Научная статья на тему 'Оценка напряженно-деформированного состояния деталей, подверженных кавитационно-абразивному воздействию'

Оценка напряженно-деформированного состояния деталей, подверженных кавитационно-абразивному воздействию Текст научной статьи по специальности «Технологии материалов»

CC BY
188
63
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ДЕФОРМАЦИЯ / НАПРЯЖЕНИЕ / КАВИТАЦИЯ / АБРАЗИВ / ИЗНОC

Аннотация научной статьи по технологиям материалов, автор научной работы — Тищенко Л. А., Ковалев А. А., Шашурин В. Д.

В статье приводятся результаты количественной оценки параметров процессов, протекающих в материалах деталей, подверженных кавитационно-абразивному воздействию при эксплуатации в агрессивных жидких средах. Авторами предлагается алгоритм оценки напряженно-деформированного состояния материалов элементов технических систем при воздействии на них абразивных частиц и микрогидроструй, возникающих вследствие схлопывания кавитационных полостей. Для описания физической картины процесса выдвигается несколько гипотез, обоснованность которых подтверждается в ходе статьи. На основании предложенного алгоритма, с использованием программных средств выполнены оценочные расчеты существенных параметров, позволяющих судить о напряженно-деформированном состоянии ряда материалов. Результаты проведенных расчетов представлены в виде функциональных зависимостей.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Оценка напряженно-деформированного состояния деталей, подверженных кавитационно-абразивному воздействию»

НАУЧНОЕ ИЗДАНИЕ МГТУ ИМ. Н. Э. БАУМАНА

НАУКА и ОБРАЗОВАНИЕ

Эл № ФС77 • 48211. Государственная регистрация №0421200025. ISSN 1994-0408

электронный научно-технический журнал

Оценка напряженно-деформированного состояния деталей,

подверженных кавитационно-абразивному воздействию

# 12, декабрь 2013

DOI: 10.7463/1213.0623531

Тищенко Л. А., Ковалев А. А., Шашурин В. Д.

УДК 620.11

Россия, МГТУ им. Н.Э. Баумана leonid.tichenko@gmail .com kovalevarta@ gmail. com [email protected]

Большое количество деталей и узлов технологического оборудования, применяемого в различных областях науки и техники и эксплуатирующегося в агрессивных жидких средах, подвергаются кавитационно-абразивному изнашиванию. Этот вид изнашивания встречается в центробежных и вихревых насосах, центрифугах, сепараторах, выпарных аппаратах, трубопроводах и другом оборудовании, в котором происходит интенсивное движение многофазных жидких технологических сред. Наиболее интенсивному кавитационно-абразивному изнашиванию подвергаются детали проточной части центробежных насосов: внутренние поверхности корпусов, крышки, уплотнения, рабочие колеса, детали проточной части оборудования гидроабразивной резки (Г АР) и т.п [1]. Область применения оборудования, как было сказано, весьма обширна: судостроение (гребные винты, корпуса судов и пр.), машиностроение (лопатки насосов, трубопроводы и пр.), производство оборудования для обработки материалов (гидроабразивная резка) и многое другое.

Одним из основных факторов, влияющих на срок эксплуатации технических систем, является износ материала конструкции. Можно выделить три основных способа решения проблемы износа технических и технологических систем: выбор оптимальных режимов эксплуатации, включая конструктивные мероприятия по снижению износа; прогнозирование износа; разработка и применение износостойких материалов. При кавитационно-абразивном изнашивании распространение получили все три способа, а

предпочтение тому или иному из них отдается в зависимости от интенсивности износа и условий эксплуатации.

В связи с вышеизложенным актуальными являются вопросы, связанные с прогнозированием кавитационно-абразивной стойкости материалов в реальных условиях эксплуатации технических и технологических систем, решение которых позволит обоснованно выбирать материалы (стали, сплавы) для изготовления конструкций и оценивать уровень их износа за время эксплуатации. Для решения поставленных задач необходимо провести теоретические и экспериментальные исследования кавитационно-абразивного износа деталей технических и технологических систем и выявить основные факторы, влияющие на их кавитационно-абразивную стойкость.

Целью работы является оценка напряженно-деформированного состояния деталей, подверженных кавитационно-абразивному воздействию на основании математического аппарата механики контактного разрушения.

Кавитационно-абразивное изнашивание деталей и узлов происходит вследствие воздействия на поверхность детали абразивных частиц и микрогидроструй, возникающих в результате схлопывания кавитационных полостей. Можно полагать, что износ является следствием многократного внедрения "жесткого индентора" в поверхность изнашиваемого тела ("мишени"), и в роли "индентора" выступает соответственно либо твердая абразивная частица, либо микрогидроструя. Уподобление жидкости твердому телу оправдывается тем, что при высоких скоростях удара, когда период релаксации перестает быть очень малым сравнительно со временем контакта (время между ударами больше времени взаимодействия), жидкость приобретает упругость формы, т.е. свойства твердого тела [1].

При взаимодействии индентора (микрогидроструи или абразивной частицы) с поверхностью твердого тела возникновение поверхностных трещин и их рост происходят в сложном неоднородном поле напряжений.

В связи с этим, для дальнейших исследований, направленных на уточнение и экспериментальное подтверждение параметров напряженно-деформируемого состояния материала мишени, а также формулирование и обоснование критериев динамического разрушения материала мишени необходима оценка поля напряжений, возникающего при ударном взаимодействии. Для установления характера поля контактных напряжений необходимо знать геометрию индентора и его и кинематические параметры.

Поскольку в момент удара о поверхность твердого тела скорость микрогидроструи в центре выше, чем на периферии, а значит, в центре контакта возникает максимальное давление, то выберем расчетную схему взаимодействия микрогидроструи с поверхностью

как взаимодействие сферы с упругим полупространством. Это является тем более целесообразным, принимая во внимание, что во многих моделях абразивные частицы описываются как сферические тела, и удар такой абразивной частицы о поверхность мишени возможно описать как вышеизложенное взаимодействие.

Предположим, что микрогидроструя - это цилиндр высотой Н и диаметром сечения D. Поскольку характер распределения давления по контактной площадке для инденторов типов цилиндр и сфера одинаковый, а также учитывая, что наиболее хорошо изученным и часто используемым в практических применениях является случай контакта сферического индентора радиуса R=D/2 с упругим полупространством под действием силы F (так называемый герцевский контакт или герцевское нагружение [2]), все последующие расчеты будут проводиться для жесткого индентора типа сфера, внедряющийся в упругое полупространство. Таким образом, представляется возможным смоделировать взаимодействие с поверхностью детали как абразивной частицы, так и микрогидроструи, т.е. учесть обе составляющих кавитационно-абразивного износа в рамках одной расчетной схемы.

При внедрении индентора в полупространство на глубину h под действием нормально приложенной к плоскости контактирования статической силы F образуется контактная площадка диаметром 2a, по которой сила F распределяется в виде давления ^определенным образом. При анализе упругого соударения считают, согласно Герцу, что соотношение между контактной силой F и сближением h можно представить в виде [2]

3

F = к • h(t )2, (1)

где h(t) - функция сближения от времени, м; к - величина, которая определяется следующим выражением [3]

кЛГК- E1'E2

(i - v2) E2+(1-V22) E

(2)

где R - радиус сферы, м;

Ei - модуль Юнга твердого тела (мишени), ГПа;

Е2 - модуль Юнга индентора, ГПа;

V2 - коэффициент Пуассона твердого тела (мишени);

V2 - коэффициент Пуассона индентора.

Функция сближения от времени h(t) с высокой точностью аппроксимируется выражением [3]

к(г)« 0,995-\-srn — , г е[0, д, (3)

V to у

где к0 - контактное максимальное сближение, м;

г - текущее время, с;

г0 - продолжительность удара, с.

Наибольшее значение величины сближения к0 достигается в тот момент, когда

дк

— = 0, откуда следует

дг

к0 =

2

' 5 Л

— ти2 V 4к у

(4)

где т - эквивалентная масса индентора, кг; и - скорость удара индентора, м/с.

Максимальное сближение во временной зависимости при г = равно

ктахф ~ 0,995- к. (5)

Эквивалентную массу ударяющегося индентора будем рассчитывать по формулам (6) и (7), соответственно, для микрогидроструи и абразивной частицы:

т = у.р = п.яСтруи.нстт ■ p, (6)

где Яструи - радиус микрогидроструи, м; Нструи - высота микрогидроструи, м; р - плотность жидкости, кг/м3;

4

т = 3 П Яабр ' Рабр (7)

где Яабр-радиус абразивной частицы, м; рабр- плотность материала абразива, кг/м3.

Продолжительность удара рассчитывается согласно выражению

к

г, = 2,94 и°. (8)

Максимальная контактная сила Г0 (¿) достигается при t = .

При контактировании сферы с упругим полупространством образуется контактная площадка радиусом, равным [2]

а(0

• э 1

3 Г (t )(1 -V!2) Я

4 Е

(9)

где Г ^) - приложенная сила, Н; Я - радиус сферы, м;

V - коэффициент Пуассона твердого тела (мишени); Е - модуль Юнга, ГПа.

Максимальный радиус контактной площадки а0 (^ достигается при t = . Развиваемое на контактной площадке среднее давление равно

/ ч г (О

ж • a(t)

В центре контакта возникает максимальное давление при t = , равное

я>(0 = си)

2 ж • а(г)

Характер распределения давления по контактной площадке является эллиптическим:

Чг (t) = 9о(0^1 - ОТ"' (12)

здесь г - расстояние, отсчитываемое от центра контактирования в радиальном направлении.

В работе Герца [2] были получены количественные соотношения только для напряжений, возникающих на поверхности, знания которых, однако, недостаточно для детального описания контактного разрушения. Впервые решение для всего поля напряжений получил Губер [2], затем исследования в этом направлении проводили Фукс [2], Мортон и Клоуз [2] Гамильтон и Гудмен [2].

В области, примыкающей к границе контактной площадки, и за ней действуют радиально направленные растягивающие напряжения с1 и при удалении от контактной зоны медленно уменьшаются по закону [2]:

1- 2у,

Г Л 2

' а

- . (13)

V г У

Сжимающее напряжение *с2 равно растягивающему напряжению с противоположным знаком [2]

С2=-С (14)

В соответствии с решением Губера напряжение с3 в декартовой системе координат будет определяться следующим выражением [2]

С3 = 4 (15)

где с3 - главное нормальное напряжение, проходящее через ось нагруженияг; да - среднее давление на контактной площадке, Па;

у/г г) = -

{ \3 2

2

а и

2 , 2 2 и + а 2

(16)

Vvw у

здесь и - положительный корень квадратного уравнения

и2 +(а2 - г2 - г2) и - 12а2 = 0. (17)

Решая квадратное уравнение (16), получим положительный корень

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

-а2 + г2 + г2 а2 - г2 - г2 )2 + 4г2а2

и =-—2--(18)

Условия (критерии) пластичности и разрушения являются важными обобщениями понятий пределов текучести и прочности. В данной работе внимание уделено трем критериям.

1) Условие пластичности Сен-Венана (Треска-Сен-Венана-Леви, критерий наибольших касательных напряжений). Согласно этому критерию свойство пластичности материала при сложном напряженном состоянии начинает проявляться тогда, когда максимальное касательное напряжение достигает некоторого предельного постоянного значения. Условие пластичности Сен-Венана имеет вид [4, 5]

где <, < - главные напряжения, Па.

2) Условие (критерий) пластичности Мизеса (Губера-Мизеса-Генки) (критерий удельной потенциальной энергии изменения формы).

Согласно этому критерию материал переходит в пластическое состояние тогда, когда октаэдрическое касательное напряжение достигает некоторого предельного постоянного значения. При возникновении пластических деформаций предельного значения достигает та часть удельной потенциальной энергии, которая обусловлена изменением формы.

Условие пластичности Мизеса [4, 5] имеет вид

< = ^>/ (< <2 )2 + (<2 -<)2+<3 -<)2

(20)

где <2, < - напряжения, Па.

3) Теория прочности Мора.

Согласно этой теории нарушение прочности происходит тогда, когда на некоторой площадке осуществляется наиболее неблагоприятная комбинация нормального и касательного напряжений. Условием прочности считается превышение предельного напряжения

<пр =<1 - к <3 (21)

где опр- предельное напряжение материала, Па; <, <3 - главные нормальные напряжения, Па; к- коэффициент.

Входными данными для решения герцевского контакта, соответственно для микрогидроструи и частицы абразива, являются следующие значения:

- радиус индентораЯ = Яструи = 0,26 • 10-3 м и Я = Яабразива = 10-4 м;

- высота индентора Н = Нструи = 2 • Ятах = 2 • 3,6 • 10-3 = 7,2 • 10-3 м;

- скорость удара индентора изменяется в диапазоне от 0 до 400 м/с;

- свойства материалов мишени и индентора приведены соответственно в таблице 1 и таблице 2.

Таблица 1. Свойства материалов мишени

Материал Плотность, кг/м3 Модуль Юнга, ГПа Коэффициент Пуассона

20Х13 7670 218 0,28

12Х18Н10Т 7920 198 0,28

14Х17Н2 7750 197 0,28

20 7859 213 0,26 (0,24-0,28)

18ХГТ 7800 211 0,28 (0,25-0,30)

30ХГСА 7850 215 0,28 (0,25-0,30)

БрАЖ9-4 7500 116 0,34 (0,32-0,36)

БрАЖМц10-3-1.5 7500 100 0,34 (0,32-0,36)

ПТ-3В 4450 118 0,32

ВТ1-0 4505 112 0,32

МНЖМц28-2,5-1,5 8820 182 0,30

БрАЖМц10-3-1.5 7500 100 0,34 (0,32-0,36)

ПТ-3В 4450 118 0,32

ВТ1-0 4505 112 0,32

МНЖМц28-2,5-1,5 8820 182 0,30

НМЖМц30-1-1 8900 145 0,30

АМг6 2640 71 0,34 (0,32-0,36)

ВК8 14800 598 0,21

Таблица 2. Свойства материалов индентора

Материал Плотность, кг/м3 (Модуль объёмной упругости, K), Модуль Юнга, E ГПа Коэффициент Пуассона

вода 1000 2 (K) 0 (абсолютно хрупкое твердое тело)

абразив (кварцевый песок) 4630 30 (E) 0,25

Решение герцевского контакта для случая взаимодействия микрогидроструи (абразивной частицы) с мишенью проводилось по написанной программе, блок-схема которой приведена на рисунке 1.

Рис. 1. Блок схема программы расчета Эквивалентная масса сферического индентора в случае взаимодействия микрогидроструи с мишенью равна m = V ■ р = 1,53 ■ 10~9 ■ 1000 = 1,53 ■ 10"6 кг.

Для случая взаимодействия абразивной частицы с мишенью эквивалентная масса

согласуется с [6] и равна m = V

кг.

* част ^ V s

Ниже на рисунках 2-12 приведены графики зависимостей основных величин от скоростей инденторов двух типов (микрогидроструя, абразив) в диапазоне от 10 м/с до 400 м/с для различных материалов.

>:101С

-*10К

BKS 3x10м

в::

20

W*

1x10"

j/^ —

100 200 300 400

10 V 400

Рис. 2. Зависимость среднего давления от скорости индентора (абразивная частица)

Рис. 3. Зависимость главного напряжения о! от скорости индентора (абразивная частица)

Рис. 4. Зависимость эквивалентного напряжения по критерию Мизеса от скорости

индентора (абразивная частица)

Рис. 5. Зависимость главного напряжения о1 от скорости индентора (микрогидроструя)

Рис. 6. Зависимость главного напряжения о2 от скорости индентора (микрогидроструя)

Рис. 7. Зависимость главного напряжения о3 от скорости индентора (микрогидроструя)

Рис. 8. Зависимость эквивалентного напряжения по критерию Сен-Венана от скорости

индентора (микрогидроструя)

Рис. 9. Зависимость эквивалентного напряжения по критерию Мизеса от скорости

индентора (микрогидроструя)

Рис. 10. Зависимость эквивалентного напряжения по критерию Мора от скорости

индентора (микрогидроструя)

Рис. 11. Зависимость среднего давления от скорости индентора (микрогидроструя)

1,м

Рис. 12. График зависимости силы удара от времени (микрогидроструя)

Время релаксации сопоставимо с временем жизни каверны 12,46 -10 3 с . По

полученным данным продолжительность удара (0 достигает от 4,15 -10 6 до

4,81 -10 6 с (рисунок 12), т.е. время взаимодействия значительно меньше времени

релаксации.

Для уточнения и корректировки результатов оценки напряженно-деформируемого состояния мишени в зоне удара, приведенных на рисунках 2-12, необходимо разработать специализированное экспериментальное оборудование и провести соответствующие эксперименты, постановкой которых занимается исследовательская группа в настоящее время.

Можно сделать вывод, что изложенная выше методика оценки напряженно-деформированного состояния материалов заслуживает дальнейшего рассмотрения и более детальной проработки. В частности, на данном этапе исследования представляется целесообразным проведение работ по определению характера разрушения материала при кавитационно-абразивном изнашивании (хрупкое, пластическое, усталостное). Одним из возможных способов решения этой проблемы может быть выполнение расчетов численными методами механики сплошной среды с последующим проведением серии специализированных экспериментов.

* 10

Список литературы

1. Козырев С.П. Гидроабразивный износ металлов при кавитации. М.: Машиностроение, 1971. 240 с.

2. Колесников Ю.В., Морозов Е.М. Механика контактного разрушения. М.: Наука. Гл. ред. физ.-мат. лит., 1989. 224 с.

3. Айзикович С.М., Александров В.М., Аргатов И.И., Бабешко В.А., Бабин А.П., Бардзокас Д.Я., Белоконь А.В., Белянкова Т.И., Бурак В.Ю., Бурак И.И., Ватульян А.О., Ворович Е.И., Глаговский В.Б., Горшков А.Г., Горячева И.П, Гришин С.А., Зеленцов В.Б., Зернин М.В., Златина И.Н., Златин А.Н., Кадомцев И.Г., Калинчук В.В., Коваленко Е.В., Кравчук А.С., Маневич Л.И., Манжиров А.В., Морозов Е.Л., Морозов Н.Ф., Назаров С.А., Наседкин А.В., Никишин ВС., Нуллер Б.М., Павлик Г.Н., Пановко М.Я., Петров Ю.В., Пожарский Д.А., Пряхина ОД, Селезнев М.Г., Сеник Н.А., Симонов И.В., Смирнов В.И., Солдатенков И.А., Сумбатян М.А., Тарлаковский Д.В. Тукодова О.М., Филиппова Л.М., Чебаков М.И., Чекина О.Г., Шматкова А.А. Механика контактных взаимодействий : сб. науч. работ. М.: Физматлит, 2001. 672 с.

4. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: учеб. для вузов / под ред. А.В. Александрова. 3-е изд., испр. М.: Высшая школа, 2003. 560 с.

5. Работнов Ю.Н. Сопротивление материалов. М.: Физматгиз, 1962. 456 с.

6. Барзов А.А., Галиновский А.Л. Технологии ультраструйной обработки и диагностики материалов. М.: МГТУ им. Н. Э. Баумана, 2009. 115 с.

SCIENTIFIC PERIODICAL OF THE BAUMAN MSTU

SCIENCE and EDUCATION

EL № FS77 - 48211. №0421200025. ISSN 1994-040S

electronic scientific and technical journal

Estimation of the stress-strain state of work pieces affected by

cavitational-abrasive wear

# 12, December 2013

DOI: 10.7463/1213.0623531

Tischenko L.A., Kovalev A.A., Shashurin V.D.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Bauman Moscow State Technical University, 105005, Moscow, Russian Federation

leonid.tichenko@gmail .com kovalevarta@ gmail. com [email protected]

This article presents the results of quantitative assessment of process parameters which occur in materials of work pieces susceptible to cavitational-abrasive wear when in operation in aggressive fluid media. The authors propose a new algorithm for estimating the stress-strain state of materials of technical system's elements affected by abrasive particles and micro water jets resulting from collapse of cavity pockets. Several hypotheses were introduced for describing this physical phenomenon; they were justified in this work. On the basis of the proposed algorithm evaluation calculations of existent parameters which allow one to make conclusions on the stress-strain state of several materials were performed. The obtained results were presented in the form of functional dependences.

Publications with keywords: deformation, stress, cavitation, ABRASIVE, wear Publications with words: deformation, stress, cavitation, ABRASIVE, wear

References

1. Kozyrev S.P. Gidroabrazivnyy iznos metallovpri kavitatsii [Hydroabrasive wear of metals under cavitation]. Moscow, Mashinostroenie, 1971. 240 p.

2. Kolesnikov Yu.V., Morozov E.M. Mekhanika kontaktnogo razrusheniya [Mechanics of contact destruction]. Moscow, Nauka, 1989. 224 p.

3. Ayzikovich S.M., Aleksandrov V.M., Argatov I.I., Babeshko V.A., Babin A.P., Bardzokas D.Ya., Belokon' A.V., Belyankova T.I., Burak V.Yu., Burak I.I., Vatul'yan A.O., Vorovich E.I., Glagovskiy V.B., Gorshkov A.G., GoryachevaI.P, Grishin S.A., Zelentsov V.B., Zernin M.V., Zlatina I.N., Zlatin A.N., Kadomtsev I.G., Kalinchuk V.V., Kovalenko E.V., Kravchuk A.S., Manevich L.I., Manzhirov A.V., Morozov E.L., Morozov N.F., Nazarov S.A., Nasedkin A.V., Nikishin B.C., Nuller B.M., Pavlik G.N., Panovko M.Ya., Petrov Yu.V., Pozharskiy D.A., Pryakhina OD, Seleznev M.G., Senik N.A., Simonov I.V., Smirnov V.I.,

Soldatenkov I.A., Sumbatyan M.A., Tarlakovskiy D.V. Tukodova O.M., Filippova L.M., Chebakov M.I., Chekina O.G., Shmatkova A.A. Mekhanika kontaktnykh vzaimodeystviy : sb. nauch. rabot [Mechanics of contact interactions : collected papers]. Moscow, Fizmatlit, 2001. 672 p.

4. Aleksandrov A.V., Potapov V.D., Derzhavin B.P. Soprotivlenie materialov [Resistance of materials]. Moscow, Vysshaya shkola, 2003. 560 p.

5. Rabotnov Yu.N. Soprotivlenie materialov [Resistance of materials]. Moscow, Fizmatgiz, 1962. 456 p.

6. Barzov A.A, Galinovskiy A.L. Tekhnologii ul'trastruynoy obrabotki i diagnostiki materialov [Technologies of ultra-jet-stream processing and diagnostics of materials]. Moscow, Bauman MSTU Publ., 2009. 115 p.

i Надоели баннеры? Вы всегда можете отключить рекламу.