Научная статья на тему 'Оценка точности определения координат энергетического центра тяжести тест-объекта коллиматора в схемах контроля оптико-электронных приборов с матричными фотоприемниками'

Оценка точности определения координат энергетического центра тяжести тест-объекта коллиматора в схемах контроля оптико-электронных приборов с матричными фотоприемниками Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
946
237
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОЛЛИМАТОР / ОПТИКО-ЭЛЕКТРОННЫЙ ПРИБОР / ТЕСТ-ОБЪЕКТ / ФОТОПРИЕМНИК

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Старосотников Н. О., Фёдорцев Р. В.

В статье рассматривается схема контроля при помощи коллиматора таких оптико-электронных приборов с матричными фотоприемниками, как автоколлиматоры, микроскопы, звездные датчики, различная съемочная аппаратура. На точность контроля оказывает влияние ряд факторов (дискретность структуры, шумы фотоприемника, согласованность размера тест-объекта коллиматора, размера пикселя фотоприемника и функции рассеяния точки оптических компонентов). Применительно к задачам контроля и юстировки оптико-электронных приборов рассмотрена схема, включающая два компонента: контролирующий (коллиматор) и контролируемый (телецентрическая система). Для определения влияния перечисленных факторов предложена математическая модель схемы контроля и описан вариант ее численной реализации. В результате моделирования подобрано оптимальное соотношение между параметрами компонентов оптической схемы контроля: функции рассеяния точки объектива коллиматора и телецентрической системы, размером тест-объекта коллиматора, размером пикселя фотоприемника. Определен размер тест-объекта коллиматора, который в рассматриваемой схеме будет давать меньшую погрешность измерений, вызванную дискретностью фотоприемника контролируемого прибора, а также среднеквадратическое отклонение определения энергетического центра тяжести тест-объекта, вызванное шумами фотоприемника. Для уменьшения влияния шумов предложено принять за нулевые значения сигнала, меньшие, чем удвоенный шаг дискретизации аналого-цифрового преобразователя.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Старосотников Н. О., Фёдорцев Р. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Estimation of accurate determination for coordinates of gravity energy center in collimator test-object in respect of control schemes for optoelectronic devices with matrix photodetectors

The paper considers a control scheme of such optoelectronic devices with matrix photo-detectors as autocollimators, microscopes, star trackers and other film equipment an d the control is carried out with the help of a collimator. A number of factors (structure discreteness, photo-detector noise, consistency in collimator test-object size, photo-detector pixel size and point scattering function of optical components) exert an influence on control accuracy. In the context of control problems and alignment of optoelectronic devices the paper studies a scheme which includes two components: controlling component that is a collimator and a component to be controlled that is a tele-centric system). A mathematical model for control schemes has been proposed with the purpose to determine an effect of the above-mentioned factors and its mathematical implementation has been described in the paper. Due to simulation an optimal ratio has been selected for component parameters of the optical control scheme: point scattering function for a collimator objective and a telecentric system, collimator test-object size, photo-detector pixel size. A collimator test-object size has been determined in the paper. Using the considered scheme the size will give the smallest measurement error caused by photo-detector discreteness of a controlled device. A standard deviation of the gravity energy center for a collimator test-object caused by photo-detector noise has been determined in the paper. In order to reduce the effect of photo-detector noise the paper proposes to take as zero values of a signal such values which are smaller than a doubled discretization interval of an analog-to-digital converter.

Текст научной работы на тему «Оценка точности определения координат энергетического центра тяжести тест-объекта коллиматора в схемах контроля оптико-электронных приборов с матричными фотоприемниками»

УДК 681.723.078, 681.775.078, 681.777.078

ОЦЕНКА ТОЧНОСТИ ОПРЕДЕЛЕНИЯ КООРДИНАТ ЭНЕРГЕТИЧЕСКОГО ЦЕНТРА ТЯЖЕСТИ ТЕСТ-ОБЪЕКТА КОЛЛИМАТОРА В СХЕМАХ КОНТРОЛЯ ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ С МАТРИЧНЫМИ ФОТОПРИЕМНИКАМИ

Инж. СТАРОСОТНИКОВ Н. О., канд. техн. наук ФЁДОРЦЕВ Р. В.

Белорусский национальный технический университет E-mail: [email protected]

В статье рассматривается схема контроля при помощи коллиматора таких оптико-электронных приборов с матричными фотоприемниками, как автоколлиматоры, микроскопы, звездные датчики, различная съемочная аппаратура. На точность контроля оказывает влияние ряд факторов (дискретность структуры, шумы фотоприемника, согласованность размера тест-объекта коллиматора, размера пикселя фотоприемника и функции рассеяния точки оптических компонентов). Применительно к задачам контроля и юстировки оптико-электронных приборов рассмотрена схема, включающая два компонента: контролирующий (коллиматор) и контролируемый (телецентрическая система). Для определения влияния перечисленных факторов предложена математическая модель схемы контроля и описан вариант ее численной реализации.

В результате моделирования подобрано оптимальное соотношение между параметрами компонентов оптической схемы контроля: функции рассеяния точки объектива коллиматора и телецентрической системы, размером тест-объекта коллиматора, размером пикселя фотоприемника. Определен размер тест-объекта коллиматора, который в рассматриваемой схеме будет давать меньшую погрешность измерений, вызванную дискретностью фотоприемника контролируемого прибора, а также среднеквадратическое отклонение определения энергетического центра тяжести тест-объекта, вызванное шумами фотоприемника. Для уменьшения влияния шумов предложено принять за нулевые значения сигнала, меньшие, чем удвоенный шаг дискретизации аналого-цифрового преобразователя.

Ключевые слова: коллиматор, оптико-электронный прибор, тест-объект, фотоприемник.

Ил. 4. Табл. 1. Библиогр.: 10 назв.

ESTIMATION OF ACCURATE DETERMINATION FOR COORDINATES OF GRAVITY ENERGY CENTER IN COLLIMATOR TEST-OBJECT IN RESPECT OF CONTROL SCHEMES FOR OPTOELECTRONIC DEVICES WITH MATRIX PHOTODETECTORS

STARASOTNIKAUM. A., FEODORTSAUR. V.

Belarusian National Technical University

The paper considers a control scheme of such optoelectronic devices with matrix photo-detectors as autocollimators, microscopes, star trackers and other film equipment an d the control is carried out with the help of a collimator. A number of factors (structure discreteness, photo-detector noise, consistency in collimator test-object size, photo-detector pixel size and point scattering function of optical components) exert an influence on control accuracy. In the context of control problems and alignment of optoelectronic devices the paper studies a scheme which includes two components: controlling component that is a collimator and a component to be controlled that is a tele-centric system). A mathematical model for control schemes has been proposed with the purpose to determine an effect of the above-mentioned factors and its mathematical implementation has been described in the paper.

Due to simulation an optimal ratio has been selected for component parameters of the optical control scheme: point scattering function for a collimator objective and a telecentric system, collimator test-object size, photo-detector pixel size. A collimator test-object size has been determined in the paper. Using the considered scheme the size will give the smallest measurement error caused by photo-detector discreteness of a controlled device. A standard deviation of the gravity energy center for a collimator test-object caused by photo-detector noise has been determined in the paper. In order to reduce the effect of photo-detector noise the paper proposes to take as zero values of a signal such values which are smaller than a doubled discretization interval of an analog-to-digital converter.

Keywords: collimator, optoelectronic device, test-object, photo-detector.

Fig. 4. Tab. 1. Ref.: 10 titles.

■■ Наука итехника, № 5, 2015

Введение. В контрольно-измерительных оптических приборах основным критерием качества является точность. В большинстве оптических приборов, таких как автоколлиматоры, микроскопы, звездные датчики, различная съемочная аппаратура и другие, используются матричные фотоприемники (ФП) оптического сигнала. Точность измерения в данных приборах зависит от точности определения координат энергетических центров тяжести изображений на ФП. Координаты энергетического центра изображения на ФП вычисляются с субпиксельной точностью. На точность их определения влияют многие факторы, в том числе дискретность структуры ФП, из-за которой возникает систематическая погрешность при определении энергетического центра тяжести изображения, форма и размер изображения, а также шумы, в частности дробовый.

Описание моделируемой оптической схемы контроля. Рассмотрим часто встречающуюся схему в задачах контроля и юстировки оптико-электронных приборов [1, 2]. Оптическая схема контроля состоит из двух компонентов: контролирующего (часто в данном качестве выступает коллиматор) и контролируемого (например, телецентрическая система, по которой строится значительное количество оптико-электронных приборов и состоящая из изображающей оптической системы (объектив), ФП, расположенного в задней фокальной плоскости объектива, и устройства обработки сигнала) (рис. 1). В оптико-электронных приборах ФП является устройством, которое формирует информационный сигнал и в то же время является измерительной шкалой, служащей для определения координат энергетического центра тяжести тест-объекта (ТО).

Коллиматор

Для достижения наилучшей точности необходимо согласовать компоненты оптической схемы контроля, т. е. должен быть согласован размер ТО, функция рассеяния точки (ФРТ) объектива и размер пикселя ФП. Для динамических систем, чтобы устранить искажения (муар в изображении), обусловленные дискретизацией, размер пикселя ФП должен быть минимум в два раза меньше размера ФРТ объектива. В этом случае разрешение системы «объектив - ФП» будет в два раза меньше значения разрешения, соответствующего равенству ФРТ и размера пикселя.

Для упрощения расчетов объектив контролирующего коллиматора выбран таким же, как и объектив телецентрической системы. В качестве ФП в модели используются параметры панхроматической ПЗС-матрицы Kodak KAI-2020 [3].

Вышеперечисленные соотношения сведены в табл. 1.

Таблица 1

Соотношение параметров компонентов оптической схемы контроля

Диаметр ТО (оптимальный) ФРТ объектива коллиматора, диаметр на полувысоте ФРТ объектива телецентрической системы, диаметр на полувысоте Размер пикселя ФП, квадрат со стороной

37,5 мкм 15 мкм 15 мкм 7,4 мкм (7,5 мкм)

5 пикс 2 пикс 2 пикс 1 пикс

Целью моделирования явилось определение размера ТО, который в рассматриваемой оптической схеме контроля будет вызывать меньшую погрешность измерений, вызванную дискретностью ФП контролируемого прибора, а также оценить влияние шумов ФП на погрешность измерений.

Телецентрическая система

Осветитель

ТО Изобража- Изобража-

(прозрач- ющая 1 1 ющая

ная точка —► оптическая оптическая —►

на темном система 1 | система

поле) (объектив) ! ! (объектив)

Матричный ФП, являющийся отсчетным устройством

Устройство обработки сигнала

Рис. 1. Структурная моделируемая оптическая схема контроля Fig. 1. Block diagram of the simulated optical system

Наука итехника, № 5, 2015

Математическая реализация моделируемой оптической схемы контроля. Для исследования свойств и величины погрешности была построена математическая модель изображения ТО на ФП в среде МаШСаа.

В модели использовались следующие параметры объектива: фокусное расстояние f ' = = 150 мм, диаметр выходного зрачка П = 150 мм, линейное увеличение рх = -1. Рисунок ТО описывается функцией Т(г), где г(х, у) =

= \1 х" + у . Шаг дискретизации (рис. 2), используемый в математической модели, составляет аХ, ёу = 2,5 мкм (~1/3 пикс), меньший шаг дискретизации не приводит к существенному увеличению точности расчета, при этом значительно увеличивая его продолжительность. Если пренебречь аберрациями объектива, то математически передаточная функция объектива выражается ФРТ объектива, которая описывается функцией Бесселя 1-го рода 1-го порядка Л1 [4, 5]:

B(r) =

(

2 J 1( m( r)) m( r)

Y

где т( г) = 2п / (ХЫЛ'г), г( х, у) = ^ х2 + у2,

ЫЛ' = 0,05 - числовая апертура объектива в пространстве изображений; X = 590 нм - основная длина волны.

Шаг дискретизации в модели

S7

Пиксель ФП

Рис. 2. Соотношение между размером ТО (серая область) и размером пикселя ФП для круглого ТО размером 5 пикс Fig. 2. The relationship between a size of a test-object (gray area) and a size of a photodetector pixel for a round test-object with size 5 pixels

Для получения распределения энергии изображения ТО E1( r), находящегося в беско-

Наука итехника, № 5, 2015

нечности, т. е. после коллиматора, необходимо произвести свертку функций изображения ТО и ФРТ объектива

Е1(г) = В( г)Т (г).

Распределение энергии изображения ТО на ПЗС-матрице Е2(г), т. е. после прохождения второго объектива, определяется повторной сверткой

Е 2(г) = В(г) Е1(г).

Координаты центра тяжести изображения ТО на ПЗС-матрице Сх, Су в долях пикселя определяются как [6]:

Cx = -

TTi

/ v / у n

n=1 m=1

N M

T Th

-; Cy =

TTin

„m

TTin

где 1пт - величина сигнала в пикселе п, т; Ы, М - число столбцов и строк матрицы яркостей; п, т - порядковые номера пикселей по столбцам и строкам матрицы.

С помощью формул для определения координат центра тяжести производится непосредственно оценка координат изображения ТО, а также осуществляется интерполяция результатов измерений дискретной матричной ФП-структурой на внутренние точки интервалов дискретизации. С помощью этих формул можно также оценить координаты изображения ТО с погрешностью, меньшей, чем интервал дискретизации ФП, т. е. на субпиксельном уровне. Погрешность определения по этим формулам имеет две составляющие: интерполяционную и флуктуационную (шумовую) [7].

Интерполяционная погрешность определения зависит от положения центра изображения ТО относительно центра пикселя, представляет собой отклонение математического ожидания оценки от истинного значения координаты и является систематической при заданных форме распределения и шаге дискретности матричной структуры ФП. Погрешность интерполяции тем меньше, чем меньше шаг дискретности ФП. Но при уменьшении шага дискретности квадратично возрастает число элементов и соответственно загрузка вычислительных средств, выполняющих оценку.

Флуктуационная (шумовая) погрешность определения порождается в основном дробовым шумом наблюдаемого поля и характеризуется средним квадратическим отклонением (СКО) оценки от его среднего значения [7]. Снизить данную погрешность можно путем уменьшения размера ТО при сохранении общей энергии сигнала в изображении ТО. Это приводит к увеличению резкости края изображения ТО. Если размер ТО становится сопоставимым по размерам с пикселем, то большинство энергии сигнала концентрируется на одном пикселе, что приводит к увеличению погрешности. Другим способом уменьшения погрешности является уменьшение размера пикселя при сохранении размера ТО [7].

Подбор оптимального соотношения между размером ТО и размером элемента ФП. Чтобы определить величину интерполяционной погрешности, производилось смещение изображения ТО относительно пикселей ФП. Аналогично [8], погрешность имеет периодический характер с периодом 1 пикс, т. е. при смещении изображения ТО на величины 0,25 и 0,75 пикс относительно первоначального положения погрешность будет максимальной, а при смещении на 0,5 либо 1,0 пикс относительно первоначального положения погрешность равняется нулю.

Для определения оптимального размера круглого ТО смоделированы ТО с различными размерами рисунков. По результатам моделирования определена интерполяционная погрешность для круглых ТО с различными размерами (рис. 3). Значения интерполяционной погрешности приведены для ТО размером до 20 пикс, дальнейшее увеличение размера ТО не приводит к существенному изменению интерполяционной погрешности.

Из анализа полученных результатов видно, что к наименьшей интерполяционной погрешности приводят ТО диаметрами 5, 13, 15 пикс, наибольшая получена для ТО диаметрами 1-4, 6, 7, 9-11 пикс. Для ТО диаметром 5 пикс интерполяционная погрешность составляет 0,000018 пикс, для 13 ее величина равна 0,000029 пикс, для 15 - 0,00004 пикс. ТО диаметром 12 пикс и более не дают значительной погрешности. Поскольку ТО размером 5 пикс приводит к наименьшей величине интерполяционной погрешности, то ТО с таким размером используется в дальнейших расчетах.

СКО определения центра тяжести ТО, вызванное шумами ФП. Для ПЗС-матриц видимого диапазона существенными шумами, влияющими на точность регистрации полезного сигнала, являются (по возрастанию): дробо-вый шум темнового сигнала, шум считывания, фотонный дробовый шум. Дробовый шум подчиняется распределению Пуассона, в соответствии с которым дисперсия сд? количества носителей заряда (электронов) равна среднему значению числа носителей заряда. Носители заряда в ФП могут быть генерированы и в отсутствие внешней засветки. Поэтому различают две составляющие дробового шума: шум, создаваемый фотогенерированными зарядами (фотонный), и шум темнового сигнала птемн, определяемый [9]:

птемн it,

где i = 40 э-/с - темновой ток; t = 0,237 с - время накопления заряда для ПЗС-матрицы Kodak KAI-2020 [3].

л о

п р

ре

0, I 0, ¡э 0

с

| 0,

е рег 0, о п

0,

006 005 -004 -003 002 -001 -0

I

Ч-1-1-h

0 1 2 3

\ 1 Ч

45

Н-h

—I—I—I-

* 4

7 8 9 10 11 12 13 14 15 16 17 18 19 20 Размер ТО, пикс

Рис.

3. Интерполяционная погрешность для круглого ТО с различными размерами Fig. 3. The interpolation error for a round test-object with different sizes

Наука итехника, № 5, 2015

6

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Тогда дисперсия дробового шума а^р (г),

являющаяся параметром распределения Пуассона, определяется значением распределения энергии изображения ТО на ПЗС-матрице Е2(г)

и темновым сигналом пт,

сдр (r) = E 2( r) + nT

С учетом данного параметра сформируем распределение энергии на ФП с дробовым шумом E3(r). Для ФП матрицы Kodak KAI-2020 при максимальной частоте считывания данных 20 МГц СКО шума считывания, имеющего распределение Гаусса, составляет ссч =16 э-и определяется конструкцией ФП.

тяжести ТО, вызванное шумами ФП, составило 0,021 пикс для выборки 100.

Одним из методов уменьшения влияния шумов является введение величины порога шумов, значения ниже которого принимаются нулевыми [10]. По результатам моделирования определена зависимость между СКО определения координат энергетического центра тяжести ТО, вызванное шумами ФП и порога шумов (рис. 4). Значения порога брали с шагом дискретизации АЦП, равным ~40 э-. СКО определяли для выборки 100. Значительное улучшение наблюдается для порога в ~40 э-. Увеличение порога более ~80 э- не приводит к ощутимым улучшениям.

О о

0,020 0,015 40,010 0,005 --

+

+

+

+

+

ч

0

40

80

160

200

240

120 Порог, э-

Рис. 4. СКО определения координат энергетического центра тяжести ТО для различных значений порога шумов Fig. 4. MSE of test-object energy center of gravity coordinates determine for different values of a noise threshold

Тогда сформируем распределение энергии Есч(г), вызванной шумом считывания. Таким образом, распределение энергии изображения ТО на ФП Е4(г) с учетом шумов будет определяться суммой

Е 4(г) = Е 3( г) + Есч (г).

Распределине энергии изображения ТО на ФП Е4(г) является анлоговым. Далее произведем оцифровку распределения Е4(г). С учетом предельной величины входного заряда ПЗС-матрицы КА1-2020 [3] для 10-битного аналого-цифрового преобразователя (АЦП) шаг дискретизации составит ~40 э-.

Проводили численный расчет распределения энергии изображения ТО на ФП с учетом дискретизации. Наличие неравномерной по пространству шумовой составляющей приводит к дополнительной погрешности. По результатам моделирования установлено, что СКО определения координат энергетического центра

Наука итехника, № 5, 2015

В Ы В О Д Ы

1. Исследовались факторы, влияющие на точность определения энергетического центра тяжести ТО в оптико-электронных приборах. Можно выделить: интерполяционную погрешность, представляющую собой отклонение математического ожидания оценки от истинного значения координаты, являющуюся систематической при заданных форме распределения и шаге дискретности ФП, зависит от положения центра изображения ТО относительно центра пикселя; флуктуационную (шумовую) погрешность, порождаемую в основном дробовым шумом наблюдаемого поля и характеризующую ся СКО оценки от его среднего значения. Для определения этих погрешностей создана математическая модель контроля телецентрической системы коллиматором.

2. Подобрано оптимальное соотношение между размером ТО и размером пикселя ФП. Наименьшую погрешность вызывают ТО диаметрами 5, 13, 15 пикс. ТО диаметром 12 пикс

и более не приводят к значительной величине погрешности.

3. Для уменьшения влияния шумов предложено принять за нулевые значения сигнала, меньшие, чем удвоенный шаг дискретизации АЦП. Таким образом, СКО определения энергетического центра тяжести ТО уменьшается примерно в четыре раза - до величины 0,005 пикс.

Л И Т Е Р А Т У Р А

1. Андреев, А. А. Оптические измерения: учеб. пособие / А А. Андреев, Е. В. Гаврилов, Г. Г. Ишанин. - М.: Университетская книга; Логос, 2008. - 416 с.

2. Кириловский, В. К. Оптические измерения / В. К. Кириловский, Ле Зуй Туан. - СПб.: СПбГУ ИТМО, 2008. - Ч. 6: Инновационные направления в оптических измерениях и исследованиях оптических систем. - 131 с.

3. Device Performance Specification. Kodak KAI-2020, Kodak KAI-2020M, Kodak KAI-2020CM [Electronic resource] // Datasheet Archive. - Mode of Access: http://www.data sheetarchive.com/dl/Datasheets-IS20/DSA00392978.pdf. -Date of Access: 18.03.2015.

4. Unraveling Bessel Beams / Angela Dudley ^t al.] // Optic & Photonics News, 2013. - Vol. 24, No 6. - Р. 22-29.

5. Handbook of Оptics. Vol. II. Design, Fabrication and Testing; Sources and Detectors. Radiometry and Photometry / editors Michael Bass, Virendra N. Mahajan, Eric Van Stry-land. - New York: Mc Graw Hill, 2010. - 1264 p.

6. Методы компьютерной обработки изображений / под ред. В. А. Сойфера. - 2-е изд., испр. - М.: Физмалит, 2003. - 784 с.

7. Федосеев, В. И. Прием пространственно-временных сигналов в оптико-электронных системах (пуассонов-ская модель) / В. И. Федосеев. - М.: Университетская книга, 2011. - 232 с.

8. Аванесов, Г. А. Исследование смещения энергетического центра изображений звезд относительно геометрического центра на ПЗС матрице и коррекция методической ошибки / Г. А. Аванесов, Т. В. Кондратьева, А. В. Никитин // Всероссийская научно-техническая конференция «Современные проблемы определения ориентации и навигации космических аппаратов», г. Таруса 22-25 сентября 2008 г. - М.: Институт космических исследований РАН, 2009. - С. 421-446.

9. Ляшко, О. М. Проектирование оптико-электронных приборов наблюдения: учеб.-метод. пособие / О. М. Ляшко. - Минск: БНТУ, 2009. - 77 с.

10. Белоусов, Ю. И. Особенности алгоритмов цифровой обработки изображений в оптико-электронных системах нового поколения / Ю. И. Белоусов, В. Т. Фисен-ко // Изв. вузов. Приборостроение. - 2009. - Т. 52, № 8. -С. 7-12.

R E F E R E N C E S

1. Andreev, A. A., Gavrilov, E. V., & Ishanin, G. G. (2008) Optical Measurements. Мoscow, Universitetskaya Kniga. 416 p. (in Russian).

2. Kirilovsky, V. K., & Le Zuj Tuan. (2008) Optical Measurements. Part 6: Innovative Directions in Optical Measurements and Investigations of Optical Systems. Saint-Petersburg.: Saint Petersburg State University of Information Technologies, Mechanics and Optics (SSU ITMO). 131 p. (in Russian).

3. Device Performance Specification. Kodak KAI-2020, Kodak KAI-2020M, Kodak KAI-2020CM. Datasheet Archive. Available at: http://www.datasheetarchive.com/dl/Datasheets-IS20/DSA00392978.pdf. (Accessed 18 March 2015) (in Russian).

4. Angela Dudley, Martin Lavery, Miles Padgett, & Andrew Forbes. (2013) Unraveling Bessel Beams. Optic & Photonics News, 24 (6), 22-29.

5. Michael Bass, Virendra N. Mahajan, & Eric Van Stry-land. (2010) Handbook of Optics. Vol. II. Design, Fabrication and Testing; Sources and Detectors; Radiometry and Photometry. New York, Mc Graw Hill. 1264 p.

6. Soyfer, V. A., Gashnikov, M. V., Glumov, N. I., Il'iasova, N. Iu., Miasnikov, V. V., Popov, S. B., & Ser-geev, V. V. (2003) Methods for Computer Image Processing. 2nd Edition. Мoscow, Fizmalit. 784 p. (in Russian).

7. Fedoseev, V. I. (2011) Reception of Spatial-Time Signals in Optoelectronic Devices (Poisson Model). Мoscow, Universitetskaya Kniga. 232 p. (in Russian).

8. Avanesov, G. A., Kondratieva, T. V., & Nikitin, A. V. (2009) Investigations on Deviations in Star Image Energy Center with Regard to Geometric Center on CCD-Matrix and Correction of Methodical Error. Russia Scientific-Technical Conference "Modern Problems of Determining the Orientation and Navigation Satellites". Moscow: Space Research Institute, Russian Academy of Sciences (SRI RAS), 421-446 (in Russian).

9. Liashko, O. M. (2009) Designing of Optoelectronic Observation Devices. Minsk: BNTU. 77 p. (in Russian).

10. Belousov, Yu. I., & Fisenko, V. T. (2009) Particularities in Algorithms of Image Digital Processing in Optoelectronic Systems of Next Generation. Izv. Vuzov. Priboro-stroenie [Proceedings of the Higher Education Institutions. Instrument engineering], 52 (8), 7-12 (in Russian).

Поступила 08.06.2015

Наука итехника, № 5, 2015

i Надоели баннеры? Вы всегда можете отключить рекламу.