ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL № 1 2023 169
ISSN 0005-2531 (Print)
UDC 543.4
STUDY OF THE COMPLEX FORMATION OF SAMARIUM(III) WITH 3-(2-HYDROXY-3-SULPHO-5-(NITROPHENYLHYDRAZO) PENTANE-2,4-DIONE
IN THE PRESENCE OF SURFACTANTS
S.E.Yarmamedova, F.E.Huseynov, E.J.Eyyubova, Kh.J.Nagiev, F.M.Chyragov
Baku State University
Received 24.04.2022 Accepted 02.06.2022
This article presents the results of a study of the complex formation of samarium(III) with 3-(2-hydroxy-3-sulpho-5-(nitrophenylhydrazo)pentan-2,4-dione (R) in the presence and absence of surfactants: cetylpyridinium chloride (CPCl), cetylpyridinium bromide (CPBr), cetyltrimethylammonium bromide (CTMABr). The ratio of the reacting components in the composition of the same- (1:2) and mixed-ligand (1:2:2) compounds was established. The range of compliance with Beer's law was determined. The specific electrical conductivity of the studied complexes was studied by the method of conducto-metric titration. A technique for the photometric determination of samarium in monazite has been developed. The acidity of the solutions was monitored on an I-130 ion meter with an ESL-43-07 glass electrode. The optical density of the solutions was measured on a LAMBDA-40 spectrophotometer (Perkin Elmer) and a KFK-2MP photocolorimeter in a cuvette with a layer thickness of 1 cm. The specific electrical conductivity of the solutions was measured on a Mettler Toledo conductometer. It was found that in the presence of third components analytical parameters of mixed-ligand complexes. Results of investigation were used for determination of Sm(III) in monacite.
Keywords: Samarium (III), photometric determination, 3-(2-hydroxy-3-sulfo-5-(nitrophenylhydrazo) pen-tane-2,4-dione, cetylpyridinium chloride, cetylpyridinium bromide, cetyltrimethylammonium bromide.
doi.org/10.32737/0005-2531-2023-1-169-175
Introduction
Samarium is of the most important rare-earth elements and in a major interest in different branches of chemistry, as well as coordination chemistry, different instrumental analysis methods, catalysis and etc. Rare-earth elements have various applications in nuclear and non-nuclear industries. This elements are also characterized by high carcirogenity to human body. They can enter into human organism by different ways, i.e. drinking water, air, food and etc. The isotope samarium-151 (151Sm) is a signifi-
153
cant radionuclide. In addition, Sm (1.9 days) has been suggested for treatment of painful metastatic bone disease. So, an effective treatment method for determination of Sm (III) is strongly required.
Solvent extraction techniques are widely used in the spectrophotometric determination of metal ions. However, organic solvents are expensive, toxic, and carcinogenic and cause environmental pollution. It is therefore important to
develop methods that do not use solvent extraction.
One of the most suitable methods for determination of rare-earth elements, in particular Samarium (III), in various analyzed objects, is spectrophotometric analysis, which makes it possible to determine them with the required accuracy using relatively inexpensive and accessible equipment.
The literature data identifies a large number of spectrophotometric reagents that were used for the determination of Sm(III). Many of the methods need extraction after the coloured complex is formed between the reagent and Samarium (III) or heating and cooling for developing the colour.
An analysis of the literature data shows that the use of organic reagents containing -N=N- and C=O functional groups is the basis for the development of suitable methods for the spectrophotometric determination of rare earth elements [1-3]. Previously, the complex for-
mation of Sm(III) with 3-(2-hydroxy-3-sulfo-5-(nitrophenylhydrazo)pentan-2,4-dione was studied [4]. It was found that this reagent is a valuable analytical reagent for the spectrophotomet-ric determination of Sm (III). It is known that the effect of surfactants on binary complexes is used to improve analytical parameters [5].
A highly sensitive method for the determination of Sm(III) in synthetic mixtures was proposed.
This work is devoted to the study of the effect of surfactants, cetylpyridinium chloride (CPCl), cetylpyridinium bromide (CPBr), cetyltrimethylammonium bromide (CTMABr) on the complex formation of samarium (III) with 3-(2-hydroxy-3-sulfo-5-(nitrophenylhydr-azo) pentan-2,4-dione by the spectropho-tometric method and the development of a method for its determination in monazite. The range of compliance with Beer's law was determined. The specific electrical conductivity of the studied complexes was studied by the method of conductometric titration. A technique for the photometric determination of samarium in monazite has been developed.
Experimental part
Various organic reagents containing -N=N- and C=O functional groups were used for the photometric determination of rare earthele-ments [1-7]. There is a known method for the determination of samarium with these reagents in the form of homogeneous and mixed ligand complexes [8-14]. Some works have been published on the photometric determination of rare earth elements in the form of associates with cationic surfactants [11-13].
It has been established that the interaction of cationic surfactants (CS) with acid-chromophoric reagents reduces the degree of protonization of the reagents with salts with a shift to a more acidic medium [15-17].
The reagent used by us, the azo derivative of acetylacetone 3-(2-hydroxy-3-sulfo-5-(nitrophenylhydrazo)pentan-2,4-dione (R), was synthesized according to the procedure [6], and its composition and structure were determined.
During the experiment, MO-1 M aqueous solutions of R, cetylpyridinium chloride and bromide, cetyltrimethylammonium bromide were used. A MO-1 M solution of samarium (III) was prepared by dissolving a sample of Sm(NO3)2-6H2O salt in water according to the procedure [7, 19]. Fixanal HCl (pH 1-2) and ammonium acetate buffer solutions (pH 3-11) were used to create the required pH values. The acidity of the solutions was monitored on an I-130 ion meter with an ESL-43-07 glass electrode. The optical density of the solutions was measured on a LAMBDA-40 spectrophotome-ter (PerkinElmer) and a KFK-2MP photocolor-imeter in a cuvette with a layer thickness of 1 cm.
The specific electrical conductivity of the solutions was measured on a Mettler Toledo conductometer.
Results and discussions
The complex formation of samarium (III) with the reagent was studied by the spectropho-tometric method. The optimal conditions for complex formation were established: the yield of the SmR complex is maximum at pH 3 (^max=426 nm), the reagent has a light absorption maximum at 383 nm. In the presence of cationic surfactants, a three-component compound SmR-CPCl is formed pHopt=2, Àmax=436 nm; SmR-CPBr pHopt=2, Àmax=439 nm; SmR-CTMABr pHopt=2, Àmax=447 nm (Figure).
Figure shows that, in the presence of the third component, a bathochromic shift is observed in mixed-ligand complexes compared to binary complexes.
In the future, to establish the optimal conditions for the complex formation of mixed-ligand complexes, the influence of the concentration of reactants was studied. It was found that the maximum yield of the SmR-CPCl complex is observed at 1.2-10-5 M R, 8-10-5 M CPCl; SmR-CPBr 1.2-10-5 M R, 6.8-10-6 M CPBr; SmR-CTMABr 1.2-10-5 M R.6-10-5 M CTMABr.
Absorption spectra of complexes of R with samarium in the absence and in the presence of CS: 1 - SmR; 2 - SmR-CPCl; 3 - SmR-CPBr; 4 - SmR-CTMABr.
Influence of time and temperature. The
dependences of the formation and stability of complexes in solution on time and temperature have been studied. It has been established that all complexes are formed immediately after mixing the solutions of the components and are stable. Thus, SmR is stable for three hours and when heated to 600C, while mixed-ligand complexes are stable for two days and when heated to 900C.
Composition and stability of complexes. The ratio of the reacting components in
the composition of the formed colored complexes was established by the methods of isomolar series, the relative yield of Starik-Barbanel, and the shift of equilibrium [20]. The results of all methods showed that the ratio of components in the binary complex is 1:2, and in mixed-ligand complexes 1:2:2. Total charge of Samarium is neutralized due to the deprotoniza-tion of ligand. Second reagent in considered to interact with Sm(III) on the basis of one of the main bonds. Considered structure of complex is given below:
CPCI+ SO,
O ^O
-Sm
N O
CH,
O^ CH,
The stability constants of homogeneous-and mixed-ligand complexes of samarium(III) are calculated. To calculate the stability constant of the complex, the curve-crossing method was used [20]. According to calculations lgP(SmR)=7.41 ±0.04; lgP(SmR-SPCl)= 9.47±0.05; lgP (SmR-SPBr)=9.59±0.06; lgP (SmR-CTMABr)= 10.08±0.04. The molar absorption coefficients of the complexes were calculated from the saturation curves [20]. The interval of concentrations where Beer's law is observed is established. The main spectrophotometric characteristics of the complexes are presented in the Table 1.
The specific electrical conductivity of the studied complexes was studied by the method of conductometric titration at pH 3. Table 2 contains information about specific conductivity of the studiec complexes.
As can be seen from the obtained experimental data, the specific electrical conductivity of the mixed-ligand complexes is less than that of the binary one, which confirms the stability of the mixed-ligand complexes.
The effect of foreign ions and masking substances on the complex formation of samar-
ium in the presence and absence of third components has been studied. It has been established that the selectivity of the reaction increases in the presence of third components. A technique for the determination of samarium in monazite has been developed.
Determination of samarium in monazite. 0.1 g of sample in a glassy carbon dish is dissolved in a mixture of 3 ml HF + 1 ml HCl + 3 ml HNO3. The resulting paste is treated with 3-4 ml of HNO3 at 50-600C until HF is completely distilled off. The resulting precipitate is dissolved in water, transferred to a 100 ml flask and diluted with distilled water to the mark. An aliquot of the resulting solution is placed in a 25 ml flask, 2 ml of 1x10-2 M solution R, 0.5 ml of 1*10-3 M CTMABr solution are added, and diluted to the mark with a buffer solution with pH=2. The optical density of the solution is measured at 490 nm in a cuvette with £=1 cm on KFK-2 relative to the solution of the control experiment. Content according to the passport 3.79%, Sm found 3.72+0.03% (n=5; P=0.95).
Table 1. Main characteristics of reactions of samarium (III) complexes
Complex pHopt AX, nm e10-3 Sm:R Interval of obeying Beer's law, mkg/ml
R 3 426 43 5.62±0.02 1:2 1.20-6.00
R-CPCl 2 436 54 9.84±0.04 1:2:2 0.30-12.00
R-CPBr 2 439 57 10.54±0.05 1:2:2 0.30-12.00
R-CTMABr 2 447 65 13.44±0.02 1:2:2 0.30-12.00
Table 2. Specific electrical conductivity (mxiQ 3 Ohm-1cm-1) of homogeneous and mixed ligand complexes of samari-
um (III)
Complex VR, ml
1 2 3 4 5 6 7 8 9 10
Sm-R 1.00 0.98 0.94 0.90 0.86 0.82 0.80 0.79 0.78 0.78
SmR-CPCl 1.00 0.95 0.89 0.86 0.81 0.78 0.76 0.74 0.73 0.73
SmR-CPBr 1.00 0.93 0.86 0.84 0.79 0.76 0.75 0.73 0.72 0.72
SmR-CPMABr 1.00 0.89 0.82 0.78 0.75 0.73 0.71 0.69 0.67 0.67
Table 3. Permissible ratios of foreign substances to samarium (III) when determined in homogeneous (Sm-R) and mixed-ligand complexes (error 5%)_
Ion or compound SmR SmR-CPCl SmR-CPBr SmR-CTMABr p-acetylchloro-phosphonase-CPCl [22]
Na(I) Doesnt interfere Doesnt interfere Doesnt interfere Doesnt interfere
K(I) Doesnt interfere Doesnt interfere Doesnt interfere Doesnt interfere 600
Mg(II) 81 224 219 238 100
Ca(II) 127 339 342 354 5
Ba(II) 93 196 183 190 6
Zn(II) 203 532 548 551 100
Cd(II) 330 540 536 548 120
Mn(II) 51 446 429 440 500
Ni(II) 180 466 471 479 1000
Co(II) 181 308 299 304 100
Cu(II) 202 445 431 438 100
Al(III) 36 240 253 269 100
Zr(IV) 43 140 134 142 1
Th(IV) 20 33 46 51
V(V) 56 97 89 93 150
Mo(VI) 77 266 259 270
W(VI) 73 444 438 446
CrO42- 38 215 219 227
ЭAТА 35 72 87 91 74
Thiourea 235 598 591 603
Lemon acid 58 163 160 176
Na2HPO4- 12H2O 24 75 79 82
F- 55 98 92 96
Conclusion
The complex formation of samarium (III) with 3-(2-hydroxy-3-sulfo-5-(nitrophenylhydr-azo) pentane-2.4-dione (R) in the presence and absence of surfactants: cetylpyridinium chloride (CPCl), cetylpyridinium bromide (CPBr), cetyltrimethylammonium bromide (CTMABr) was studied by spectrophotometric method. It has been established that in the presence of the third component, the optimal conditions for complex formation are shifted to an acidic environment, and a bathochromic shift is observed in the Àmax value of the mixed-ligand complexes compared to the binary complex. The effects of temperature and time are studied. By using of various physicochemical analysis methods the composition and stability of the complexes were established The effect of foreign ions and masking agents on complex formation in the
presence and absence of third components has been studied. The developed technique was applied to determine samarium ions in monazite.
References
1. Savvin S.B. Organicheskie reagenty gruppy arse-nazo III. M.: Atomizdat, 1971. 352 s.
2. Alieva R.A., Gasanov P.G., Azimova S.I., Mahmudov K.T. Kompleksoobrazovanie azo-zameshchennyh pentan-2,4-diona s neodimom (III). Azerb. chem. Jumal. 2009. № 1. C. 37-42.
3. Alieva R.A., Pashaev F.G., Gasanov A.G., Mahmudov K.T. Kvantovo-himicheskie raschety tautomernyh form azoproizvodnyh acetilacetona i opredelenie konstant ustojchivosti ih kompleksov s RZE. Koordinacionnaya himiya. 2009. T. 35. № 4. C. 241-246.
4. Wei H., Wang W., Liang T. Spectrophotometry determination of Lanthanium in molecular sieves with use p-acetylarsenazo, Chin. J. Spectrosc. Lab., 2002. V. 19. No 19. P. 434-436.
5. Ukrovcik J., Lesky J. Extraction spectrophotometry determination of Samarium with Chloro-phosphonazo III, Acta Technica Jaurinensis. 2014. V. 7. No 1. P. 62-70.
6. Jia Y., Li Q., Wang F. Studying of determination of rare earth elements by photometric method with application of 3-bromarsenazo, Geol. And Resour. 2005. V. 14. No 2. P. 151-153.
7. Granovskaya P.B., Ahmedli M.K. Odno- i dvuhligandnye soedineniya redkozemel'nyh elementov cerievoj podgruppy s hromazurolom S. ZHurnal Analiticheskoj Himii. 1982. T. 37. № 3. C. 405-412.
8. Gadzhieva S.R., Gusejnov F.E., CHyragov F.M. Spektrofotometricheskoe issledovanie komplekso-obrazovaniya samariya(III) s 2-(2-gidroksi-3-sul'fo-5 -nitrofenilazo) naftalin-1,8-digidroksi-3,6-disul'fonatom natriya v prisutstvii bromida cetiltrimetilammoniya, ZHurnal Analiticheskoj Himii. 2005. T. 60. № 9. C. 924-926.
9. Alaa S., Amin Ibrahim S.A. Complexation and spectrophotometric study of Samarium (III) using pyrimide azoderivatives in the presence of cetyltrimetylammonium bromide, Analytical Letters. 2010. V. 43. No 16. P. 2598-2608.
10. Elgendy Kh., El-didamony Ha., Abdel-wahab M.K. Analytical applications using spectro-photometric technique for the determination of uranium (VI), samarium and cerium (III) by new organic reagent, J. Iran Chem. Soc. 2020. V. 17. P. 1317-1327.
11. Soylak M., Turkoglu O. Spectrophotometric determination of samarium with chrome azurol S in the presence of cetylpyridinium chloride, Talanta. 2000. V. 53. No 1. P. 125-129.
12. Xinzhen D., Jinzhang G., Qun X., Jinwan K. Simultaneous determination of samarium, europium and terbium with quinaldic acid and phenanthro-line by synchronous derivative fluorimetry, Talan-ta. 1994. V. 41. No 2. P. 201-204.
13. Alieva R.A., Gasanov A.G., Azimova S.I., Mahmudov K.T., CHyragov F.M. Spektrofotomet-
richeskoe issledovanie kompleksoobrazovania samariya(III) s azoproizvodnymi pentan-2,4-diona. Azerb. chem. Jurn. 2009. № 2. C. 20-24
14. Pilipenko A.T., Tananajko M.M. Raznoligandnye i raznometallnye komp-leksy i ih primenenie v analiticheskoj himii. M.: Himiya. 1983. 221 s.
15. Wang N. Direct spectrophotomeric determination of Nd in ixed rare earths with semi-xylenolorange and cetylpiridinium chloride, Talanta. 1991. V. 38. No 7. P. 711-714.
16. Gadzhieva S.R., Gusejnov F.E., CHyragov F.M. Izuchenie cvetnoj reakcii erbiya (III) s 2-(2,3-dimetil-4-fenilazopirozolon)naftalin-1,8-digidroksi-3,6-disul'fonatom natriya i hloridom cetilpiridiniya, ZHurnal analiticheskoj himii, 2006. T. 61. № 12. C. 1264-1267.
17. Mamedova A.M., Ivanov V.M., Ahmedov S.A. Vzaimodejstvie vol'frama(VI) i vanadiya(V) s pi-rogallolovym krasnym i brompirogallolovym krasnym v prisutstvii poverhnostno-aktivnyh veshchestv, Vestnik Moskovskogo Universiteta. Himiya. 2004. T. 45. № 2. C. 117-123.
18. Mahmudov K.T. Issledovanie i analiticheskoe primenenie kompleksov medi(II) c azoproizvod-nymi p-diketonov: Dis. ... kand. him. nauk. Baku. 2006. 215 s.
19. Korostelev P.P. Prigotovlenie rastvorov dlya himiko-analiticheskih rabot. M.: Metallurgiya, 1964, 386 s.
20. Bulatov M.I., Kalinkin I.P. Prakticheskoe ruko-vodstvo po fotometricheskim i spektrofo-tometricheskim metodam analiza. L.: Himiya. 1986. 432 s.
21. Hudyakova T.A., Kreshkov A.P. Teoriya i praktika konduktometricheskogo i hronokon-duktometricheskogo analiza. M.: Himiya. 1976. 304 s.
22. Hsu C., Li H., Pan J. Spectrophotometric determination of cerium subgroup rare earths in nickelbase alloys in the presence of yttrium with p-acetylchlorophosphonazo and mixed surfactants, Talanta. 1994. V. 41. No 8. P. 1357-1361.
SAMARiUM(III)-UN 3-(2-HiDROKSi-3-SULFO-5-(NiTROFENiLHiDRAZO)PENTAN-2.4-DiON iLO KOMPLEKS OMOLO GOLMOSiNiN SOTHi AKTiV MADDOLORiN i§TiRAKINDA TODQiQi
S.E.Yarmammadova, F.E.Huseynov, E.C.Eyyubova, X.C.Nagiyev, F.M.^iraqov
Bu maqalada samarium(III)-un 3-(2-hidroksi-3-sulfo-5-(nitrofenilhidrazo)pentan-2,4-dion (R) ila kompleks amala galmasinin sathi aktiv maddalar, setilpiridinium xlorid (SPCl), setilpiridinium bromid (SPBr), setiltrimetilammonium bromidin (STMABr) i§tiraki va yoxlugunda tadqiqinin naticalari taqdim olunur. Eyni (1:2) va qan§iq liqand (1:2:2) birla§malarinin tarkibinda reaksiya komponentlarin nisbati tayin edilmi§dir. Ber qanununa uygunluq diapazonu muayyan edilmi§dir.Tadqiq olunan komplekslarin xususi elektrik kegiriciliyi konduktometrik titrlama usulu ila tadqiq edilmi§dir.Monasitda samariumun fotometrik tayini ugun metodika i§lanib hazirkanmi§dir. Mahlullann tur§uluguna ESL-43-07 §u§a elektrodu ila I-130 ion saygacinda nazarat edildi. Mahlullarin optik sixligi LAMBDA-40 spektrofotometrinda (PerkinElmer) va KFK-2MP fotokolorimetrinda tabaqa qalinligi 1 sm olan kyuvetda olguldu. Mahlullarin xususi elektrik kegiriciliyi Mettler Toledo konduktorunda olguldu. Malum olmu§dur ki, uguncu
komponentin içtirakinda qançiqliqandli kompleksin analitik göstaricilari artir. Alinmiç naticalar Sm(III)-ün monasitta tayini ûçûn istifada edilmiçdir.
Açar sözlzr: samarium(HI), fotometrik tayin, 3-(2-hidroksi-3-sulfo-5-(nitrofenilhidrazo)pentan-2,4-dion, setilpiridinium xlorid, setilpiridinium bromid, setiltrimetilammonium bromid.
ИЗУЧЕНИЕ КОМПЛЕКСООБРАЗОВАНИЯ САМАРИЯ(ПГ) С 3-(2-ГИДРОКСИ-3-СУЛЬФО-5-(НИТРОФЕНИЛГИДРАЗО) ПЕНТАН-2,4-ДИОНОМ В ПРИСУТСТВИИ ПОВЕРХНОСТНО-
АКТИВНЫХ ВЕЩЕСТВ
С.Е.Ярмамедова, Ф.Э.Гусейнов, Э.Дж.Эюбова, Х.Дж.Нагиев, Ф.М.Чырагов
В данной статье представлены результаты исследования комплексообразования самария(Ш) с 3-(2-гидрокси-3-сульфо-5-(нитрофенилгидразо) пентан-2,4-дионом (R) в присутствии и отсутствии поверхностно-активных веществ: хлорида цетилпиридиния (ЦПХ), бромида цетилпиридиния (ЦПБ), бромида цетилтриметиламмония (ЦТМАБ). Установлено соотношение реагирующих компонентов в составе однородно - (1:2) и смешанолигандного (1:2:2) соединений. Определен интервал подчинения закону Бера. Методом кондуктометрического титрования изучены удельные электропроводности исследованных комплексов. Разработана методика фотометрического определения самария в монаците. Кислотность растворов контролировали на иономере И-130 со стеклянным электродом ЭСЛ-43-07. Оптическую плотность растворов измеряли на спектрофотометре LAMBDA-40 (Perkin Elmer) и фотоколориметре КФК-2МП в кювете с толщиной слоя 1 см. Удельную электропроводность растворов измеряли на кондуктометре Mettler Toledo. Было установлено, что в присутствии третьих компонентов наблюдается увеличение аналитичееких параметров смешанно-лигандных комплексов. Полученные данные были использованы для определения ионов еамария(Ш) в монаците.
Ключевые слова: caMapuü(III), фотометрическое определение, 3-(2-гидрокси-3-сульфо-5-(нитрофенилгидразо)-пентан-2,4-дион, хлорида цетилпиридиний, бромида цетилпиридиний, бромида цетилтриметиламмоний.