОВ ХЛОПКОВОГО МАСЛА, ЭТАНОЛАМИНОВ И ОРТОФОСФОРНОЙ КИСЛОТЫ

Взаимодействием триглицеридов хлопкового масла с моноэтаноламином получен моноэтилоламид кислотной фракции хлопкового масла, который далее фосфатирован ортофосфорной кислотой. Реакцией конечного фосфата с моно-, дии триэтаноламином синтезированы соответствующие этаноламинные комплексы. Строение и состав полученных комплексов подтверждены методами ЯМР (1H и 13C) и ИК-спектроскопии. Определены некоторые физико-химические показатели этих комплексов, сталагмометрическим методом показана их высокая поверхностная активность на границе вода–керосин. В результате лабораторных испытаний установлено, что синтезированные комплексы обладают сильными нефтесобирающими и нефтедиспергирующими свойствами. Это позволяет с их помощью удалять тонкие пленки с водной поверхности.

Текст научной работы на тему «Synthesis and properties of new surfactants based on cotton–seed oil triglycerides, ethanolamines and ortophosphoric acid»

AZ9RBAYCAN KIMYA JURNALI № 1 2018

31

UDC 661.185

SYNTHESIS AND PROPERTIES OF NEW SURFACTANTS BASED ON COTTON-SEED OIL TRIGLYCERIDES, ETHANOLAMINES AND ORTOPHOSPHORIC ACID

I.A.Zarbaliyeva

YMamedaliyev Institute of Petrochemical Processes, NAS of Azerbaijan

[email protected] Received 12.07.2017

By interaction of cotton-seed oil triglycerides with monoethanolamine monoethylolamide of cotton-seed oil acid fraction is obtained which is further phosphated by orthophosphoric acid. The obtained phosphate-derivative is reacted with mono-, di- and triethanolamine synthesizing respective ethanolamine complexes. The structure and composition of these complexes were identified by NMR (1H and 13C) and IR-spectroscopy methods. Some of the physico-chemical indices of the ethanolamine complexes have been determined. By stalagmometric measurements their high surface activity at the water-kerosene border has been shown. Laboratory tests revealed strong petroleum collecting and dispersing properties of these complexes that enable to remove thin petroleum films from the water surface.

Keywords: cotton-seed oil triglycerides, ethanolamines, monoethylolamide, monoethylolamide phosphate, etanolaminophosphate complexes, surfactants, petroleum collecting, dispersing.

Contamination of the World Ocean with petroleum is one of the most serious ecological problems standing before the mankind. Petroleum spills occurring due to various reasons lead to formation of thick slicks. Such petroleum slicks may be liquated using special mechanical devices. After such operations thin petroleum films inevitably remain on the water surface. These films may be removed only applying colloidal-chemical means which include usage of petroleum-collecting and petroleum-dispersing reagents [1-4]. Among such reagents which are surfactants, of a particular interests are reagents based on renewable and alternative raw materials. Here, first of all, vegetable oils should be mentioned which are harmless to environment and cheap [5-8]. In the present article considered new surfactants possessing petroleum-collecting and dispersing effectiveness were synthesized on the basis of cotton-seed oil which is an available raw material in our country also having a relatively low cost.

Experimental

Cotton-seed oil is a local commodity product. Among residues of saturated flatty acids in this oil triglycerides, miristic acid (C14) constitutes 0.3-0.5%, palmitic acid (Cie) - 20.022.0%, stearic acid (C18) - 2.0%, arachinic acid (C20) - 0.1-0.6%. From unsaturated fatty acids,

residues of oleic acid (C18) make up 30.5-35.2% and those of linoleic acid (C^) - 41.7-44.0%.

Monoethanolamine (MEA) was a reagent of "pure" grade produced by Olaynen Chemical Reagents Factory (Latvia).

Diethanolamine (DEA) was a product of "pure" analytical grade of "Merck" (Germany).

Triethanolamine (TEA) was from "Kazan-orgsintez" Joint Stock Company (Russian Federation).

The above-mentioned thriethanolamines were used without any purification procedures.

Orthophophoric acid was used as 86% wt. aqueous solution produced by "Component-Reactant" Joint Stock Company (Russian Federation).

Water used as a bidistillate.

Surface activity of the synthesized surfactants was estimated at the water-kerosene border by stalagmometric method.

Specific electroconductivity (x) of the surfactants aqueous solutions was measured by "Anion 4120" conductometer (Russian Federation).

1 1 ^

NMR 1H and NMR C spectra were registered by Bruker Advance II 300.13 (75.468 for 13C) spectrometer under room conditions.

IR spectra were recorded by Vertex 70 (Bruker) spectrometer in the range 4000-400 cm-1 using KBr pellets.

Petroleum collecting and dispersing properties of the synthesized surfactants were studied by the following procedure both for pure-state reagents and their 5 wt % aqueous solutions. In the laboratory tests, Ramana petroleum (density at 200C - 0.862 g/ml, kinematic viscosity at 200C - 16.80 cSt) was used. Into Petri dish, 40 ml of petroleum is added. After formation of thin petroleum layer [thickness is ~(0.16-0.17) mm] 0.02 g of surfactant (or its 5.0 wt % aqueous solution) is given onto the petroleum layer from the peripheral side. Petroleum-collecting coefficient is calculated according to the relationship K=S0/S, where S0 is the area of the petroleum layer surface prior to addition of a reagent whereas S is a current area of the surface of petroleum spot formed under the

action of the reagent. Time intervals - t of measurements were also registered. The values of petroleum-collecting coefficient at different times enable to judge about dynamics of change of reagents impact.

Results and discussion

The reactions of obtaining monoethylol-amide of cotton-seed oil acid fraction are conducted in an autoclave made of stainless steel and equipped with temperature-regulating system at 140-1600C. This reaction is carried out without a solvent and a special catalyst at molar ratio of cotton-seed oil triglycerides and MEA equaling 1:3 monoethylolamide is formed according to this reaction scheme (R is hydrocarbon radical of fatty acid) [5, 6]:

CH-O-C

CH-O-C

>O -R O

R

CH2-O-C;

+ 3H2NCHCHOH

2CH20

O

R

Phosphation of the obtained monoethylolamide with the purpose to increase its hydro-philicity is performed with participation of equimolar amount of ortophosphoric acid. This

3R-C

O

NHCH2CH2OH

CH2-OH + CH-OH

CH2-OH

reaction is carried out in a thermostat at 50-600C during 20-23 hours. The scheme of obtaining phosphate-derivative of monoethylola-mide may be described as follows:

r-

ч

nh-ch2ch2oh

+ h3po4

-ho

o

r-< ii

xnh-ch2ch2-o-p(oh).

This reaction is accompanied with an increase of viscosity and colour darkening.

Then, to the obtained phosphate-derivative, ethanolamine (separately MEA, DEA and TEA) is added at equimolar ratio. Com-

plexation reaction is conducted at 50-60 C in a thermostat during 20 hours. Further increase of viscosity and colour darkening are observed. The scheme of complexation reactions may be written in such a form:

O

R-<^ II ^O O

^NH-CH2CH2O-p-OH + HrN(CH2CH2OH)3 x —»-R-C 11

OH ------x - ^NH-CH2CH2O-p-O" ]NHx(CH2CH20H)3.;

I I

OH H

where x may be 0, 1 or 2.

Table 1. Conditions of the complexation reaction and some physico-chemical indices of ethanolamine complexes of monoethylolamido-phosphate of cotton-seed oil acid fraction

Ethanolamine complex Temperature of synthesis, 0C Duration at of synthesis, hour External appearance Solubility Amine number, mg HCl/g Specific elec-troconductance, Ohm-1m-1

MEA 50-60 20 dark-brown flowing liquid soluble in water, acetone, CCl4, benzene, practically soluble in isooctane and kerosene, practically insoluble in isopropanol 0.23 0.007875

DEA tt " H tt brown-red, moderately flowing liquid H H 0.16 0.005250

TEA n tt H H brown-viscous liquid tt H 0.38 0.005325

Identification of the synthesized com-

1 13

plexes was made using NMR (1H and 13C) and IR spectroscopy methods. In Figure 1 a, spectrum 1H NMR and in Figure 1 b, spectrum 13C NMR of TEA complex are depicted.

In spectrum 1H NMR, there are proton resonance signals of CH3-group at 0.80 ppm, CH2-group at 1.20 ppm, CH2C(O) group at 1.50 ppm, OCH2-group at 1.85-2.30 ppm, NCH2-

group at 2.60-2.80 ppm, double bond at 3.103.60 ppm, C-OH group at 5.25 ppm and P-OH group at 7.60 ppm.

At spectrum NMR 13C (Figure 1b), carbon-atom resonance signals are recorded at 13.5-41.4 ppm for carboxylic acids backbone carbons, 60.0 ppm for OCH2 carbon, 127.0129.0 ppm for CH2-NH and CH2N groups carbons, 174.0 ppm for C(O)N group carbon atom.

--K

ppm

Fig.1a. Spectrum 1H NMR of TEA complex of monoethylolamidophosphate of cotton-seed oil acid fraction.

_>__jlju

■ '—■.....1. .

—1-1—1-1—

200 180 160 140 120

—i—

40

20

100 80

60

ppm

Fig.1A. Spectrum NMR C of TEA complex of monoethylolamidophosphate of cotton-seed oil acid fraction.

In IR spectrum of TEA complex (Figure 2), the following absorbtion bands are observed: OH-valent and N-H valent vibration at 3299 cm-1, C-H of double fond 3011 cm-1, C-H saturated valent -2918 and 2850 cm-1, NC=O valent vibration - 1644 cm-1, N-H deformational -1556 cm-1, C-H deformational - 1465 and 1377 --1 C-N valent - 1215 cm-1, C-O valent in

cm

C-OH fragment - 1057 cm-1, P-O valent -1039 cm-1 and (CH2)X "pendulum" vibrations -719 cm-1.

Surface activity of the synthesized complexes has been studied at the water-kerosene border by stalagmometric method. The results of stalagmometric measurements have been included into Table 2.

As is seen from the obtained results, all three complexes exhibit surface activity at the indicated border. The most active one is MEA complex which decreases the interfacial tension from 46.0 down to 2.1 mN/m (at 5% concentra-

tion). The least active is TEA complex (9.2 mN/m at the same concentration).

The results of laboratory tests of the synthesized complexes on petroleum-collecting and petroleum-dispersing capacities have been presented in Table 3.

These results show that the synthesized complexes manifest high petroleum-collecting and petroleium-dispersing capacities. Thus, for 5% aqueous solution of MEA complex, the duration of the reagent action in fresh water is longer than 13 days, the value of K being 42.6. In the sea water, this solution is a strong dispersant (t>13 days). 5% aqueous solution of DEA complex demonstrates good dispersing properties both in fresh and sea waters (t>13 days). 5% aqueous solution of TEA complex shows a mixed (petroleum-dispersing-collec-ting) capability in fresh water (Kmax=28.6, t>13 days) and purely dispersing properties in the sea water (t~10 days).

Fig.2. IR spectrum of TEA complex of monoethylolamidophosphate of cotton-seed oil acid fraction.

Table 2. Results of stalagmometric studies of surface activity of ethanolamine complexes of monoethylolamidophos-phate of cotton-seed oil acid fraction at the water-kerosene border (210C)_

Reagent Solvent of reagent Concentration of reagent, wt %

0.025 0.050 1.000 3.000 5.000

Surface tension at the water-kerosene border, mN/m

MEA complex Water 4.8 7.1 2.5 4.2 2.1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

DEA complex а и 2.8 7.3 11.4 8.5 3.5

TEA complex и и 7.8 8.5 21.8 12.1 9.2

Table 3. Results of studies of petroleum-collecting and petroleum-dispersing properties of ethanolamine complexes of monoethylolamidophosphate of cotton-seed oil acid fraction; Ramana petroleum_

Distilled water Fresh water Caspian sea water

t, hours K t, hours K t, hours K

5 wt. % aqueous solution of MEA complex

0 3.33-198.00 39.00 Disp. 0-24.5 123.5-320.00 42.6 Disp. 0-320.00 Disp

Pure-state MEA complex

0-3.33 24.5-123.50 199.5-320.0 36.12 37.20 32.60 0-118.00 123.5 Disp. Dag 0-204.00 320.00 Disp Disp

5 wt. % aqueous solution of DEA complex

0-3.33 24.5-320.50 36.20 Disp. 0-118.00 320.00 Disp. Spilled 0-392.00 Disp.

Pure-state DEA complex

0-123.00 128.5-320.50 26.80 Disp. 0-248.00 Disp. 0-123.00 148.00 Disp. Spilled

5 wt. % aqueous solution of TEA complex

0-320.00 Disp. 0-3.33 24.50-48.50 62.45-392.00 28.60 Disp. 8.70 0-392.00 Disp.

Pure-state TEA complex

0-3.33 23.50-264.00 32.60 36.60 0 3.33-320.00 Disp. 22.78 0-234.00 248.00 Disp. Spilled

Thus, it has been established that phosphation of monoethylolamide of cotton-seed oil acid fraction and further complexation of the phosphate with MEA, DEA and TEA enable to obtain ethanolamine complexes which have a high surface activity at the water-kerosene border and possess strong petrocollecting and pet-rodispersing properties that make possible to use them for removing thin oil films from the water surface.

References

1. Rustamov M.I. Abbasov V.M. Mamedova T.A. Piriev N.N. Ekologicheskie problemy Zemli i alternativnye istochniki energii. Baku: Elm, 2008. 717 s.

2. Abbasov V.M. Ekologicheskie problemy Kaspiia, sviazannye s dobychei i transportirovkoi nefti // Protcessy neftehimii i neftepererabotki. 2002. 4(11). S. 6-10.

3. Gumbatov G.G., Dashdiev R.A. Primenenie PAV dlia likvidatcii avariinykh razlivov nefti na vodnoi poverkhnosti. Baku: Elm, 1998. 210 s.

4. Humbatov H.H., Dashdiyev R.A., Asadov Z.H., Askerov F.S., Hasanov A.I. Chemical reagents and petroleum production. Baku: Elm, 2001. 448 p.

5. Zarbaliyeva i.A., Osadov Z.H., Rahimov R.A. Ali alifatik monokarbon tur§ulari va onlarin fraksiyala-rinin etilolamidlarinin tabii triqliseridlardan alinmasi, tadqiqi va tatbiqi // Az. Texn. Un-ti. Elmi asarlar. Fundamental Elmlar. 2015. № 2. S. 211-219.

6. Asadov Z.H., Rahimov R.A., Salamova N.V., Zarbaliyeva I.A., Ahmadova G.A. Green synthesis of surfactants for removing crude oil films off water surface / International Oil Spill Conference Proceedings: May 2014. No 1. P. 299-689.

7. Asadov Z.H., Zarbaliyeva I.A., Rahimov R.A., Salamova N.V., Eyyubova S.K., Ahmadova G.A., Asadova A.Z. Petroleum-collecting and dispersing chemicals for cleaning sea surface from thin petroleum slicks // Bull. Chem. Soc. Ethiop. 2014. V. 28. No 2. P. 205-214.

8. Asadov Z.H., Zarbaliyeva I.A., Ahmadova G.A., Rahimov R.A., Mammadova Kh.A. Obtaining of new surfactants based on acid fraction of tall oil // Processes of petrochemistry and oil refining. 2010. V. 11. No 1(41). P. 147-153.

9. Asadov Z.G., Ragimov R.A., Salamova N.V., Akhmedova G.A., Zarbalieva I.A. Novye nefteso-biraiushchie i dispergiruiushchie reagenty na os-nove etanolaminov, ortofosfornoi kisloty, kuku-ruznogo i olivkovogo masel // "Neftepererabotka, neftehimiia, kataliz" (sb. Tr. INKHP NANA). Baku: Elm, 2010. C. 107-120.

PAMBIQ YAGI TRiQLiSERiDLORi, ETANOLAMiNLOR VO ORTOFOSFAT TUR§USU OSASINDA YENi SOTHi-AKTiV MADDOLORiN SiNTEZi VO XASSOLORi

i.A.Zarb3liyeva

Pambiq yagi triqliseridlarinin monoetanolaminla qar§iliqli tasirindan pambiq yagi tur§u fraksiyasinin monoetilolamidi alinmi§ va ortofosfat tur§usu ila fosfatla§dinlmi§dir. Bu fosfat töramasinin sonradan mono-, di- va trietanolaminla reaksiyalarindan müvafiq etanolamin komplekslari sintez edilmi§dir. Alinmi§ komplekslarin qurulu§u va tarkibi NMR (:H va 13C) va iQ spektroskopiya üsullari ila tasdiqlanmi§dir. Etanolamin komplekslarinin bazi fiziki-kimyavi göstari-cilari tayin edilmi§, stalaqmometrik üsulla onlarin su-kerosin sarhadinda yüksak sathi aktivliya malik oldugu gös-tarilmi§dir. Laboratoriya sinaqlari naticasinda müayyan edilmi§dir ki, bu komplekslar qüvvatli neftyigiciliq va neft -disperslama xassalarina malikdir. Bu onlarin tatbiqi ila su sathindan nazik neft tabaqalarini kanar etmaya imkan verir.

Agar sözbr. pambiq yagi triqliseridlari, etanolaminlar, monoetilolamid, monoetilolamidofosfat, etanolaminofosfat komplekslari, sathi aktivlik, neftyigma, neftdisperslama

СИНТЕЗ И СВОЙСТВА НОВЫХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ НА ОСНОВЕ ТРИГЛИЦЕРИДОВ ХЛОПКОВОГО МАСЛА, ЭТАНОЛАМИНОВ И ОРТОФОСФОРНОЙ КИСЛОТЫ

И.А.Зарбалиева

Взаимодействием триглицеридов хлопкового масла с моноэтаноламином получен моноэтилоламид кислотной фракции хлопкового масла, который далее фосфатирован ортофосфорной кислотой. Реакцией конечного фосфата с моно-, ди- и триэтаноламином синтезированы соответствующие этаноламинные комплексы. Строение и состав полученных комплексов подтверждены методами ЯМР (1H и C) и ИК-спектроскопии. Определены некоторые физико-химические показатели этих комплексов, сталагмометрическим методом показана их высокая поверхностная активность на границе вода-керосин. В результате лабораторных испытаний установлено, что синтезированные комплексы обладают сильными нефтесобирающими и нефтедиспергирующими свойствами. Это позволяет с их помощью удалять тонкие пленки с водной поверхности.

Ключевые слова. триглицериды хлопкового масла, этаноламины, моноэтилоламид, моноэтилоламидофосфат, этаноламинофосфатные комплексы, поверхностная активность, нефтесобирание, нефтедиспергирование

i Надоели баннеры? Вы всегда можете отключить рекламу.