Научная статья на тему 'Risk of social exclusion and social security of the Elderlyage persons in Russian regions'

Risk of social exclusion and social security of the Elderlyage persons in Russian regions Текст научной статьи по специальности «Социологические науки»

CC BY
104
18
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Society and Security Insights
ВАК
Ключевые слова
СОЦИАЛЬНЫЙ РИСК / SOCIAL RISK / БЕЗОПАСНОСТЬ / SECURITY / СОЦИАЛЬНАЯ ЭКСКЛЮЗИЯ / SOCIAL EXCLUSION / НАСЕЛЕНИЕ СТАРШИХ ВОЗРАСТНЫХ ГРУПП / МОДЕЛЬ СОЦИАЛЬНОЙ ЭКСКЛЮЗИИ / СОСТО-ЯНИЕ И СИТУАЦИЯ ИСКЛЮЧЕННОСТИ / ИНДЕКСЫ СОЦИАЛЬНОЙ ЭКСКЛЮЗИИ / PEOPLE OF ELDERLY AGE GROUPS / MODEL OF SOCIAL EXCLUSION / CONDITION AND SITUATION OF EXCEPTION / INDEXES OF SOCIAL EXCLUSION

Аннотация научной статьи по социологическим наукам, автор научной работы — Maximova S.G., Noyanzina O.E., Omelchenko D.A.

An article presents results of the construction and approbation of a theoretical model of evaluation of risk social exclusion of population in the context of social se-curity of elderly age groups in Siberian regions. It bases on the results of sociological research (2016) in three Russian regions: Altai region, Trans-Baikal region and Ke-merovo oblast (n =779 age of respondents from 55 (women) and 60 (men) years and older). In theory, the model lays on the following: in is determined by economic (ma-terial) deprivation, deprivation of social rights (access to social institutes and servic-es) and deprivation of security (safe environment), deprivationof social participation, cultural (normative) disintegration and social autism; the above named components are specific for the group of elderly people, that is a priori a high risk of exclusion; risk of social exclusion, as a condition and situation of exclusion can be estimated straightly through the manifestation of its dimensions; the model has a one-way cau-sality, i.e. the manifestation of one of its dimensions can lead to the high manifesta-tion of the social exclusion. Basing on dimensions, operationalized in questionnaire, we calculated as an index of components of the social exclusion, as the total social exclusion index for elderly people including its regional correlations.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

РИСК СОЦИАЛЬНОЙ ЭКСКЛЮЗИИ И СОЦИАЛЬНАЯ БЕЗОПАСНОСТЬ ЛИЦ ПОЖИЛОГО ВОЗРАСТА В РЕГИОНАХ РОССИИ

В статье представлены результаты построения и апробации модели для оценки риска социальной эксклюзии населения старших возрастных групп регионов России в контексте сохранениях их социальной безопасно-сти на основе социологического исследования, проведенного в 2016 г. в Ал-тайском и Забайкальском краях, Кемеровской области (779 человек 55 (жен-щины) и 60 (мужчины) лет и старше). Теоретически предложенная модель основана на следующем: она определяется депривацией социально-экономи-ческой (материальной), социальных прав (доступ к социальным институтам и услугам) и безопасности (безопасная среда), социального участия, куль-турной (нормативной) дезинтеграцией и социальным аутизмом. Названные компоненты и индикаторы специфичны для группы индивидов пенсионного возраста, которая a priori потенциально является группой риска социальной исключенности. Риск социальной эксклюзии как состояние и ситуация ис-ключенности может быть прямо измерен через выраженность компонентов модели. Модель имеет одностороннюю казуальность, то есть выраженность одного из индикаторов компонентов эксклюзии может привести к большей выраженности социальной эксклюзии. На основе операционализированных компонентов социальной эксклюзии проведен расчет как индекса компонен-тов, так и общего индекса социальной эксклюзии пожилых, в том числе его региональные сравнения.

Текст научной работы на тему «Risk of social exclusion and social security of the Elderlyage persons in Russian regions»

УДК 301-053.9(571.1)

RISK OF SOCIAL EXCLUSION AND SOCIAL SECURITY OF THE ELDERLY AGE PERSONS IN RUSSIAN REGIONS

S.G. Maximova, O.E. Noyanzina, D.A. Omelchenko

Altai State University, Russia, Barnaul, e-mail: [email protected]

An article presents results of the construction and approbation of a theoretical model of evaluation of risk social exclusion of population in the context of social security of elderly age groups in Siberian regions. It bases on the results of sociological research (2016) in three Russian regions: Altai region, Trans-Baikal region and Kemerovo oblast (n =779 age of respondents from 55 (women) and 60 (men) years and older). In theory, the model lays on the following: in is determined by economic (material) deprivation, deprivation of social rights (access to social institutes and services) and deprivation of security (safe environment), deprivation of social participation, cultural (normative) disintegration and social autism; the above named components are specific for the group of elderly people, that is a priori a high risk of exclusion; risk of social exclusion, as a condition and situation of exclusion can be estimated straightly through the manifestation of its dimensions; the model has a one-way causality, i.e. the manifestation of one of its dimensions can lead to the high manifestation of the social exclusion. Basing on dimensions, operationalized in questionnaire, we calculated as an index of components of the social exclusion, as the total social exclusion index for elderly people including its regional correlations.

Keywords: social risk, security, social exclusion, people of elderly age groups, model ofsocial exclusion, condition and situation of exception, indexes of social exclusion.

РИСК СОЦИАЛЬНОЙ ЭКСКЛЮЗИИ И СОЦИАЛЬНАЯ БЕЗОПАСНОСТЬ ЛИЦ ПОЖИЛОГО ВОЗРАСТА В РЕГИОНАХ РОССИИ*

С.Г. Максимова, О.Е. Ноянзина, Д.А. Омельченко

Алтайский государственный университет, Россия, Барнаул, e-mail: [email protected]

* Публикация подготовлена в рамках выполнения гранта Президента Российской Федерации для государственной поддержки ведущих научных школ НШ-6535.2018.6 «Социальные риски и безопасность в условиях трансформации миграционных процессов в азиатском приграничье России» (2018-2019 гг.).

В статье представлены результаты построения и апробации модели для оценки риска социальной эксклюзии населения старших возрастных групп регионов России в контексте сохранениях их социальной безопасности на основе социологического исследования, проведенного в 2016 г. в Алтайском и Забайкальском краях, Кемеровской области (779 человек 55 (женщины) и 60 (мужчины) лет и старше). Теоретически предложенная модель основана на следующем: она определяется депривацией социально-экономической (материальной), социальных прав (доступ к социальным институтам и услугам) и безопасности (безопасная среда), социального участия, культурной (нормативной) дезинтеграцией и социальным аутизмом. Названные компоненты и индикаторы специфичны для группы индивидов пенсионного возраста, которая a priori потенциально является группой риска социальной исключенности. Риск социальной эксклюзии как состояние и ситуация ис-ключенности может быть прямо измерен через выраженность компонентов модели. Модель имеет одностороннюю казуальность, то есть выраженность одного из индикаторов компонентов эксклюзии может привести к большей выраженности социальной эксклюзии. На основе операционализированных компонентов социальной эксклюзии проведен расчет как индекса компонентов, так и общего индекса социальной эксклюзии пожилых, в том числе его региональные сравнения.

Ключевые слова: социальный риск, безопасность, социальная эксклюзия, население старших возрастных групп, модель социальной эксклюзии, состояние и ситуация исключенности, индексы социальной эксклюзии.

Problems of the ageing are usually considered in connection with global processes, such as industrialization or globalization (Bashkireva, Vylegzhanin, Kachan, 2013). Yu. O.V. Krasnova (2017) characterizes the ageing as 'the age of bad adaptation», because the aged person has certain somatic and psychical changes, promoting to transformations in relation to family life and the environment, as a rule. Psychic and social statuses of the elderly people are changing, it reflects in reducing of physic and social opportunities (Saponov, Smolkin, 2012).

According to M.E. Elyutina (2015), I.A. Grigoryeva, A.S. Bikulov (2015), the processes are complicated by dominating social understanding about contiguity of the ageing, illness and death and negatively influence on individual status of the elderly man and makes his/her dependent from the others and, consequently, leads to social exclusion (Maximova et al.).

An idea about "social exclusion", initially described deprivation of citizens with limited abilities, obtained its conceptualization in works by K. Walsh, coauthors (Walsh, Scharf, Keating, 2017), and was described by indexes of risk and protective factors, different political conditions people need to deal with. In wider sense, social exclusion could be determined as "process, resulting for individuals and their groups became fully or partly excluded from participation in social affairs" (Hrast, Mrak, Rakar, 2013). Hence, two principal moments could be specified in the concept of social exclusion. First, social exclusion

is the multidimensional notion. People, for example, could be excluded from society because of unemployment, wage, property, minimal consumption, level of education, quality of life in country, and citizenship. Owing to it, excluded people testify about insufficient close contacts and respect. However, the concept of exclusion focus attention on multidimensional nature of deprivation, i.e. people often deprived from many "social factors" simultaneously. At the same time, exclusion (deprivation) can reveal in economic, social and political spheres (Saponov, Smolkin, 2012). Second, social exclusion assumes relation to certain interconnections between individuals, their groups, and processes, which led to deprivation. Individuals could be excluded from different types of groups at the same time (Bonfatti, 2015).

Factors of inclusion into social exclusion are poverty, subordination in the system of social identities (race, ethnicity, religion, and gender), social positions (refugees, migrants), demographic characteristics (education, professional qualification, and age), and health condition, disabilities or stigma, such as the HIV or the AIDS.

A model of social exclusion, developed by The Social Exclusion Knowledge Network (SEKN) (Popay, Escorel, Hernández et al., 2008) presents it as result of action of four interdependent factors (social, cultural, economic and political) at different levels (individual, group, household, local communities, countries, and the world in whole). The given multidimensional model often lies in the base of scientific analysis of exclusion. Hence, the explicit connection between exclusion and rights let to cover discrimination basing on gender, ethnic and religious peculiarities, limitations in health, and so on.

The purpose of the paper is the conceptualization, creation and approbation of the model of social exclusion of the elderly age population in Siberian regions.

Theoretical model of exclusion

We suggest conceptual model of exclusion for empirical testing and evaluating of the level of exclusion of the elderly population of three Russian regions. The abovemen-tioned approaches formed the bases of the model. The model correlates with the poverty concept, but its opportunities are rather limited in explanation because social exclusion reflects not only the process of exclusion (dynamic characteristics) but also the condition of exclusion (static characteristics). Social exclusion can have material (economic) expression (distributive dimension of exclusion) and non-material characteristics (relative dimension of exclusion). The reasons of social exclusion should be considered as at collective as at individual level.

That is, initially we specify two dimensions of exclusion situation and condition of exclusion, material and non-material dimensions. However, material component (or situation of exclusion) is described by such components as social-economic (material) deprivation (MD), deprivation of social rights (DA) - access to social institutes and services, and deprivation of security (Envr) (safe environment). Non-material component (condition of exclusion) disclosed through the deprivation of social participation (SP), cultural (normative) disintegration (CD) and social autism (SA).

Material factors of risk of social exclusion often underlie in the base of individual factors of risk, interact with biological factors of risk, less sensitive to invasions, but often

act as means identification of citizens (families or other groups). They include situation aspects of life in poverty, low consumption standards, and overcrowding of living (Mil-bourne, Doheny, 2012; Najsztub, Bonfatti, Duda, 2015). Thus, N. Delfani and coauthors (2015) demonstrated influence of stable poverty on social exclusion.

Social-cultural components of exclusion are described in the concept of cultural capital by P. W. Kingston (Kingston, 2001), he describes how shared norms determine individual's behavior and attach importance to the group membership. Through norms and socialization, cultural norms "limit and prescribe opportunities of individuals, including in control of own life" (Rozanova, Keating, Eales, 2012).

Social resources reflect inclusion and affiliation to social networks, providing personal access to information and support of others (Saponov, Smolkin, 2012). Social resources could include weak and strong networks (Victor, Bowling, 2012) and networks, providing emotional and instrumental supports (Warburton, Cowan, Winterton et al., 2014), build on the community of interests, activity, family or other ties, uniting individuals and dominantly localized in private sphere (Ogg, Renaut, 2012). We suggest to consider social resources as indexes of social-cultural components of social exclusion, because individual do not select own gender of ethnicity, but they are able to choose or not to choose friends, interests and even relatives.

Many researches consider civic and politic participation as separate spheres of exclusion (Serrat, Villar, Celdrán, 2015), but include them into social resources, because political and civic participation is highly formalized, and public social resources are connected with organization structures (Popay, Escorel, Hernández et al., 2008).

SA component, called as "social autism", reflects personal resources, ability to see advantages in current situation and does not depend on economic, cultural or social status. These are micro-level resources, including psychical attitudes, psychological wellbeing and abilities (Anisimov, Zharinov, 2013; Dahlberg, McKee, 2014).

Hence, the model bases on a number of assumptions: 1) social exclusion - is a multidimensional phenomenon, reflecting as economic-structural as social-cultural aspects of life; theoretically it is determined by MD, DA and Envr, SP, CD h SA; 2) the above-named components and indicators are specific for the group of individual at the elderly age, which is potential groups of risk of social exclusion; 3) social exclusion as a condition and situation of exclusion could be directly measured through the expression of its components; 4) the model has one-way casualty, i.e. the expression of one of indexes of exclusion components could lead to higher social exclusion.

Materials and methods

In testing of the model of social exclusion of persons of the elderly age participated 779 citizens of three regions of the Russian Federation of 55 (women) and 60 (men) years and older, 28.5 % of men and 71.5 % of women among them. In women's subsampling was

30.7 % of women at the age of 55 - 59 years, 32 % - 60 - 64 years, 21 % - 65 - 69 years, 16.3 % - 70 years and older; among men: 55 % - 60 64 years, 27.5 % - 65 - 69 years,

15.8 % - 70 - 74 years, and 1.8 % 75 years and older. With taking into consideration relations between spatial characteristics and expressing of social exclusion (K. Walsh [26]),

we stress, that the research was realized in the Altai and the Transbaikal kray, and the Kemerovo oblast.

Thus, each theoretical statement about indexes of social exclusion was operation-alized in terms of the questionnaire. Social-cultural component of exclusion, or situation of exclusion, was described by three components with selected indexes of exclusion: 1) MD (20 indexes); 2) DA (27 indexes); Envr (22 indexes). Social-cultural exclusion, or condition of exclusion, was also described by three components, including a number of indexes: 1) SP (25 indexes); 2) CD (19 indexes); 3) SA (13 indexes)

In addition, we specified a number of micro-level risk factors of exclusion, par of which presented non-corrected factors, and the other - by the corrected ones. Non-corrected (independent) risk factors of social exclusion: sex, age (for women >55 years, for men >60 years); single living; status (employed / unemployed pensioner); pension amount; marital status; religion; pensionable service; type of settlement (urban / rural). Corrected (dependent) risk factors: physical activity; health condition; absence of own home; low education level; coping-strategies; evaluation of material condition; level of adaptation after retirement.

We calculated the social exclusion index, which is the summary value of expression of six components of social exclusion: MD, DA, Envr, SP, CD, and SA. To determine the expression of each index we transformed the estimation scales: the higher the index value, the higher social exclusion of the elderly people. Each index in the set were estimated basing on self-estimations of the elderly population by suggested scales, fixed in the questionnaire. Possible summary point by MD was 81 (by result of summarizing min=32, max=75), by DA - 156 (min=40, max=137), Envr - 157 (min=40, max=150), SP - 104 (min=43, max=77), CD - 66 (min=21, max=55), SA - 60 (min=15, max=55), that corresponds maximal expression of social exclusion of each component.

Further, to provide the opportunity of comparative analysis we formed summary indexes by each component and transformed them into 10-piont scales, calculate summary indexes of Situation (SitExclInd) and Condition (CondExclInd) of exclusion of respondents; in total, their summary values composed General Index of Social Exclusion (GenExclInd) of population of the elderly and senile age in three regions of the Russian Federation, further transformed into 10-point scale. Transformation of indexes into 10-point scale realized with taking into consideration the accepted regulations about return of fractional numbers, i.e. 0-0,49 points equaled to 0 points, 0,5- ,49 - to 1 point and so on. Programs IBM SPSS 23.0 and MS Excel were used for statistical possession and visualization of results.

Results and discussion

Index of situation of social exclusion consisted of summary indexes of normalized indexes of three components - MD, DA, and Envr. By the first component, 83.3% of persons of the elderly age have index in the range of 0-0,49 points, i.e. in this group of non-excluded respondents there are no any deprivation of economic behavior. In result, in the group of materially deprived respondents of the elderly and senile age the MD index (MDInd) vary between 4 and 9 points, herewith 4 points described 0.4% of the elderly population, 5 - 2.4%, 6 - 4.9%, 7 - 3.5%, 9 - 1.4%.

A non-zero value of the DA index (DAInd) fixed for 36.5 55 of the elderly persons -it varies between 3 and 9 points, the largest group by the DA (15.3%) it equals 6 points.

The Envr index (Envrlnd) is in range of 3 - 10 point for 42.5% of the elderly. Thus, almost / of research participants are deprived from safe environment. It is the only component of social exclusion with maximal value of 10 points for 0.4 % of respondents, and for 11.2 % of the elderly population the exclusion in the sphere of safe environment is expressed at the level of 8 points. In result, the summary index of situation of social exclusion (SitExcllnd) of population of the elderly age in three Russian regions is distributes in the range 1 - 8 points, it higher than 1 point for more than a half of respondents - 60.3%. Hence, the situation of social exclusion is highly expressed for the most part of respondents: 4 % are described by the summary index of 6 points, 0.5 % - 7 points. The mean value of the situation of social exclusion index is at the level of 5 point, 8.2 % with 4 points, 5.8 % with 3 points, 27.9 % with 2 points, and 3.2 % with 1 point are lower than the mean value.

The condition of social exclusion index (CondExcllnd), according to the suggested conceptual model, described by values of indexes of deprivation of social participation (SPInd), cultural (normative) disintegration (CDInd), and social autism (SAInd). We note the distribution of indexes towards higher concentration and evident asymmetry towards higher values testifies about relation between indexes of condition of social exclusion, unlike the indexes of situation of social exclusion.

Non-zero values of the SP index (SPInd) fixed among 15 % of people of the elderly age, and the values are rather high - 4 - 7 points. Concluding, the exclusion of an individual from the system of social networks has multidimensional character, the alienation from a number of ties - family, friendship, relative, and neighbor and so on - occurs. Hence, 0.6% of respondents have SPInd at 4 points, 6.4% - 5 points, 5.8% - 6 points, and 0.6% - 7 points.

The CD became the most expressed - 72.8% of respondents are culturally deprived with the CDInd at the level of 3 - 8 points. Herewith, the majority of excluded respondents have highly expressed CD: for 31.3 % the index consisted 6 points, for 16.2% - 7 points, for 1.8% - 8 points.

41.8% of the elderly and senile age persons have the SA index (SAInd), varying between 5 and 0 points: for 0.4 % of respondents it expressed at the level of 9 points, 1% - 8 points, 5.6% - 7 points, 11.6% - 6 points, the mean value at the level of 5 points describes 15.4% of the elderly age persons.

By results of the construction of the summary index of situation of social exclusion (CondExclInd) we concluded, that the largest part of respondents are in the situation of social exclusion (79.2%), expressed at the level of 1 - 7 points. Considerable part of the elderly age persons have value of the CondExclInd of 2 points, 0.5% of respondents 0 at the level of 7 points, 4% - 6 points, 7.6% - 5 points, for other groups the CondExclInd is lower.

We shall now proceed to consider the General Index of Social Exclusion (GenEx-clInd) of the elderly age persons in the Altai krai, the Transbaikal krai and the Kemerovo oblast.

In all three regions, the majority of the elderly people are vulnerable to the exclusion in several extent (86.4 %), social exclusion of the elderly is weakly and averagely expressed, in whole. Hence, 1/5 part of the elderly population (21.1%) has the GenExclInd in range of 0.5 -1.49 points, almost the same part of the elderly (20.2%) are in the range of 1.5 - 2.49 points, 17.2% are excluded at the level of 3 points, 13.9% - 4 points. In three regions, 8.1 % of the elderly have the GenExclInd at the level of 4.50 - 5.49 points. Socially excluded at the level higher than average are 3.6% of the elderly with the GenExclInd value about 6 points and 0.6 5 - 7 points.

Thus, the maximal valued of the GenExclInd for the elderly and senile population in three regions was 7 points (index values from 6.50 to 7.49 points). Table 1 presents the distribution of calculated index values.

Table 1

Distribution of index values of social exclusion of the elderly age persons, %

Index value MDInd DAInd EnvrInd SPInd CDInd SAInd SitExclInd Con-dEx-clInd GenExclInd

0-0,49 (0) 83,1 63,5 57,5 85,0 27,2 58,2 39,7 20,8 15,4

0,50-1,49 (1) - - - - - - 3,2 1,7 21,1

1,50-2,49 (2) - - - - - - 27,9 35, 8 20,2

2,50-3,49 (3) - 0,6 0,5 - 0,1 0,5 5,8 9,8 17,2

3,50-4,49 (4) 0,4 4,4 2,4 0,6 2,7 7,3 8, 2 19,9 13,9

4,50-5,49 (5) 2,4 8,2 10,7 6,4 20,7 15,4 8, 3 7,6 8,1

5,50-6,49 (6) 4, 9 15, 3 10,8 5,8 31, 3 11,6 2,7 4,0 3,6

6,50-7,49 (7) 4,4 6,3 0,6 2,2 16,2 5,6 3,2 0,5 0,6

7,50-8,49 (8) 3,5 1,5 11, 2 - 1,8 1,0 1,0 - -

8,50-9,49 (9) 1,4 0,1 5,8 - - 0,4 - - -

9,49-10 (10) - - 0,4 - - - - - -

Note. Maximal value corresponds to maximal exclusion. Here and further in table 2: maximal mean values are in the bold; values of indexes of situation and condition of social exclusion are in italics; MDInd- the index of social-economic (material) deprivation; DAInd - the index of deprivation of social rights; EnvrInd - the index of deprivation of security; SPInd - the index of deprivation of social participation; CDInd - the index of cultural (normative) disintegration; SAInd - the index of social autism; SitExclInd - the summary index of situation of social exclusion of respondents; CondExclInd - the summary index of condition of social exclusion of respondents; GenExclInd - the general index of social exclusion of population.

To consider regional differences in distribution of indexes of components of social exclusion we realized comparative analysis of the mean values of the indexes (table 2). According to the table 2, there are no any considerable differences between the expressions of components of social exclusion. Hence, the most excluded are people of the elderly age in the Kemerovo oblast with the mean values of social exclusion by all components, and summary indexes of situation and condition of exclusion are higher. The only component is highly expressed in the Transbaikal krai, but not in the Kemerovo oblast, - deprivation of social rights DA (the mean value is 2.15 points in the Transbaikal krai, in the Kemeror-vo oblast - 2.10 points, and in the Altai region - 2.05 points).

Herewith, the elderly age persons in the Altai krai have similar level as of condition (1.9885), as situation (1.9237) of social exclusion, in the Kemerovo oblast and the Transbaikal krai the condition of social exclusion is highly expressed: ^SitExcllnd = 1.7588 and ^CondEx-cllnd = 2.3385 in the Transbaikal krai and ^SitExcllnd = 2.2462 and ^CondExcllnd = 3.1000 in the Kemerovo oblast. Hence, in the Kemerovo oblast ^GenExcllnd = 2.8115, in the Transbaikal krai ^GenExcllnd = 2.1595, in the Altai krai ^GenExcllnd = 2.0763 (^ - mean value).

Table 2

Mean values of the indexes of social exclusion of the elderly age groups in regional comparisons

Region MDInd DAInd EnvrInd SPInd CDInd SAInd SitEx-clInd CondEx-clInd GenEx-clInd

Mean © © © © 8 © 0 VO VO VO 4 <N t"- 9 m as <N 71 7 m <N 5 8 OO 3 VO ©

"¡3 2, 2, 0, m 1, 1, 1, 2,

-i •S3

Z <N O <N 2 vo 2 2 2 2 2 2 VO 2 2 2 2 2 2 vo 2 2 vo 2

e ■s H ? a M 1.2 M £ O <N <N m 2 as 2 ,8 0 2 9 81 m VO ,8 m m as ,91 4 7 m VO 01 © ,01 \D m 5 <N ,7 2 8 7 ,7

m ^ es 2, m 1 2, 2, 2, 1 1

"¡3 i-i Mean 0,8872 2,1479 2,2159 0,7121 4,0000 2,2451 1,7588 2,3385 2,1595

(S -i ■a Z <N <N <N <N <N <N <N <N <N

5« «

S e .= H "F a M \D © ,2 OO 4 ,8 0 VO 9 ,9 2 7 5 t"- ,8 8 2 2 t"- ,8 8 7 VO ,7 9 0 VO ,8 \D 7 4 <N ,7 9 7 ,5

m -o 2, 2, 2, 1 2, 2, 1 1 1

Region MDInd DAInd EnvrInd SPInd CDInd SAInd SitEx-clInd CondEx-clInd GenEx-clInd

ж ■S s Mean 1,5308 2,0962 2,9903 1,1038 5,6115 2,6308 2,2462 3,1000 2,8115

о > s о Z о so <N 0 so 2 0 SO 2 0 SO 2 0 SO 2 0 SO 2 0 SO 2 0 SO 2 0 SO 2

s Ч * о .= H Standard deviation

3,07610 2,84923 3,30067 2,31846 1,69688 2,89358 2,33179 1,52381 1,69915

Mean 1,1399 2,0963 2,6258 ,8460 4,3004 2,2837 1,9769 2,4750 2,3492

Total Z as t> t> as t> t> as t> t> as t> t> as t> t> as t> t>

a M 1.2 8 (N 6 ,5 9 5 5 ,8 4 2 9 un 5 61 m ,0 5 5 4 m ,7 5 4 5 00 ,7 4 91 00 ,0 7 4 2 <N ,7 0 5 2 о ,7

^ и СЛ "в (N 2, 3, 2, 2, 2, 2, 1 1

Note. Maximal value corresponds to maximal exclusion.

Identification of posterior model of social exclusion

To test the correlation between theoretical and empirical models of exclusion we used the method of structural equation modeling (SEM) [9], based on confirmatory approach. The model was tested with help of quality confirmation tests in the SEM to reveal the extent of coherence between patterns of dispersion and covariations in initial data with the structural (path) model, specified by researches. During the modelling and model testing, we used the AMOS module (Analysis of Moment Structures) version 22.0.0 for the IBM SPSS.

To construct the structural model we used three latent unobserved variables: F1 describes situation of social exclusion, F2 - condition of exclusion, F3 - risk of social exclusion. Basing on previous analysis, we supposed situation of exclusion as combining indexes of MD, DA and Envr, and condition of exclusion - indexes of SP, CD and SA. Indexes of latent variable F3 were sex, evaluation of material condition, educational level, family status, presence of children, and pension amount.

In a result of the modeling, we tested the obtained null model (picture) for confirmation. Results of testing demonstrated confirmation between theoretical and empirical models: the model value x2 is not significant with p<0,0001 and CMIN/DF<4 (CMIN/ DF - the x2 value, divided the number of degrees of flexibility in the model; the criteria shows the adequacy of the x2 value for the model; optimal value of CMIN/DF varies from

1 to 3 points); the sampling is adequate for testing of the model (HOELTER, n=327), RM-SEA (Root mean square error of approximation) < 0,05, corresponds with researches by L. Hu and P. M. Bentler [14].

Structural model of social exclusion of the elderly age persons.

MDInd - the index of social-economic (material) deprivation; DAInd - the index of deprivation of social rights; EnvrInd - the index of deprivation of security; SPInd - the index of deprivation of social participation;

CDInd - the index of cultural (normative) disintegration; SAInd - the index of social autism; F1 - situation of exclusion; F2 - condition of exclusion; F3 - risk of social exclusion; e1,2,3,4,5,6,7,8,9 - errors of endogen (dependent) variables; material - evaluation of material condition; educ - educational level; familyst - family status; child - presence of children; pension - pension amount; sex - sex.

Conclusion

Thus, indexes, determined at the stage of theoretical modelling, really determine the probability of social exclusion in the empirical model; characterize condition, situation and risk of social exclusion of the elderly age persons, living at the territory of the Siberian Federal District of the Russian Federation.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

REFERENCES

Anisimov, V.N., Zharinov, G.M. (2013). Life span and longevity in representatives of creative professions. Gerontology advances, vol. 26, № 3, 405-416.

Bashkireva, A.S., Vylegzhanin, S.V., Kachan, E.Yu. (2016). Actual problems of social gerontology at the present state of development of Russia. Gerontology advances, vol. 29, № 2, 379-386.

Grigoryev, I.A., Bikkulov, A.S. (2015). Ageing, health and active longevity: semantic context other mentioning in social networks. Gerontology advances, vol. 28, № 2, 354-359.

Elyutina, M.V. (2015).The elderly age persons: relation to death and tantric anxiety, Sociological researches, no 10, 111-119.

Kasnova, O. V. (2014). Retirement and identity of women. Psychological researches, vol. 7, no 35, 6. URL: http://psystudy.ru (available at the date: 24.05.2017).

Maximova, S.G., Noyanzina, O.E., Maximova, M.M., Scheglova, D.K. (2015). Soial exclusion of the elderly age groups: social-economic aspects. Altai State Agrarian University Bulletin, no 5 (127), 180-184.

Maximova, S.G., Omechenko, D.A., Avdeeva, G.S. etc. (2012). Empirical models of perception of the ageing in conditions of a new gerontology reality: comparative analysis of results of sociological research in four Russian regions. The Altai State University News, no 2-2(74), 242-245.

Saponov, D.I., Smolkin, A.A. (2012). Social exclusion of the elderly: to the working out of the model of estimation. Monitoring, no 5 (111), 83-94.

Structural modelling in the SPSS AMOS [Electronic Resource] moodle.herzen.spb.ru (available at the date: 29.10.2016).

Bonfatti, A., Celidoni, M., Weber, G., Borsch-Supan, A. (2015). Coping with risks during the great recession. In: Borsch-Supan A., Kneip T., Litwin H. et al. (eds). Ageing in Europe - supporting policies for an inclusive society. (Pp. 225-234). Boston: De Gruyter.

Dahlberg, L., McKee, K.J. (2014). Correlates of social and emotional loneliness in older people: evidence from an English community study. Aging Mental Hlth, vol. 18, 504-514.

Delfani, N., De Deken, J., Dewilde, C. (2015). Poor because of low pensions or expensive housing? The combined impact of pension and housing systems on poverty among the elderly. Int. J. Hous. Policy, no 15, 260-284.

Hrast, M.F., Mrak, A.K., Rakar, T. (2013). Social exclusion of elderly in Central and Eastern Europe. Int. J. Soc. Econ., no 40, 971-989.

Hu, L., Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, vol. 6 (1), 1-55.

Kingston, P.W. (2001). The unfulfilled promise of cultural capital theory. Sociol. Educat, vol. 74, 88-99.

Milbourne, P., Doheny, S. (2012). Older people and poverty in rural Britain: material hardships, cultural denials and social inclusions. J. Rural. Stud, vol. 28, 389-397.

Myck, M., Najsztub, M., Oczkowska, M. (2015). Measuring social deprivation and social exclusion. In: Borsch-Supan A., Kneip T., Litwin H. et al. (eds). Ageing in Europe - supporting policies for an inclusive society. (Pp. 67-78). Boston: De Gruyter.

Najsztub, M., Bonfatti, A., Duda, D. (2015). Material and social de-privation in the macro-economic context. In: Borsch-Supan A., Kneip T., Litwin H. et al. (eds). Ageing in Europe - supporting policies for an inclusive society. (Pp. 79-90). Boston: De Gruyter.

Ogg, J., Renaut, S. (2012). Social inclusion of elders in families. In: Scharf T., Keating N. (eds.) From exclusion to inclusion in old age: a global challenge. (Pp. 89-108). Bristol: Policy Press.

Popay, J., Escorel, S., Hernández, M. et al. (2008).Understanding and tracking social exclusion: final report to the WHO Commission on Social Determinants of Health. (P. 207). Lancaster: Social Exclusion Knowledge Network.

Rozanova, J., Keating, N., Eales, J. (2012). Unequal social engagement for older adults: constraints on choice. Canad. J. Aging, vol. 31, 25-36.

Scharf, T., Keating, N. (2012). Social exclusion in later life: a global challenge. In: Scharf T., Keating N. (eds.) From exclusion to inclusion in old age: a global challenge.( Pp. 1-16). Bristol: Policy Press.

Serrat, R., Villar, F., Celdrán, M. (2015). Factors associated with Spanish older people's membership in political organizations: the role of active aging activities. Europ. J. Ageing, vol. 12, 239-247.

Victor, C.R., Bowling, A. (2012). A longitudinal analysis of loneliness among older people in Great Britain. J. Psychol, vol. 146, 313-331.

Walsh, K., Scharf, T., Keating, N. (2017). Social exclusion of older persons: a scoping review and conceptual framework. Europ. J. Ageing, vol. 14, no 1, 81-98.

Walsh, K. (2015). Interrogating the 'age-friendly community' in austerity: myths, realties and the influence of place context. In: Walsh K., Carney G., Ní Léime Á. (eds.). Ageing through auster- ity: critical perspectives from Ireland. (P. 79-95). Bristol: Policy Press.

Warburton, J., Cowan, S., Winterton, R. et al. (2014). Building social inclusion for rural older people using information and communication technologies: perspectives of rural practitioners. Aust. Soc. Work, vol. 67, 479-494.

i Надоели баннеры? Вы всегда можете отключить рекламу.