ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL № 4 2022 ISSN 0005-2531 (Print)
UDC 548 82, 546 824 547 65
STUDY OF COMPLEXATION OF TITANIUM(IV) WITH 4-(2',3',4'-TRIHYDROXYPHENYL)-2-NITRO-1-SULFOAZOBENZENE IN THE PRESENCE OF SURFACTANTS
1 2 2 2 2 A.J.Ragimova1, V.I.Mardanova2, Kh.D.Nagiev2, A.M.Maharramov2, F.M.Chiragov2
1Gazakh Branch of Baku State University 2Baku State University
Received 14.04.2022 Accepted 25.05.2022
The interaction of Ti(IV) with 4-(2',3',4'-trihydroxyphenyl)-2-nitro-1-sulfoazobenzene (H3L) in the presence and in the absence of cationic surfactants (CAS) (cetylpyridinium chtoride (CPCl), cetylpyridinium bromide (CPBr), cetyltrimethylammonium bromide (CTMABr)) was studied. The intervai of concentration obeying Beer's law is established. In the complex formation of titanium(IV), the dependence A = f(C) is expressed by linear equations. The effect of time and temperature has been studied. The stability constants of binary and mixed-ligand titanium(IV) complexes were cakulated. The ratio of the reacting components in the binary complex is 1:2, and in the mixed ligand 1:2:2. The effect of foreign ions and masking substances on the complex formation of titanium(IV) with reagents has been studied. Alkaline, alkaHne earth and some transitional elements practically do not interfere to the determination. A technique has been developed for the spectrophotometric determination of titanium(IV) in aluminum-based standard samples.
Keywords: titanium(IV), azo compounds, cationic surfactants, cetylpyridinium chloride, cetylpyridinium bromide, cetyltrimethylammonium bromide.
doi.org/10.32737/0005-2531-2022-4-15-20 Introduction
Organic reagents containing donor oxygen, nitrogen, and sulfur atoms are widely used to determine titanium. It is known, that for the determination of titanium in natural and industrial objects, the spectrophotometric method is considered the simplest and most express method [1-7]. Pyrogallol red, phenylfluorone, its analogues and xanthene dyes, which form the most stable chelates with titanium, are often used among such reagents [1-7]. Recently, azoderi-vatives of pyrogallol have also attracted some interest [8, 9]. It is known that under conditions of formation of associates of cationic surfactants (SAS) with acidic chromophore reagents, the degree of protonization of the reagents decreases. The interaction of such reagents with metals is observed with a shift to a more acidic media [10].
In the present work, the complex formation of titanium(IV) with 4-(2',3',4'-trihydr-oxyphenyl)-2-nitro-1-sulfoazobenzene (R) in the presence and in the absence of surfactants (CPCl,
CPBr, CTMABr) was studied by spectropho-tometric method.
Materials and methods
Equipment. The pH of the solutions was measured with a PHS-250 ionometer with a glass electrode. The optical density of solutions was measured using a KFK-2 photocolorimeter (l=1 cm). Absorption spectra were recorded with a Lambda 40 spectrophotometer (Perkin Elmer).
Solutions and reagents. The reagent was synthesized according to the method [11]. Its composition and structure were determined by elemental analysis and IR spectroscopy. We used
3
M0"J M aqueous solutions of H3L and a solution of cetylpyridinium bromide (CPBr) (1*10-2M), cetylpyridinium chloride (CPCl) (1*10-2M), and
cetyltrimethylammonium bromide (CTMABr)
-2
(1x10"2M) is prepared by dissolving 0.3845 g of CPBr, 0.3395 g of CPCl and 0.3645885 g of CPMABr in a water-ethanol mixture [3:1]. The standard solution of Ti(IV) was prepared by dissolving titanium metal according to the procedure [12]. Acetate-ammonia buffer solutions
(pH 3-11) and fixanal HCl (pH 0-2) were used to create the required acidity. All reagents used were pure.
Results and discussion
It has been established that an aqueous solution of H3L at pH 4.5 has an absorption band with a maximum of X=445 nm. The study of the complex formation dependence on pH (Table 1) showed that the maximum yield of the Ti(OH)2(H2L)2 complex is observed at pH=3.5
and Xmax=445nm. The reagent has a band absorption maximum at 383 nm.
In the presence of surfactants, three-component compounds are formed: Ti(OH)2-(H2L)2-(CPCl)2, Ti(OH)2-(H2L)2(CPBr)2, Ti(OH)2-(H2L)2(CTMABr)2. The light absorption maximum of mixed-ligand Ti(IV) complexes is shifted bath-ochromically with respect to the absorption maximum of the binary complex and are at Xmax=457 nm, 461 nm and 468 nm, respectively. The optimal pH of complexation shifts to the acidic region: pH= 3.5 and pH= 3.0 respectively.
A
1,4 -
1,2 -
300
350
400
450
500
550
600
650
A
Fig.1. Absorption spectra of solutions of Ti(IV) complexes: 1 - H3L, 2 - HjL-CPCL 3 - HjL-CPBr, 4 - H3L-CTMABr.
7 p
Fig.2. Absorption spectra of the reagent solution and its Ti(IV) complexes in the presence and absence of CPCl, CPBr, and CTMABr at the optimal pH of the corresponding systems: 1 - H3L, 2 - H3L-CPCl , 3 - H3L-CPBr , 4 - H3L-CTMABr .
The influence of the concentration of surfactants and reagents on complexation was studied. The maximum yield of Ti(OH)2-H2L complexes at optimal pH is 8-10-5 M H3L, Ti(OH)2-(H2L)2(CPCl)2 8^0-5M H2L and 4-10-5M CPCl; Ti(OH)2-(H2L)2(CPBr)2 8^0-5M H2L and 4.2 10-5M CPBr; Ti(OH)2-(H2L)2(CTMABr)2 8^0-5M H2L and 4^0-5M CTMABr, respectively.
So if the binary complex is stable for 2 hours and when heated to 500C, then the mixed ligand complex is stable for more than a day and when heated to 800C. The ratio of the components in the complexes was established by the methods of isomolar series of the relative yield of Starik-Barbanel, equilibrium shift and is 1:2 (Ti(OH)2(H2L)2), 1:2:2 (Ti(OH)2-(H2L)2-(CPCl)2, Ti(OH)2-(H2L)2(CPBr)2, Ti(OH)2-(H2L)2(CTMABr)2) [13]. The reactive form of the reagent under the conditions of Ti(IV) complex formation in the presence and in the absence of surfactants is H2L. The Astakhov method was used to determine the number of protons displaced during complex formation, and the ratio of components in the complexes was confirmed [14]. On the base of these data and the hydrolysis constants [15] Ti(IV) pK(h)1= 0.15, pK(h)2=0.027, pK(h)3=0.62, pK(h)4=0.96 (^=0.1) we can write the following scheme of complexation:
Ti(OH)4+2H3L~Ti(OH)2(H2L)2+2H2O Ti(OH)2(H2L)2+2KnAB~Ti(OH)2(H2L)2(KnAB)2
To establish the interval subordination to Beer's law, a series of solutions were prepared, containing 0.09-3.1 ^g/ml titanium(IV) for homogeneous ligand and 0.09-1.34 p,g/ml tita-nium(IV) for mixed ligand as described above, measured their absorption at Xopt=490nm relative to the solution of the control experiment.
Molar absorption coefficients were calculated from the saturation curves (Table 1).
The effect of foreign ions on the complex formation of titanium(IV) with H3L in the absence and presence of third components was studied. Alkali metals and Ca(II), Ba(II), Mn(II), Cr(III) ions do not interfere on the determination of titanium(IV). It has been established that in the presence of surfactants, the selectivity of the reaction is much higher and increases in comparison with other reagents (Table 2) [3,16-18].
The developed procedure for the determination of titanium(IV) in the form of a mixed-ligand complex Ti(OH)2(HL)2(CPMABr)2 was applied for its determination in aluminum-based standard samples M 207-4 and M 207-5.
Analysis progress. A weighed sample of the alloy 0.5 g is dissolved by heating in 25 ml of nitric acid (1:1) and evaporated to wet salts. The residue is dissolved by heating in distilled water, and the insoluble part is separated by filtration. Transfer the filtrate to a 100 ml volumetric flask, diluted till the mark and mix well. An aliquot of the solution is placed in a flask with a capacity of 25 ml, 2.0 ml of a 1.0-10-3 M solution of the reagent and 1.0 ml of a 1.0-10-3 M solution of CTMABr are poured and brought to the mark with an acetate-ammonia buffer solution with pH 3.0. The optical density of the solution is measured on a KFK-2 photoelectric colorimeter at X=490 nm against the background of a control experiment (H3L+ CPMABr) in a cuvette with a thickness of the light-absorbing layer l=1.0 cm. The titanium content is found according to a pre-built calibration graph. The results of the determination of titanium in aluminum-based standard samples are given in Table 3.
Table 1. Spectrophotometry characteristics of titanium(IV) complexes
Reagent pH W nm Ratio Ti(IV), reagent SMax-10-4M Obedience to Beer's law, mcg/ml
H3L 4.5 445 1:2 1.50±0.04 0.10-3.10
H3L-CPQ 3.5 457 1:2:2 2.05±0.03 0.10-2.0
H3L-CPBr 3.5 461 1:2:2 2.18±0.04 0.10-2.0
H3L-CTMABr 3.0 468 1:2:2 2.42±0.01 0.10-1.34
3,4-Dihydroxybenzaldehydeisonico-tinoyl-hydrazone(3,4- DHBINH) [3] 3.5 370 1:2 1.489 0.5-4.25
* interferes
Table 3. The results of the determination of titanium in aluminum-based standard samples (n=5, P=0.95)
Table 2. Permissible ratios of foreign ions to titanium(IV) when it is determined in the form of homogeneous and
mixed ligand complexes (CTi=2T0-5, error 5%)
Foreign ions and masking agents H3L H3L-CPCl H3L-CPBr H3L-CTMABr 2,7-dichlorochromotropic acid [18]
Na 6000 6000 6000 6000
K 10000 1000 1000 1000
Mg(II) 170 200 200 120
Ca(II) 700 520 700 760 500
Ba(II) 700 870 920 1100 350
Zn(II) 910 1000 1000 1020 800
Cd(II) 120 180 180 193
Mn(II) 500 610 640 640 300
Ni(II) 700 810 800 820 515
Co(II) 450 520 530 575
Al(II) 50 750 800 800 140
Cr(III) 1320 1220 1340 1340 316
Mo(VI) 0.8 1,0 1,2 1,2 0.1
W(VI) 1 1,5 1,2 1,5 0.1
Pb(IV) 150 180 185 185 360
Bi(III) 180 205 200 210
Cu(II) 708 712 710 710 -
V(V) 10 14 18 18 01
EDTA 17 24 25 25
urea 420 475 480 480
thiourea 1800 1950 1950 1950
lemon acid 33 47 50 50
wine acid 40 57 57 60
Sample mark Certified content of elements, % Found Ti, % Sr
M 207-4 4.3 Si, 0.78 Zn, 0.72 Mn, 2.14 Cu, 0.24 Mg, 0.19 Ti, 1.00 Fe, 0.4 Ni, 0.20 Pb, 0.01 As, 0.0003 Be, 90.0197 Al 0.185 0.024
M 207-5 3.2 Si, 0.6 Zn, 0.82 Mn, 2.0 Cu, 0.16 Mg, 0.32 Ti, 1.33 Fe, 0.61 Ni, 0.18 Pb, 0.011 As, 0.0002 Be, 90.7688 Al 0.324 0.016
Conclusion
To determine titanium by spectrophoto-metric method, the azoderivative of piroqallol was used in the presence of third components (cetylpyridinium chloride (CPCl), cetylpyridi-nium bromide (CPBr), cetyltrimethylammo-nium bromide (CTMABr)).
The complex compounds of titanium with a reagent in the presence of third components were studied spectrophotometrically, the optimal conditions for complex formation and characteristics of the complexes (pHopt, molar absorption coefficients, composition of complexes, interval of obedience to Beer's law, stability constant) were determined. It was determined that in the presence of the third component, some
analytical reaction parameters-sensivity and selectivity increase.
The effect of foreign ions and masking substances on complexation reactions was studied. It was found that sistems in the presence of third components by high selectivity. These methods are highly sensitive and selective. It is a very rapid and a simple technique A technique has been developed for the spectrophotometric determination of titanium(IV) in aluminum-based standard samples.
References
1. Alieva R.A., Nazarova R.Z., Chiragov F.M. Photometric determination of titanium with 2,3,4-trihy-droxy-4'-fluoroazobenzene. Factory laboratory. Diagnostics of materials. 2009. V. 75. No 3. P. 20-23.
2. Xianfeng Du, Youlong Xu, Li Qin, Xiangfei Lu. Simple and Rapid Spectrophotometric determination of titanium on etched aluminum foils. American J. Analytical Chemistry 2014. V. 3. No 5. P. 149-156.
3. Mitsuru H., Shinichiro K., Shota M., Mamiko A., Takako Y., Yoshikazu F. Spectrophotometric determination of titanium with o-carboxyphenyl-fluorone in cationic micellar media, and its equilibrium and kinetic studies. Talanta. 2011. V. 85. P. 2339-2343.
4. Lakshmi N.S., Young K.S., Sung O.B. Spectrophotometric Determination of Titanium(IV) by Using 3,4-Dihydroxybenzaldehydeisonicotinoyl-hydra-zone(3,4-DHBINH) as a Chromogenic Agent. Chemical Science Transactions. 2012. V. 1. No 1. P. 171-179.
5. Rabin K.M., Tarafder P.K. Extractive Spectropho-tometric Determination of Titanium in Silicate Rocks, Soils and Columbite-Tantalite Minerals. Microchimica Acta. 2004. V. 148. No 3. P. 327-333.
6. Zavvar Mousavi H., Pourreza N. Catalytic Spec-trophotometric Determination of Titanium(IV) Using Methylene Blue-Ascorbic Acid Redox Reaction. J. Chinese Chemical Society. 2008. V. 55. No 4. P. 750-754.
7. Mastoi G.M., Khuhawar M.Y., Kulsoom A., Moina A., Saba N., Humaira K., Arfana M., Zuhra M. Development of new spectrophotometric determination of titanium in homeopathic pharmacy using Ponceau S as a reagent. J. Pharm. Pharmacol. 2011. V. 5. No 8. P. 1179-1181.
8. Ragimova A.J., Mardanova V.I., Mugalova G.R., Magerramov A.M., Nagiyev Kh.D., Chiragov F.M. 3,4-tetrahydroxy-3'-nitro-5'-sulfoazobenzene cationic surfactants. J. Analytical Chemistry. 2021. V. 76. No 6. P. 538-542
9. Ragimova A.J., Mardanova V.I., Magerramov A.M., Nagiyev Kh.D., Chiragov F.M. A new spectropho-tometric technique for the determination of titani-um(IV) in natural objects. Bulletin of ASTU. 2021. V.71. No 1. P. 44-51
10. Alieva R.A., Nazarova R.Z., Chiragov F.M. Com-plexation of titanium (IV) with a new reagent 2,3,4-trihydroxy-3'-nitro-4'-sulfoazobenzene. J. Analytical Chemistry. 2009. V. 6. No 1. P.29-32.
11. Gadzhieva S.R., Makhmudov K.T., Chiragov F.M. Study of the interaction in the system copper(II)-3-(2-hydroxy-3-sulfo-5-nitrophenylazo)pentadi-one-2,4-cationic surfactants. Zh. Analytical Chemistry 2006. V. 61. No 7. P. 690-693.
12. Borodkin V.F. Chemistry of dyes. M.: Chemistry, 1981. 248 p.
13. Korostelev P.P. Preparation of solutions for chemical-analytical work. M.: Nauka, 1964. 261 p.
14. Bulatov M.I., Kalinkin I.P. A practical guide to photometric and spectrophotometric method of analysis. L.: Chemistry, 1972. P. 407.
15. Nazarenko V.A., Antonovich V.P., Nevskaya E.M. Hydrolysis of metal ions in dilute solutions. M. Atomizdat, 1979. 192 p.
16. Upor E., Mohai M., Novak D. Photometric methods for the determination of traces of inorganic compounds. M.: Mir, 1985. 359 p.
17. Madhavi D., Saritha B., Giri A. and Sreenivasulu Reddy T. Direct spectrophotometric determination of titanium(IV) with 5-bromo-2hydroxy-3-meth-oxybenzaldehyde-p-hydroxybenzoic hydrazone. J. Chemical and Pharmaceutical Research. 2008. V. 6. No 6. P. 1145-1150.
18. Tananaiko M.M., Gorenshtein L.N., Karevina V.V. New spectrophotometric technique for the determination of titanium(IV) in natural objects. Ukr. Chem. Journ. 1987. V. 53. No 4. P.387.
TiTANIN(IV) 4-(2',3',4'-TRifflDROKSiFENiL)-2-NiTRO-1-SULFOAZOBENZOLLA SOTHi AKTiV MADDOLOR i§TiRAKINDA KOMPLEKSOMOLOGOTiRMOSiNiN ÖYRONiLMOSi
A.C.Rahimova, V.LMardanova, X.C.Nagiyev, A-M.Maharramov, F.M.^iraqov
Ti (IV) nin 4-(2',3',4'-trihidroksifenil)-2-nitro-1-sulfoazobenzen (H3L) ila kation sathi aktiv maddalarin (CPAS) (setilpiridin xlorid (CPCl), setilpiridin bromid) alaqasi (CPBr), setiltri-metilammomum bromid (CTMABr) i§tiraki va iijtiraki olmadan qar§iliqli tasiri öyranilmiijdir. Ber qanununa tabegilik intervali tayin edilmi§dir. Titanin(IV) komplekamalagalmasinda A=f(C) asililiginda xatti tanliklari gixarilmi§dir. Titanin (IV) kompleksa tam baglanmasi ügün reagentin iki qat artiq olmasi talab olunur. Kompleksamalagalmaya zamanin va temperaturun tasiri öyranilmiijdir. Titanin(IV) binar va müxtalifliqandli komplekslarinin davamliliq sabitlari hesablani§dir. Binar kompleksin kom-ponentlari nisbati 1:2, müxtalifliqandli komplekslarda isa 1:2:2 kimidir. Titanin(IV) bu reagentlarla kompleks-amalagatirmasina kanar ionlarin va pardalayici maddalarin tasiri öyranilmiijdir. Tayinata qalavi, qalavi torpaq metallari va bir gox kegid elementlari mane olmur. Buna göra da bu metodikalar titani müxtalif nümunalarda tayin etmaya imkan verir. i§lanmi§ metodika alüminium asasli arintida titanin (IV) tayinina tatbiq edilmi§dir.
Agar sözlzr: titan (IV), azobirbgmabr, kation sathi aktiv maddabr, setilpiridin xlorid, setilpiridin bromid, setil-trimetilammonium bromid.
ИЗУЧЕНИЕ КОМПЛЕКСООБРАЗОВАНИЯ ТИТАНА(1У) С 4-(2,3,4-ТРИГИДРОКСИФЕНИЛ)-2-НИТРО-1-СУЛЬФОАЗОБЕНЗОЛОМ В ПРИСУТСТВИИ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ
А.Дж.Рагимова, В.И.Марданова, Х.Д.Нагиев, А.М.Магеррамов, Ф.М.Чырагов
Спектрофотометрическим методом изучено взаимодействие ТЩУ) с 4-(2 ,3 ,4 -тригидроксифенил)-2-нитро-1-сульфоазобензолом (HзL) в присутствии и в отсутствии катионных поверхностно активных веществ (КПАВ) (цетилпиридинийхлорид (ЦПС1), цетилпиридинийбромид (ЦПВг), цетилтриметиламмонийбромид (ЦТМАВг)). Установлен интервал концентрации, подчиняющихся закону Бера. При комплексообразовании титана(1У) зависимость А = Д(С) выражается линейными уравнениями Исследовано влияние времени и температуры. Рассчитаны константы устойчивости бинарных и смешаннолигандных комплексов титана(1У). Соотношение реагирующих компонентов в бинарном комплексе 1:2, а в разнолигандном 1:2:2. Исследовано влияние посторонних ионов и маскирующих веществ на комплексообразование титана(1У) с реагентами. Определению практически не мешают щелочные, щелочно-земельные и некоторые переходные элементы. Разработана методика спектрофотометрическим определения титана(1У) в стандартных образцах на алюминиевой основе.
Ключевые слова: титан(1У), азосоединеня, катионных поверхностно активных веществ, цетилпиридинийхлорид, цетилпиридинийбромид, цетилтриметиламмонийбромид