4. Андреев И.А., Ильинская Н.Д., Куницына Е.В., Михайлова М.П., Яковлев М.П. Высокоэффективные фотодиоды на основе GaInAsSb / GaAlAsSb для спектрального диапазона 0,9-2,55 мкм с большим диаметром чувствительной площадки // ФТП. - 2003. - T. 37. - Вып. 8. - C. 974-979.
5. Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.H., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K. Recommendations for the characterization of porous solids // Pure Appl. Chem. - 1994. - V. 66. - № 8. - P. 1739-1758.
6. Canham L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers // J.Appl. Phys. Lett. - 1990. - V. 57. - № 10. - P. 1046-1048.
7. Федулова Г.В., Нечитайлов А.А. Щелочное вскрытие макропор при изготовлении кремниевых структур со сквозными каналами // Научно-технический вестник СПбГУ ИТМО. - 2007. - Т. 40. - С. 75-79.
8. Canham L.T. Properties of porous silicon. - London: INSPEC, 1997. - 364 p.
9. Wolkin M.V., Jorne J., Fauchet P.M., Allan G., Delerue C. Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen // Phys. Rev. Lett. - 1999. - V. 82. - № 1. - P. 197-200.
10. Матвеева А.Б., Константинова Е.А., Тимошенко В.Ю., Кашкаров П.К. Исследование фотоЭДС и фотоиндуцированного захвата заряда в пористом кремнии // ФТП. - 1995. - Т. 29. - Вып. 12. - С. 2180-2188.
11. Балагуров Л. А., Павлов В.Ф., Петрова Е.А., Боронина Г.П. Исследование пористого кремния и его старения методами полного внешнего отражения рентгеновских лучей и инфракрасной спектроскопии // ФТП. - 1997. - T. 31. - Вып. 8. - C. 957-960.
Соколов Владимир Иванович - Физико-технический институт им. А.Ф. Иоффе РАН, доктор физ.-мат.
наук, профессор
Хуинь Конг Ту - Санкт-Петербургский государственный университет информационных
технологий, механики и оптики, аспирант, [email protected]
УДК 532.783
ПРИМЕНЕНИЕ НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛОВ ДЛЯ ВИЗУАЛИЗАЦИИ СТРУКТУРНЫХ ДЕФЕКТОВ КВАРЦЕВЫХ РЕЗОНАТОРОВ
О.Г. Габараев, Ю.И. Купоросов, М.Г. Томилин
Описано применение нематических жидких кристаллов (НЖК) для визуализации структурных дефектов в кварцевом элементе резонатора промышленного производства. Объектом исследования были структурные неоднородности в кристаллическом кварце, как природного происхождения, так и возникающие в процессе технологических операций. Проведено сравнение метода НЖК с методами травления, рентгеновской и акустической дефектоскопии. Показано, что предложенный метод НЖК является неразрушающим по сравнению с методом травления; точнее акустического метода и позволяет в отличие от него дать интегральную картину свойств изучаемой области поверхности; является экспрессным и более дешевым по сравнению с рентгеновским методом. Метод НЖК можно рассматривать как независимый метод, дающий дополнительную информацию о свойствах поверхности изучаемых объектов. Ключевые слова: жидкие кристаллы, дефектоскопия, поверхность, структурные неоднородности, неразрушающий контроль, кристаллический кварц.
Введение
Кварцевый резонатор - это прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы [1, С. 10-16; 21-27; 85]. Внешний вид кварцевого резонатора показан на рис. 1.
Рис. 1. Внешний вид кварцевого резонатора: 1 - кварцевый элемент (КЭ); 2 - кварцедержатель;
3 - электрод
Кварцевые резонаторы нашли широкое применение в навигационном и телекоммуникационном оборудовании, радиосвязи и вычислительной технике. Развитие технологий в данных сферах требует все более высокого качества кварцевых резонаторов, в частности, повышения стабильности их частоты. Она напрямую зависит от природной однородности материала КЭ и дефектов, образующихся в процессе изготовления резонатора. В связи с этим актуальной задачей является разработка методов контроля однородности КЭ. Разработано несколько методов контроля - травление КЭ во фторсодержащих соединениях, рентгеновская и акустическая дефектоскопии. Эти методы имеют свои преимущества и недостатки.
Травление представляет собой химический способ обработки поверхности, в ходе которого она частично растворяется в травящем веществе. Поскольку границы структурных неоднородно стей содержат наибольшее количество разного рода дефектов, то именно они, в первую очередь, подвергаются разрушению. По этой причине визуализация дефектов методом травления подразумевает обнаружение только крупных структурных неоднородностей. Кроме того, метод является разрушающим и относится к экологически опасным технологическим операциям.
Рентгеновская дефектоскопия представляет собой совокупность дифракционных методов изучения дефектов строения в почти совершенных кристаллах [2, С. 23-24; 186]. К таким дефектам относят блоки и границы структурных элементов, дефекты упаковки, дислокации, скопления атомов примесей. Осуществляя дифракцию рентгеновских лучей на кристаллах на просвет и на отражение в специальных рентгеновских камерах, регистрируют дифракционное изображение кристалла - топограмму, расшифровка которой дает информацию о дефектах. Физическую основу метода составляет изучение дифракционного контраста в изображении различных областей кристалла в пределах одного дифракционного пятна, который формируется вследствие различий интенсивностей или направлений лучей от разных точек кристалла в соответствии с совершенством или ориентацией кристаллической решетки в этих точках. Эффект, вызываемый изменением хода лучей, позволяет оценивать размеры и разориентацию элементов структуры в кристаллах (фрагментов, блоков), а различие в интенсивностях пучков используется для выявления дефектов упаковки, дислокаций, сегрегации примесей и напряжений. Чувствительность методов достаточна для выявления отдельных блоков, дислокаций, выделений и других дальнодействующих полей деформаций. Однако эти методы не выявляют точечные дефекты, за исключением плотных скоплений, и слабые внутренние напряжения. Особенностью метода является возможность осуществления структурной дефектоскопии не только в объеме образца, но и на поверхности (рис. 2).
в г
Рис. 2. Визуализация структурных дефектов в КЭ методом рентгеновской дефектоскопии: а, б - в объеме образца; в, г - на его поверхности. Фото И.Л. Шульпиной (Физико-технический институт
им. А. Иоффе)
Линейное разрешение методов рентгеновской топографии составляет 20-1 мкм, угловое разрешение - 1'-0,01". Недостатком методов является необходимость использования специального сложного оборудования.
Акустические методы разделяют на низкочастотные и высокочастотные. К первым относят колебания в звуковом и низкочастотном ультразвуковом диапазоне (до десятков кГц). Ко вторым - колебания
в высокочастотном ультразвуковом диапазоне от нескольких сотен кГц до 20 мГц. Ультразвуковая дефектоскопия основывается на способности ультразвука распространяться в материале изделия и отражаться от внутренних дефектов и границ неоднородностей. Широкое распространение в практике ультразвуковой дефектоскопии нашли импульсные методы, в том числе эхо-метод и теневой метод. Для излучения и приема ультразвука используют два соосно расположенных преобразователя, а о наличии дефектов судят по уменьшению амплитуды принимаемых колебаний. Излучатель ультразвуковых волн, проверяемая деталь и приемник образуют акустический тракт, по которому распространяется ультразвуковая волна. Решение о дефектности проверяемой детали принимают по величине амплитуды принятого сигнала на выходе принимающего преобразователя. Недостатками метода являются необходимость двустороннего доступа к изделию, низкая чувствительность при контроле изделий средней и большой толщины, а также технологические сложности выполнения работы.
Недостаточная наглядность и чувствительность описанных методов заставляет обратиться к изучению и использованию новых методов структурной дефектоскопии.
Метод нематических жидких кристаллов
Один из передовых методов дефектоскопии основан на использовании НЖК. Он был применен на заводе ОАО «Морион» в Санкт-Петербурге. Метод НЖК как альтернативный метод контроля структурной однородности КЭ позволяет получить ряд преимуществ - экспрессность, низкую стоимость и высокую чувствительность [3]. Разработка метода потребовала определения критерия оценки структурных неоднородностей КЭ, обеспечивающего стабильность колебаний резонатора.
Основными требованиями, предъявляемыми к жидкокристаллическим материалам, являются большая величина оптической анизотропии Ал, широкий температурный интервал мезофазы, лежащий в области комнатной температуры, нетоксичность и смачивание изучаемой поверхности.
Перед нанесением на КЭ тонкого слоя НЖК он проходит очистку в ультразвуковой камере. При нанесении необходимо добиваться однородного по толщине (порядка 1 мкм) слоя НЖК. Осуществляя визуализацию структурных дефектов на поверхности, метод НЖК не позволяет получать информацию о структурных дефектах в объеме. В ряде случаев объемные дефекты структуры выходят на поверхность и могут декорироваться слоем НЖК. Однако для получения достоверных данных об объемных дефектах следует совмещать метод НЖК с рентгеновским, используемым в режиме на просвет. Схема визуализации, приведенная на рис. 3, с использованием поляризационного микроскопа иллюстрирует переориентацию молекул НЖК в области структурного дефекта Г) поверхности КЭ [4].
г- г
Рис. 3. Схема, иллюстрирующая переориентацию молекул НЖК в области дефекта поверхности объекта: 1 - источник света; 2 - поляризатор; 3 - образец; 4 - дефект; 5 - слой НЖК; 6 - анализатор
При наблюдении в поляризационный микроскоп виден не сам дефект Б, а его изображение П на модифицированной поверхности жидких кристаллов (ЖК); при этом деформированная зона слоя НЖК влияет на цвет изображения. Вращением анализатора относительно поляризатора можно добиться как полной поляризации для четкого выделения дефектов, так и частичной, которая позволяет видеть не только деформации слоя ЖК, но и поверхность КЭ. На образцах КЭ, исследованных методом НЖК, бы-
ли выявлены структурные дефекты в виде четко наблюдаемых блоков (рис. 4), а также точечные дефекты, выколки и скопления дислокаций.
Рис. 4. Снимок дефектного кварцевого резонатора: 1 - структурный дефект в виде блока
Для повторного использования КЭ в производстве резонаторов в ряде случаев осуществляется снятие электрода химическим травлением в предположении сохранности качества поверхности. Однако метод НЖК показал, что такие элементы заведомо дефектны (рис. 5).
Рис. 5. Снимок резонатора после подготовки к повторной эксплуатации: 1
электрода; 2 - область без НЖК
■ след от стравленного
Другим достоинством метода НЖК является возможность наблюдения за изменениями структуры в реальном времени. Отобрав КЭ с областью скопления трещин (которую не удавалось обнаружить без НЖК) и оказав на него механическое воздействие, можно было наблюдать динамику разрушения образца (рис. 6).
/Г*
1
2
3
Рис. 6. Серия снимков кварцевого резонатора под действием механической нагрузки: 1 - область повышенного скопления трещин; 2 - область повышенного скопления трещин после механического воздействия; 3 - скол, образовавшийся в зоне повышенного скопления трещин
После увеличения механической нагрузки произошло разрушение КЭ в области повышенного скопления трещин, что свидетельствует о недостаточной механической прочности КЭ после его травления.
1
2
1
Заключение
Метод НЖК обладает рядом преимуществ по сравнению с альтернативными методами: является неразрушающим по сравнению с травлением; точнее акустического метода и позволяет в отличие от него дать интегральную картину свойств изучаемой области поверхности; является экспрессным и более дешевым по сравнению с рентгеновским методом. Применение метода НЖК позволило успешно выявить как природные дефекты кварцевого элемента, такие как точечные дефекты, блоки, мелкие выколки и дефекты рельефа, так и дефекты, возникшие при изготовлении кварцевого резонатора: следы снятия электрода травлением и области скопления трещин на поверхности. Предложенный метод можно рассматривать как независимый метод изучения свойств поверхности, альтернативный существующим методам и позволяющий получать новую информацию о свойствах поверхности изучаемых объектов.
Литература
1. Глюкман Л.И. Пьезо-электрические кварцевые резонаторы. - М.: Радио и связь, 1981. - 216 с.
2. Боуэн Д.К., Таннер Б.К. Высокоразрешающая рентгеновская дифрактометрия и топография. - СПб: Наука, 2002. - 274 с.
3. Томилин М.Г. Взаимодействие жидких кристаллов с поверхностью. - СПб: Политехника, 2001. -325 с.
4. Томилин М.Г., Барсуков О.А. Новый поляризационный микроскоп с расширенными функциональными возможностями // Оптика и спектроскопия. - 2010. - № 1. - С. 122-128.
Габараев Олег Григорьевич -Купоросов Юрий Игоревич -
Томилин Максим Георгиевич -
ОАО «Морион», инженер, [email protected]
Санкт-Петербургский государственный университет информационных технологий, механики и оптики, студент, [email protected]
Санкт-Петербургский государственный университет информационных технологий, механики и оптики, доктор технических наук, профессор, [email protected]