УДК 537.226.5: 537.621.5
ОПТИЧЕСКИЕ СПЕКТРЫ ПОЛУПРОВОДНИКОВОГО И МЕТАЛЛИЧЕСКОГО ДИОКСИДА ВАНАДИЯ
СОБОЛЕВ В В., *СОБОЛЕВ В.Вал., НИКИФОРОВ П.М.
Удмуртский государственный университет, 426034, г. Ижевск, ул. Университетская, 1 *Ижевский государственный технический университет, 426069, г. Ижевск, ул. Студенческая, 7
АННОТАЦИЯ. Впервые определены комплексы оптических функций диоксида ванадия при 20 °С и 80 °С для поляризации Е||а и Е||с. Установлены их основные особенности. Рассчитаны основные параметры полос междузонных переходов обеих фаз VO2 в области (Н4) эВ. На основе теоретического анализа предложены модели природы полос переходов.
КЛЮЧЕВЫЕ СЛОВА: диоксид ванадия, полупроводниковый, металлический, оптические спектры, параметры полос, междузонные переходы.
ВВЕДЕНИЕ
В группе оксидов ванадия известно много бинарных соединений [1-3]. Для многих из них характерен фазовый переход полупроводник - металл (1111-М), что и определяет их перспективные прикладные применения. У VO2 переход ПП-М происходит при Т=ТП = 340 К (67 °С), то есть в промежутке между комнатной температурой и Т>70 °С. Высокотемпературная (металлическая) фаза кристаллизуется в тетрагональной решетке рутила (сингония ПЦ - Р42(тпт)), а низкотемпературная (полупроводниковая) - в
5 Р2,
моноклинной структуре (сингония С2Й--). Фазовый переход сопровождается скачком
с
электропроводности на 105 и энергией = 0,6 эВ.
Экспериментально оптические свойства кристалла VO2 изучены в основном в области (1^5) эВ по поляризованным спектрам отражения [4] и диэлектрической проницаемости [5] для обеих фаз и спектру пропускания тонких пленок (й от 0,05 мкм до 1,00 мкм) при 20 °С [6]. В работе [4] рассчитаны спектры е1, е2, а, п^, которые существенно различаются от
данных более поздних работ [5, 6].
Цель настоящей работы: определить наиболее правильные оптические спектры и параметры полос междузонных переходов обеих фаз VO2 в области энергии (1^4) эВ.
МЕТОДИКА РАСЧЕТОВ
Общепринято, что наиболее полную информацию об оптических особенностях и электронной структуре содержит комплекс фундаментальных оптических функций [7]: коэффициенты отражения Я и поглощения а, показатели преломления п и поглощения к, реальная е1 и мнимая е2 части диэлектрической проницаемости, функции проводимости а и связанной плотности состояния J = Е2е2 в случае постоянства вероятности междузонных переходов, реальная Reе-1 и мнимая - 1те-1 части функции 1/е, реальная - Яе(1 + е)-1 и мнимая - 1т(1 + е)-1 части функции (1 + е)-1, функция п^ (Е) - количество валентных электронов, участвующих в переходах до заданной энергии Е, эффективная диэлектрическая проницаемость е^ (Е). Их определение составляет первую фундаментальную задачу
спектроскопии. Вторая ее задача состоит в разложении спектров е2(Е) и - 1т е-1 на элементарные полосы и определении их основных параметров: энергии максимума Ei и полуширины И\ полосы, а также ее площади и силы осциллятора
Наиболее корректно и просто обе задачи решаются в случае известных спектров, 8Х(Е) и 82(Е). Расчеты выполняются с помощью пакета компьютерных программ. Методики расчетов неоднократно применялись и обсуждались [7-9].
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
Для расчетов использованы экспериментальные спектры диэлектрической проницаемости VO2 в области энергии (1^4) эВ в неполяризованном свете для моноклинной (ПП) фазы и при поляризации Е||а, Е||с для тетрагональной (М) фазы работы [5].
Сначала были рассчитаны комплексы оптических функций (рис. 1). Спектры полупроводниковой фазы Я, 81, п, о, 82, ^ а , Е282 содержат две широкие полосы в областях
(1^2) эВ и (2^4) эВ, и слабо выраженную ступеньку при ~ 2,1 эВ.
а
Е,эВ 4
2.4 -г 20
-16
а, 10" с" 82
Е,эВ 4
а, Ю'ст1
5 -г 60
-40
-20
Е, ЭВ 4
10 Т 2.4
8 -
80
е ^
60
40
1 2 3 £эВ 4 12 3 Е, ЭВ 4
Рис.1. Экспериментальный спектр 81 (1) [5], расчетные спектры Л(2), и(3), с(4) (а, в, д), экспериментальный спектр 82 (2) [5], расчетные спектры к(2), а(3), 82Е2(4) (б, г, е) моноклинного диоксида ванадия при 20 °С (а, б), тетрагонального диоксида ванадия при 80 °С для поляризации Е||с (в, г) и Е||а (д, е)
Интенсивность поглощения растет с а = 1,5 -105 см 1 у длинноволнового максимума до а = 5 -105 см-1 при 4 эВ. Это свидетельствует о собственном происхождении всех функций установленного комплекса. Функции п, е1, Я, а, а также е2, ^ а, Е2е2 весьма сходны в области (1^2) эВ, а в области (2^4) эВ - сильно различаются по положению основного максимума. Спектры объемных (- 1т е-1) и поверхностных ( - 1т(1 + е)-1) потерь электронов весьма сходны и содержат дублетную полосу в области (1,3^2) эВ. С ростом энергии функция пе/ (Е) увеличивается монотонно до ~ 1,2 при 4 эВ, т.е. в междузонных переходах
е2(Е) и - 1т е- до энергии ~ 4 эВ участвуют немного более одного электрона и в 40 раз меньше, соответственно (на элементарную ячейку). Это свидетельствует о том, что валентные электроны наиболее эффективно участвуют при формировании спектра е2(Е) и весьма слабо - при формировании спектров характеристических потерь электронов.
Для металлической фазы VO2 в поляризации Е||с характерны интенсивная полоса в области (1,3^2) эВ, минимум в интервале (2^2,6) эВ и интенсивные два - три широких максимума в области (2,6^4) эВ, а также резкий рост Я, п, е2, k в области энергии Е<1,2 эВ. Спектры объемных и поверхностных потерь электронов содержат четыре максимума при ~ 1,25 эВ; 2,04 эВ; 2,82 эВ и 3,25 эВ.
Спектры функций второй поляризации Е||а сильно отличаются от них для Е||с: они содержат по три - пять слабо выраженных максимумов в области (1^2,5) эВ и одну слабо выраженную полосу при ~ 3,6 эВ. Спектры объемных и поверхностных потерь весьма сходны и имеют три слабо выраженных максимума при 1,15 эВ; 1,34 эВ; 1,45 эВ и 1,77 эВ, максимум при ~ 2,0 эВ и очень широкий максимум при 3,25 ( - 1т е-1) и 2,9 эВ ( - 1т(1 + е)-1).
Особенности спектров пе/ (е2), пе/ (- 1т е-1) для металлического и полупроводникового VO2 аналогичны.
В разложенных спектрах установлены пять полос для е2 и четыре для - 1те-1 у ПП-У02 (табл. 1) и семь полос для них у М-У02 (табл. 2, 3, рис. 2). Большие площади свидетельствуют о большой интенсивности междузонных полос переходов обеих фаз VO2.
Таблица 1
Параметры разложений е2(Е) и -1т е-1 моноклинного У02 при 20 °С
№ Е эВ н, Я Ет, эВ
е 2 е-1 е 2 е-1 е 2 е-1 [15] [10] [11]
1 1,35 1,30 0,35 0,60 2,49 0,07 - (1,0) -
2 1,65 1,80 0,50 0,55 1,79 0,09 (1,84) 1,45 1,55
3 2,25 2,40 0,55 0,60 3,85 1,50 2,50 (2,6) 2,6
4 2,90 3,25 0,65 0,75 6,01 0,15 3,12 3,0 2,8
5 3,70 - 0,60 - 4,53 - 3,70 3,50 3,7
Таблица 2
Параметры разложений е2(Е) тетрагонального У02 при 80 °С
№ Е, эВ н, Я Ет, эВ
Е а Е с Е а Е с Е а Е с [14] [13] [12]
1 1,25 1,50 0,35 0,50 3,03 4,34 1,1 1,5 1,6
2 1,60 1,50 0,55 0,50 3,12 4,34 1,5 1,6 1,8
3 2,00 2,00 0,60 0,50 1,72 2,19 2,3 2,0 2,2
4 2,70 2,65 0,50 0,45 1,71 1,48 2,7 2,8 2,7
5 - 3,20 - 0,70 - 1,80 3,2 3,2 3,2
6 3,40 - 0,60 - 3,13 - 3,4 3,5 3,3
7 - 3,60 - 0,45 - 2,31 3,7 3,8 3,7
Таблица 3
Параметры разложений -1т е-1 тетрагонального У02 при 80 °С
№ Е эВ 1тах Я
Е а Е с Е а Е с Е а Е с Е а Е с
1 1,30 1,30 0,70 0,45 0,10 0,16 0,09 0,10
2 1,80 1,80 0,50 0,50 0,11 0,07 0,36 0,05
3 1,80 1,80 0,50 0,50 0,11 0,07 0,36 0,05
4 2,40 2,50 0,55 0,70 0,21 0,20 0,36 0,20
5 3,00 3,15 0,55 0,75 0,25 0,23 1,00 0,25
6 3,60 - 0,50 - 0,20 - 0,15 -
7 - 3,70 - 0,50 - 0,18 - 0,14
8
5(е2) 6
4
2
0
0,05
тетраг. Е\с - о Е а - х монокл. 20 °С - • О
• - 1
о- 2 х - 3
ь
0,1
ЗДв-1) 0,15
Рис.2. Спектры площадей полос разложений е2 (верх) и -1т е-1 (низ) моноклинного (1) и тетрагонального
диоксида ванадия для Е||с (2) и Е||а (3)
Е,эВ
I
4
Из семи полос е2(Е)для М-VO2 сильно поляризованы только три полосы в области энергии £>3,0 эВ.
Для VO2 известны теоретические расчеты зон методом сильной связи [10] (1111), FPLMT+GW [11] (1111, М), сильной связи [12] (М), линейных присоединенных плоских волн [13] (М), FPLAPW [14] (М), полуэмпирическим методом пренебрежения дифференциальным перекрытием (ППДП) [15] (1111). В табл. 1, 2 приведены данные о энергиях ожидаемых наиболее интенсивных междузонных переходов этих работ, которые согласуются с нашими результатами.
ЗАКЛЮЧЕНИЕ
Впервые рассчитаны комплексы оптических функций металлической и полупроводниковой фаз диоксида ванадия в области (1^4) эВ. Определены основные их особенности. Установлена сильная поляризация оптических функций металлической фазы.
В результате разложения диэлектрической проницаемости и объемных характеристических потерь электронов обеих фаз определены количество и основные параметры наиболее интенсивных междузонных переходов. Полученные результаты согласуются с известными теоретическими данными по энергии переходов.
Полученные комплексы оптических функций и параметры основных полос междузонных переходов, особенно их энергии и интенсивности, позволяют наиболее корректно объяснять оптические свойства и электронную структуру обеих фаз VO2 и выполнять более конкретные теоретические расчеты электронной структуры диоксида ванадия.
СПИСОК ЛИТЕРАТУРЫ
1. Мотт Н.Ф. Переходы металл-изолятор. М. : Наука, 1979. 342 с.
2. Лазарев В.Б., Соболев В.В., Шаплыгин И.С. Химические и физические свойства простых оксидов металлов. М. : Наука, 1983. 239 с.
3. Kim B., Lee Y.W., Choi S. et al. Micrometer x-ray diffraction study of VO2 films // Phys. Rev. B. 2008. V.77, №23. P. 235401(5).
4. Verleur H.W., Barker A.S., Berglund C.N. Optical properties of VO2 // Phys. Rev. 1968. V.172, №3. P.788-798.
5. Parker J.C., Geiser U.W., Lam D.J. et al. Optical properties of the VO2 and V2O5 // J. Am. Ceram. Soc. 1990. V.73, №11. P.3206-3208.
6. Дорожко Е.В., Савицкий В.Г. Оптическое поглощение пленок VO2, V2O3 // ФТТ. 1977. Т.19, № 4. C.1150-1151.
7. Соболев В.В., Немошкаленко В.В. Методы вычислительной физики в теории твердого тела. Электронная структура полупроводников. Киев : Наукова думка, 1988. 423 с.
8. Sobolev V.Val., Sobolev V.V. Optical spectra of arsenic chalcogenides in wide energy range of fundamental absorption // In: Semiconductors and Semimetalls. 2004. V. 79, chap. 5. P. 201 - 219.
9. Соболев В.В., Соболев В.Вал., Ураков Д.М. Спектр комплекса оптических функций титаната стронция // Труды 5 Междунар. конф. «Аморфные и микрокристаллические полупроводники». СПб : Изд-во СПб ПУ, 2006. C. 339 - 340.
10. Caruthers Ed., Kleinman L. Energy band of semiconducting VO2 // Phys. Rev. B. 1973. V. 7, № 8. P. 3760-3766.
11. Sakuma R., Myiake T., Aryasetiawan F. First principles study of correlation effects in VO2 // Phys. Rev. B. 2008. V. 78, №7. P. 075106(9).
12. Gupta M., Freeman A.G., Ellis D.E. Electronic structure of metallic VO2 // Phys. Rev. B. 1977. V. 16, №8. P. 3338 - 3351.
13. Николаев А.В., Кострубов Ю.Н., Андреев Б.В. Электронная структура металлической фазы VO2 // ФТТ. 1992. Т. 34, №10. C. 3011 - 3018.
14. Herman K., Chakrabarti A., Haras A. et al. Electronic structure of VO2 // Phys. Stat. Sol. (a). 2001. V. 187, №1. P. 137 - 149.
15. Лазукова Н.И., Губанов В.А. Оптический спектр двуокиси ванадия в полупроводниковой фазе // Оптика и спектроскопия. 1977. Т. 42, №6. C. 1200 - 1202.
THE OPTICAL SPECTRA OF SEMICONDUCTING AND METALLIC VANADIUM DIOXIDE
Sobolev V.V., *Sobolev V.Val., Nikiforov P.M.
Udmurt State University, Izhevsk, Russia *Izhevsk State Technical University, Izhevsk, Russia
SUMMARY. The optical function complex of vanadium dioxide are determined in the first time at 20 °C and 80 °C for the E||a and E||c polarizations. It were established their main peculiarities. The main parameters of the interband transitions of both VO2 phases in the range 1 eV to 4 eV were calculated. The models for the interband transitions were carried out by the theoretical analysis.
KEYWORDS: vanadium dioxide, semiconducting, metallic, optical spectra, band parameters, interband transitions.
Соболев Валентин Викторович, доктор физико-математических наук, профессор, зав. отделом спектроскопии твердых тел УдГУ, (3412) 500-587, [email protected]
Соболев Валентин Валентинович, доктор физико-математических наук, профессор кафедры физики ИжГТУ Никифоров Павел Михайлович аспирант УдГУ, тел. (3412) 8-950-15-15-430