необходимо отнести текущую эпоху.
Для отладки и апробации описанного в настоящей статье алгоритма разработан программный модуль для цифрового электроэнцефалографа-анализатора ЭЭГА-21/26 «Энце-фалан-131-03», серийно выпускаемого ООО НПКФ «Медиком-МТД» и предназначенного для проведения широкого спектра нейрофизиологических исследований. Модуль реализует представленные в статье этапы автоматического распознавания стадий сна и осуществляет расстановку специальных маркеров на границах стадий сна. Для дальнейшего анализа эффективности работы алгоритма результаты представляются в виде классической гипнограммы (рис. 1). В качестве эталонной статистической информации использовалась база данных клинических полисомнографических исследований с построенными специалистами гипнограммами. Эта же база была использована для исследования работоспособности алгоритма и оценки его точности. В процессе проведения экспериментов было получено порядка 80 % совпадений между экспертными заключениями и результатами работы разработанной программной системы в условиях однородной выборки пациентов.
- -п*
Рис. 1. Пример построенной гипнограмм: и - нераспознанные эпохи; Ж - бодрствование; Я - стадия БДГ; Б1 - 84 - стадии I - IV соответственно (На шкале в нижней части окна отображается астрономическое время и номер эпохи)
Данный метод позволяет получить результаты, приемлемые по достоверности для диагностики различных нарушений сна, а также обеспечивает возможность настройки алгоритма под разные возрастные группы, стандарты, требования и пожелания конкретных экспертов. Авторы предполагают, что использование рассмотренных в данной работе результатов позволит решить задачу существенного упрощения и ускорения работы в автоматизированном режиме специалистов, которым регулярно приходится осуществлять визуальную обработку многочасовых записей нейрофизиологических данных для построения гипнограмм.
УДК 615.471:616-073.97:616.12
П.П. Кравченко, А.С. Шульга
О РЕШЕНИИ ЗАДАЧИ КОМПРЕССИИ БИОМЕДИЦИНСКИХ СИГНАЛОВ НА ОСНОВЕ ДЕЛЬТА-ПРЕОБРАЗОВАНИЙ ВТОРОГО ПОРЯДКА С ГАРАНТИРОВАННОЙ ТОЧНОСТЬЮ
Современная медицина невозможна без мощных программно-аппаратных комплексов, осуществляющих диагностику и функциональные исследования состояния человека. Концептуальная схема этих комплексов включает три основных элемента: стационарный или
мобильный регистратор биомедицинских сигналов, компьютер врача и канал передачи данных от регистратора к компьютеру [7]. Критическими параметрами схемы являются пропускная способность канала связи и объём внутренних блоков памяти регистратора. Повышение эффективности указанных характеристик может быть достигнуто путем внедрения программной компрессии регистрируемых биомедицинских сигналов. Данный процесс позволяет снизить нагрузку на канал связи, а также снизить требования к объёму внутренних блоков памяти мобильного регистратора.
В соответствии с техническими и методическими условиями использования медицинских диагностических комплексов, к алгоритму компрессии предъявляется ряд требований:
• точность представления сигнала должна иметь гарантированное (достаточно высокое) значение;
• для обеспечения работы в реальном времени трудоёмкость алгоритма компрессии должна быть низкой;
• трудоёмкость алгоритма декомпрессии должна быть низкой и согласовываться с одновременной диагностической обработкой сигнала.
Известные методы сжатия не могут быть применены для решения поставленной задачи. Методы сжатия без потерь информации не дают высоких показателей компрессии. Среди методов сжатия с потерями можно выделить: частотные [4], фрактальные [8], апертурные [3,5], методы на основе дельта-модуляции первого порядка [6] и оптимизированных дельта-преобразований второго порядка [1], но они не нацелены на решение задачи гарантированной точности. Наиболее близким для решения поставленной задачи является метод компрессии биомедицинских сигналов на основе дельта-преобразований второго порядка с гарантированной точностью, предложенный в работе [2], однако он характеризуется высокой сложностью алгоритмов и трудоёмкостью.
В данной статье представлен метод компрессии биомедицинских сигналов на основе дельта-преобразований второго порядка с гарантированной точностью. Новизна предлагаемого метода заключается в сочетании одновременного формирования частоты подди-скретизации и веса второй производной аппроксимирующей функции для интервала между текущим и предыдущим отсчётами исходного сигнала с выполнением условия гарантированной точности аппроксимируемого отсчёта. Адаптация частоты поддискретизации и веса второй производной выполняется на основе потока предшествующих дельта-бит.
Сущность теоретических предпосылок решения данной задачи состоит в следующем. В основе дельта-преобразований второго порядка лежит выполняющееся с достаточно малым шагом построение (аппроксимация) для данной непрерывной или дискретной функции некоторой приближённой (аппроксимирующей) функции, у которой производные второго порядка на интервале преобразования одинаковы по модулю и отличаются по знаку. Использование дельта-преобразования позволяет заменить операции, выполняющиеся над многоразрядными кодами представления ординат функций, более простыми операциями над квантами, которые могут принимать значения, например +1 и -1 [1]. Возможность представления сигнала в виде начальных условий и последовательности дельтабит является основой решения задачи компрессии. В работе [2] показано, что для выполнения компрессии с гарантированной точностью необходимо построить аппроксимирующую функцию, проходящую в окрестностях отсчётов исходного сигнала, причём границы окрестностей ограничены условиями гарантированной точности.
Значение аппроксимирующей функции в (; +1) -ой точке исходного сигнала имеет вид
V к=1 VI=1 ) к=1
2 -ЯЕ^+и 1 + ЕА+и , (!)
«!+1 -V к \ п,+1 Л
где У{, Ум, 1& - значения амплитуды и первой производной аппроксимирующей функции в точках, расположенных в 1 -й и (■ +1) -й точках исходного сигнала соответственно; Vt - шаг дискретизации исходного сигнала; а+ - вес модуля второй производной аппроксимирующей функции в рассматриваемом интервале;
пм - количество шагов учащения в рассматриваемом интервале (частота поддискретиза-ции равна отношению частоты дискретизации исходного сигнала к количеству шагов учащения); V тм - шаг дискретизации аппроксимирующей функции в рассматриваемом
интервале, Vт■ = ^t ; Аг+1к - дельта-бит, принадлежащий потоку дельта-бит рассмат-
'+' П+1
риваемого интервала, к е [1, пм ].
Аппроксимирующая функция в интервале между ■ -й и (■ +1) -й точками исходного сигнала с учётом известного количества шагов учащения может принимать несколько значений (рис. 1). Причём длины отрезков между смежными значениями аппроксимирующей функции в ( +1) -й точке исходного сигнала одинаковы, исключение составляют вторые с краю отрезки, длина которых в двое больше остальных.
Рис. 1. Варианты значений аппроксимирующей функции в интервале между 1 -й и (■ +1) -й точками исходного сигнала
У,у
Если максимальная длина отрезка между соседними значениями аппроксимирующей функции равна значению гарантированной точности, то для любой точки исходного сигнала, находящейся в диапазоне между минимальным и максимальным значениями аппроксимирующей функции, может быть выбрана соответствующая траектория, описываемая потоком дельта-бит. Согласно этому свойству, уравнение, одновременно обеспечивающее условие гарантированной точности представления аппроксимируемого отсчёта в сочетании с расчётом веса второй производной аппроксимирующей функции, может быть представлено в виде:
а+1= ^т • ^ (п+1), (2)
где Егг - величина гарантированной точности; $ (п1+1) - уникальная для каждого п1+1
величина, отражающая количество неповторяющихся значений аппроксимирующей функции в ( +1) -й точке исходного сигнала.
Сущность адаптации заключается в изменении количества шагов дискретизации и веса второй производной аппроксимирующей функции, выполняемом на основе прогноза поведения исходного сигнала на следующем шаге. Эти параметры увеличиваются, если прогнозируется резкий скачок исходного сигнала, что идентифицируется значительным изменением первой производной в текущем интервале, и уменьшаются, если прогнозируется установившийся процесс, при этом изменение первой производной несущественно или равно нулю.
Адаптация инициируется модификацией параметра пм на основе траектории, выбранной на предыдущем шагу. Изменение первой производной аппроксимирующей функции в интервале между отсчётами, соответствующими (г - 1)-й и г -й точкам исходного сигнала имеет вид
№=^+VY;
I ^ г-1 ■ > (3)
^ ■и1.
где V - изменение значения первой производной аппроксимирующей функции в интервале между (г — 1) -й и г -й точками исходного сигнала; И, - величина, показывающая взаимосвязь изменения первой производной аппроксимирующей функции с количеством
п
шагов учащения и траекторией, заданной потоком дельта бит, кг = ЕАа.
к=1
Множество всех возможных кг имеет вид:
н = {- -;- п+2;-пг + 4;.; п}, (4)
что эквивалентно
IН ■ =->\а(Кр )Ц \н\ = п +1;
|4\р )= пг - 2 • P, Р = 0,1, - пг •
(5)
Количество шагов учащения увеличивается на единицу, если кг велико; не изменяется, если мало и уменьшается на единицу, если несущественно или равно нулю. Характер Иг
определяется по его индексу рг в этом множестве, а адаптация выполняется посредством системы уравнений:
= П: + І
П+1 = п -І
Рі = 2 •(«,■- л,.),
при при при Р, п, ]
0 < р, < — • п,
' 5 '
1
5
2 3
5 • пі < р, < 5 •п,;
1 5 •п, < Рі < п,;
3 4
или —• п. < р. < — • п.;
5 , , 5 ,
(6)
где Иг. - количество шагов учащения в предыдущем интервале; р1 - индекс изменения
первой производной аппроксимирующей функции в интервале между отсчётами, соответствующими ( -1) -й и / -й точкам исходного сигнала.
Вес второй производной рассчитывается из уравнения (2), обеспечивающего соблюдение условия гарантированной точности.
Таким образом, адаптация выполняется на основе анализа потока предшествующих дельта-бит и позволяет значительно расширять или сужать диапазон возможных значений аппроксимирующей функции для текущего интервала, сохраняя гарантированную точность представления аппроксимируемого отсчёта.
Задача программной компрессии биомедицинского сигнала состоит в формировании в реальном времени кода компрессированного сигнала - блока данных, необходимого для восстановления исходного сигнала с гарантированной точностью. Сущность решения задачи компрессии иллюстрируется на рис. 2.
п
п,+1 = п
Рис. 2. Структура компрессии биомедицинских сигналов с гарантированной точностью
Сущность компрессии заключается в следующем. Исходный сигнал, представляющий собой поток отсчётов, поступает на вход алгоритма компрессии. На основе начального отсчёта исходного сигнала формируются и сохраняются начальные условия. После выделения очередного отсчёта исходного сигнала производится определение для текущего шага адаптивных параметров алгоритма на основе последовательности предшествующих дельта-бит: частоты поддискретизации и веса второй производной компрессируемого сиг-
нала в интервале между текущим и предыдущим отсчётами. После этого выполняется определение траектории кодирования между текущим и предыдущим отсчётами с учётом возможности введения дополнительной поддискретизации временного интервала между отсчётами, рассчитанного веса второй производной компрессируемого сигнала и условий гарантированной точности. На основе полученных данных выполняется кодирование текущего отсчёта, в результате которого в код компрессированного сигнала сохраняется поток дельта-бит, соответствующий выбранной траектории. Если текущий отсчёт не может быть охвачен дельта-преобразованиями, то он кодируется автономно. После этого, если обработаны ещё не все отсчёты исходного сигнала, происходит выделение следующего отсчёта, и цикл кодирования повторяется.
В результате работы алгоритма формируется код компрессированного сигнала, содержащий начальные условия, поток дельта-бит и информацию об автономно кодируемых отсчётах. На основе этих данных при декомпрессии восстанавливается исходный сигнал (рис. 3).
Рис. 3. Структура декомпрессии биомедицинских сигналов с гарантированной
точностью
При декомпрессии код компрессированного сигнала поступает на вход алгоритма и выполняется чтение начальных условий. Далее выделяется фрагмент потока дельта-бит определённой длины, полученной из начальных условий, и информация об автономно кодируемом отсчёте, если она содержится. На основе фрагмента потока дельта-бит и полученных из начальных условий значений частоты поддискретизации и веса второй производной компрессируемого сигнала для текущего шага выполняется декодирование отсчёта исходного сигнала. На основе анализа данных декодированного отсчёта выполняется расчёт частоты поддискретизации, веса второй производной компрессированного сигнала и длины очередного фрагмента потока дельта-бит для следующего шага декодирования. Если обработан не весь поток дельта-бит компрессированного сигнала, то производится выделение очередного фрагмента потока дельта-бит, и цикл декодирования повторяется.
В результате работы алгоритма декомпрессии восстанавливается исходный сигнал, причём его отсчёты соответствуют отсчётам исходного сигнала с погрешностью, не превышающей требования гарантированной точности.
Графики пошаговой адаптации частоты поддискретизации и веса второй производной аппроксимирующей функции представлены на рис. 4.
Рис. 4. Графики изменения величины второй производной и коэффициента'.учашения
аппроксимирующей функЦ^ 1°к дельта-оит
Проведённые эксперименты по обработке электрокардиографических сигналов с частотой дискретизации 1000 Г ц показали возможность обеспечения компрессии более чем в семь раз, при этом количество кодируемых и неохваченных дельта-преобразованиями больших выбросов исходного сигнала по амплитуде не превышало 1 %.
Предложенный метод компрессии биомедицинских сигналов на основе дельтапреобразований второго порядка с гарантированной точностью и адаптивными параметрами аппроксимирующей функции обеспечивает удовлетворительные показатели сжатия, а алгоритмы компрессии и декомпрессии обладают низкой вычислительной трудоёмкостью и представляют интерес для использования в медицинских диагностических комплексах. Адаптивная величина второй произ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Кравченко П.П. Основы теории оптимизированных дельта-преобразований второго порядка. Цифровое управление, сжатие и параллельная обработка информации. - Таганрог: Изд-во ТРТУ, 1997.
2. Бай К.А. Разработка алгоритмов компрессии биомедицинских сигналов с использованием дельта-преобразований второго порядка: Автореферат дис. ... канд. техн.наук. -Таганрог ТРТУ, 2003.
Алаптигзнмй коэсЬсЬиииент ичашени'
3. Костин А., Балашов Ю. Проектирование устройств первичной обработки электрокардиосигнала для дистанционного мониторинга. Chip News. - 2003. - № 8. - С. 46-50.
4. Daubechies I., Sweldens W. Factoring Wavelet Transforms into lifting Steps. Technical Report. Bell laboratories, lucent Technologies. - 1996. - P. 27.
5. Барановский А.Л., Калиниченко А.Н., Манило Л.А. Кардиомониторы и др. Аппаратура непрерывного контроля ЭКГ: Учеб. пособие для вузов / Под ред. А. Л. Барановского и А.П. Немирко. - М.: Радио и связь, 1993. - 248 с.
6. Стил Р. Принципы дельта-модуляции. - М.: Связь, 1979.
7. Луцев Е.А., Скоморохов А.А. Использование мобильного электроэнцефалографа-регистратора «Энцефалан-РМ» для проведения полисомнографических исследований // Тезисы доклада на Всероссийской научно-технической конференции с международным участием «Медицинские информационные системы «МИС-2004». - Таганрог, 2004.
УДК 004.415.2
Я.З. Гринберг
СКЭНАР: НОВЫЕ РЕЗУЛЬТАТЫ, НОВЫЕ ГИПОТЕЗЫ
В работах [1-4] описан эффект вибрации (звучания) кожи при воздействии аппаратом СКЭНАР. Показано, что вибрация и звучание определяются непосредственным влиянием высокого переменного электрического поля. Это подтверждается приложением электродов аппарата к телу через тонкую изолирующую плёнку. В этом случае ток практически отсутствует, а напряжение на электродах составляет порядка 500 - 600 вольт. Эффект звучания присутствует. Основная гипотеза, которая сохранила в результате проведенных исследований, - притяжение (отталкивание) ткани (рогового слоя).
Цель настоящей работы - описание механизма звучания и исследование влияния высокого переменного электрического поля на межклеточную жидкость и другие растворы воды.
Модель электростатического громкоговорителя.
Электростатические громкоговорители представляют собой две обкладки конденсатора - неподвижную массивную и гибкую (пленку с нанесенным металлическим слоем с наружной стороны либо металлическую фольгу с диэлектриком с внутренней стороны).
В настоящее время применяются очень много способов реализации электростатических громкоговорителей, многие из которых закрыты патентами и ноу-хау. Например, технологии, основанные на взаимодействии статических зарядов. В качестве мембраны в таких устройствах используется очень тонкая полимерная пленка (10-15 микрон) с нанесенным проводящим слоем. Масса этой пленки соизмерима с массой колеблющегося воздуха, что позволяет системе очень точно передавать широкий диапазон частот с минимумом искажений. Полимерная пленка натянута между двумя перфорированными пластинами, на которые через трансформатор от усилителя подается звуковой сигнал. На проводящий слой мембраны подается напряжение порядка нескольких кВ. В результате взаимодействия заряда на пленке и звукового напряжения мембрана начинает двигаться со звуковой частотой.
Сравним приведенные описания с моделью взаимодействия СКЭНАР - кожа. Два массивных электрода аппарата приложены к тонкой плёнке рогового и блестящего слоев (электрическое поле действует как бы на две плёнки, между которыми расположена проводящая жидкостная среда). С учётом толщины рогового и блестящего слоев напряженность электрического поля составляет в момент импульсного воздействия примерно 3-4-106 В/м [1-4].