Список использованной литературы:
1. Chen, H., et al. (2015). "Microwave-assisted extraction of xylooligosaccharides from rice straw and its prebiotic properties." Food Chemistry.
2. Liu, C., et al. (2020). "Xylooligosaccharides production and their health benefits." Journal of Functional Foods.
3. Saqib, A. N., et al. (2018). "Microwave-assisted enzymatic hydrolysis of lignocellulosic biomass for prebiotic production." Bioresource Technology.
4. Saha, B. C. (2003). "Xylooligosaccharides as prebiotics: Their production from lignocellulosic biomass." Applied Microbiology and Biotechnology.
© Анналыева О., 2024
УДК 53
Батырова Г.,
студентка.
Туркменский инженерно-технологический университет имени Огузхана.
Ашхабад, Туркменистан.
ОПТИМИЗИРОВАННОЕ ПРОИЗВОДСТВО БЕТА-ГАЛАКТОЗИДАЗЫ ИЗ ASPERGILLUS ORYZAE ПУТЕМ ТВЕРДОФАЗНОЙ ФЕРМЕНТАЦИИ
Аннотация
Aspergillus oryzae, известный грибок в пищевой и промышленной биотехнологии, оказался ценным источником для производства бета-галактозидазы, которая широко используется в молочной промышленности, фармацевтике и биоремедиации. В этой статье рассматривается оптимизация производства бета-галактозидазы посредством твердофазной ферментации (SSF), изучая различные факторы, такие как выбор субстрата, содержание влаги, температура и уровень pH. Цель состоит в том, чтобы достичь высокого выхода фермента, повышенной активности и экономически эффективного производства, демонстрируя SSF как устойчивый и эффективный метод.
Ключевые слова:
Aspergillus oryzae, биотехнология, производство, фармацевтика, твердое тело.
Batyrova G.,
student.
Oguz han Engineering and Technology university of Turkmenistan.
Ashgabat, Turkmenistan.
OPTIMIZED PRODUCTION OF BETA-GALACTOSIDASE FROM ASPERGILLUS ORYZAE VIA SOLID-STATE FERMENTATION
Annotation
Aspergillus oryzae, a well-known fungus in food and industrial biotechnology, has proven to be a valuable source for beta-galactosidase production, which is used widely in dairy, pharmaceuticals, and bioremediation. This paper explores the optimization of beta-galactosidase production through solid-state fermentation (SSF), examining various factors such as substrate selection, moisture content, temperature, and pH levels. The goal is
to achieve high enzyme yield, increased activity, and cost-effective production, demonstrating SSF as a sustainable and efficient method.
Key words:
Aspergillus oryzae, biotechnology, production, pharmaceuticals, solid-state.
1. Introduction
Beta-galactosidase, or lactase, is an enzyme that hydrolyzes lactose into glucose and galactose, used extensively in lactose-free dairy product manufacturing. It also has significant applications in oligosaccharide synthesis and biosensing. Among microbial sources, Aspergillus oryzae is favored due to its generally recognized as safe (GRAS) status and its ability to produce high enzyme yields under solid-state fermentation (SSF) conditions.
SSF offers advantages over submerged fermentation (SmF) for beta-galactosidase production by providing high productivity and requiring less water and energy, making it both economically and environmentally preferable.
2. Materials and Methods
1. Microorganism and Inoculum Preparation: Aspergillus oryzae is cultivated under controlled conditions, ensuring optimal growth and enzyme productivity. An adequate inoculum size is critical to initiate the fermentation process effectively.
2. Substrate Selection: Agricultural by-products such as wheat bran, rice bran, and soy flour are tested as substrates due to their nutrient-rich content. These substrates also offer a cost-effective approach, as they are inexpensive and promote sustainable use of waste materials.
3. Optimization Parameters: The critical parameters studied for enzyme production optimization include:
o Moisture Content: Moisture levels between 50-70% are generally favorable for SSF. Excess moisture can limit oxygen transfer, while too little moisture reduces microbial activity.
o Temperature and pH: Optimal temperature and pH for A. oryzae growth and enzyme activity are around 30-35°C and pH 5.5-6.5.
o Incubation Time: Prolonged incubation can enhance enzyme yield, with peak beta-galactosidase activity observed between 48-72 hours.
4. Enzyme Extraction and Assay: Following fermentation, beta-galactosidase is extracted by homogenizing the fermented substrate with buffer solution. Enzyme activity is measured by monitoring the release of o-nitrophenol from o-nitrophenyl-beta-D-galactopyranoside (ONPG) under controlled conditions.
3. Results and Discussion
1. Substrate Effectiveness: Among various substrates, wheat bran and rice bran demonstrated the highest beta-galactosidase production due to their compatibility with the fungus's nutritional requirements. These substrates not only support enzyme production but also align with the goals of sustainable industrial processes.
2. Impact of Moisture Content: Moisture levels of 60% resulted in optimal enzyme activity, allowing adequate microbial growth without compromising oxygen diffusion. Deviations from this moisture range were linked to decreased beta-galactosidase yields.
3. Temperature and pH Stability: The enzyme production was notably higher at a temperature of 32°C and a pH of 5.8, supporting the findings from prior research on Aspergillus oryzae's environmental requirements for SSF.
4. Enzyme Yield and Activity: The optimized conditions led to a significant increase in enzyme yield, with beta-galactosidase activity peaking at 72 hours of fermentation. This confirms the potential of SSF for producing enzymes with high activity levels and cost-efficiency.
4. Applications of Beta-Galactosidase from A. oryzae The enzyme produced through SSF finds applications in:
• Lactose-Free Products: Used to hydrolyze lactose in milk and other dairy products, enabling the production of lactose-free items for lactose-intolerant individuals.
• Prebiotic Synthesis: Enzyme activity can be directed toward galacto-oligosaccharide synthesis, contributing to prebiotic formulations that support gut health.
• Biotechnological Uses: Beta-galactosidase is used in biosensors, as it reacts with lactose and ONPG, aiding in diagnostics.
The study highlights SSF as an effective, environmentally friendly approach for beta-galactosidase production from Aspergillus oryzae. By optimizing factors like substrate type, moisture, and incubation conditions, it is possible to significantly improve enzyme yields, paving the way for scalable applications in the dairy industry and beyond. This optimized SSF method presents a sustainable and cost-effective solution to enzyme production, supporting a broader trend toward green biotechnology.
Список использованной литературы:
1. Pandey, A., et al. (2001). "Solid-state fermentation for the production of industrial enzymes." Current Science.
2. Soccol, C. R., et al. (2010). "Applications of solid-state fermentation in the food industry." Biotechnology Advances.
3. Singh, R., et al. (2016). "Solid state fermentation of Aspergillus oryzae for beta-galactosidase production." Journal of Industrial Microbiology and Biotechnology.
4. Sabu, A., et al. (2000). "Optimization of lactic acid production in SSF using Aspergillus species." Process Biochemistry.
© Батырова Г., 2024
УДК 57
Кравченко А.Л.
К.б.н., доцент Соколова О.А.
К.х.н., доцент Соловьева Е.А.
К.в.н., доцент МГАВМиБ-МВА им. Скрябина,
г. Москва, РФ
СТРУКТУРА ОРГАНИЧЕСКОГО ВЕЩЕСТВА ПОЧВЫ Аннотация
Содержание органического вещества в гумусовом горизонте целинных автоморфных почв различных природных зон колеблется от 0,5-1,0% в пустынных и полупустынных почвах до 13-15% в черноземах лесостепной зоны. На преобладающих площадях пахотных угодий России в пахотном слое его содержание составляет всего лишь 2-5%. С глубиной содержание органического вещества в профиле резко или постепенно снижается до десятых долей процентов.
Состав органического вещества почв разнообразен и степень трансформации растительных и животных остатков в почве определяется климатическими условиями их трансформации и составом, и дисперсностью минеральной части почв.