Научная статья на тему 'О неустойчивости детонационных волн в эмульсионном взрывчатом веществе, сенсибилизированном газовыми порами'

О неустойчивости детонационных волн в эмульсионном взрывчатом веществе, сенсибилизированном газовыми порами Текст научной статьи по специальности «Физика»

CC BY
157
25
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СКОРОСТЬ ДЕТОНАЦИИ / НЕУСТОЙЧИВАЯ ДЕТОНАЦИЯ / КОЭФФИЦИЕНТ ПОЛИТРОПЫ

Аннотация научной статьи по физике, автор научной работы — Горинов С. А., Кутузов Б. Н.

Рассмотрены условия возникновения гофрировочной неустойчивости детонационной волны эмульсионных взрывчатых веществ, которые позволяют оценить практическую надежность детонации скважинных зарядов, выбора средств и способов их инициирования

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Горинов С. А., Кутузов Б. Н.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «О неустойчивости детонационных волн в эмульсионном взрывчатом веществе, сенсибилизированном газовыми порами»

© С.А. Горинов, Б.Н. Кутузов, 2012

УДК 662.217

С.А. Горинов, Б.Н. Кутузов

О НЕУСТОЙЧИВОСТИ ДЕТОНАЦИОННЫХ ВОЛН В ЭМУЛЬСИОННОМ ВЗРЫВЧАТОМ ВЕЩЕСТВЕ, СЕНСИБИЛИЗИРОВАННОМ ГАЗОВЫМИ ПОРАМИ

Рассмотрены условия возникновения гофрировочной неустойчивости детонационной волны эмульсионных взрывчатых веществ, которые позволяют оценить практическую надежность детонации скважинных зарядов, выбора средств и способов их инициирования.

Ключевые слова: скорость детонации, неустойчивая детонация, коэффициент политропы.

Согласно модели Зельдовича-Неймана-Деринга реакция инициируется одновременно по всему фронту детонационной волны, а вещество ВВ до ударного перехода не разлагается и сохраняет свою природу [1]. Структура детонационной волны в этом случае однородна и стационарна по всей ее площади. Однако экспериментальные исследования показывают, что фактическая структура детонационной волны в гетерогенных ВВ является нестационарной и существенно трехмерной [2—4]. Данное обстоятельство обуславливает возникновение неустойчивых и пульсирующих режимов детонации в смесевых (смесь твердых порошков типа «ВВ+ВВ», «ВВ+ инертное вещество», «аммиачная селитра + жидкое горючее», «ВВ+ во-да(раствор селитр») [5-7], жидких (индивидуальных) ВВ [3] и даже в плотных смесевых сплавах индивидуальных взрывчатых веществ [8].

В работе [9] приведены экспериментальные данные о распространении детонационных процессов в ЭВВ, свидетельствующие о существовании условий, при которых указанный процесс становится неустойчивым.

В настоящей работе дается оценка условий возникновения гофрировоч-ной неустойчивости детонационной волны в ЭВВ, сенсибилизированном газовыми порами, и явлений, обусловленных возникновением указанной неустойчивости. При этом под гофрировочной неустойчивостью детонационной волны понимаем возникновение «ряби» («гофрировки») на поверхности данной волны [10].

В соответствии с представлениями [11] детонационная волна в ЭВВ имеет двухслойную структуру:

• зона сжатия, представленная конденсированным веществом, в расширяющихся из-за горения порах которого происходит разложение ВВ;

• газовая зона, представленная сильноуплотненным газовым телом, в котором происходит догорание ВВ.

В работах [12, 13] получены критерии гофрировочной неустойчивости при распространении ударных волн в произвольных средах. При определении данных критериев использовались только требование эволюционности ударных волн [10] и условия непрерывности потоков плотностей массы, энергии и импульса. Указанные условия непрерывности выполняются и на

детонационной волне [10], а поведение среды в зоне сжатия описывается ударной адиабатой. Следовательно, указанные критерии применимы к описанию гофрировочной неустойчивости зоны сжатия в ЭВВ.

Введем обозначения:

] — плотность потока массы; V, с — скорость распространения детонационной волны относительно движущегося вещества и скорость звука в веществе на границе «зона сжатия — газовая зона»; Б* — скорость распространения детонационной волны.

В соответствии с [10, 12, 13] имеем следующие условия гофрировоч-ной неустойчивости зоны сжатия:

при ]

2 ^ <-1

(1)

Рис. 1. Р-У диаграмма ЭВВ, сенсибилизированного газовыми порами.

.2 ¿V , Л V

или / —> 1 + 2 — ¿Р с

(2)

на поверхности зоны сжатия возникают экспотенциально возрастающие со временем возмущения. Происходит разрыв детонационной волны на неограниченно возрастающие струи. При

1 _ V2 _ Б

1 с2 с2 .2 ¿V ^ „V

с с X < 1 + 2—,

л V2 vD,

1 _ 72" +

с с

<}

¿Р

(3)

на поверхности зоны сжатия возникают устойчивые возмущения (рябь).

Здесь производная

V ¿Р

• скорость ударной волны равна

= А + БШ, (4)

где А, В - параметры ударной адиабаты в линейной форме; Ш - массовая скорость за фронтом ударной волны;

• поведение неразложившегося вещества в зоне сжатия удовлетворяет закону Тэта [14]

Р=

К

п

-1

+ Р

(5)

берется

вдоль ударной адиабаты в т. (V,, Р ,). Х=Хс, Р=Рс см. рис. 1.

При выполнении оценочных расчетов исходим из следующих положений: • Р-У диаграмма ЭВВ, сенсибилизированного газовыми порами, имеет вид, приведенный на рис. 1 [11];

где Р, Ра - текущее давление в веществе и давление при V = V) (момент перехода на ударную адиабиту (см. рис. 1) V) = ХА); К — модуль объемного сжатия при Х=Хо; V - удельный объем; п - степенной параметр Тэта; Поведение разложившегося вещества ВВ (взрывных газов), заполняющего расширяющиеся поры в момент их слияния (момент распада зоны сжатия детонационной волны) будет описывать законом Абеля [11, 15].

Коэффициент политропы взрывных газов в т. V = V, ,где V, = (см.рис.1), обозначим через к . Одна из возможных методик определения величины к для ЭВВ представлена в работах [11, 15].

Согласно оценкам в рассматриваемом случае справедливо соотношение

Р, >> Ра. (6)

Тогда, на основании (5) определяем

¿V,

V

сР, пР/ + к,

где к

А

V

(7)

(8)

1 а г 1 -а г с Сг Сматр

(9)

а.

Значение V определяется из условия непрерывности потока массы: . V А

У =

V, ^

Следовательно, V = О,

(10)

(11)

Значение V, определится из условий непрерывности потока массы и импульса. В случае (6) имеем

у = Р

V - V,

(12)

На основании (10)-(12) получаем (13)

V2

V = V - -00-Р

^ 0 £2 Р1

Т.к. продукты детонации имеют агрегатное состояние близкое к жидкому, то при определении скорости звука на границе «зона сжатия — газовая зона » используем формулу Вили:

При политропической зависимости (Р пропорционально Vп) и выполнении условия (6), в соответствии с [1], имеем

П !

V, + V V - V,

(14)

где аг— пористость ЭВВ в зоне сжатия в момент слияния пор

(аг - 1 - 44); Сг — скорость звука в

продуктах детонации, заполняющих пору, в момент слияния пор

коволюм

продуктов детонации, К - газовая постоянная, Тн- температура продуктов детонации в зоне сжатия, ц -средний молекулярный вес продуктов детонации); Смтр — скорость

звука в матричной эмульсии в зоне сжатия (СмаТр - Ц - и, и — приращение скорости движения продукта взрыва во фронте детонационной волны [16]).

Уравнения (1)-(14) в сочетании с методикой определения значений к , Vo , Р[, Р,, О,, представленной в работе [11], позволяют решить задачу о возникновении гофрировочной неустойчивости детонационной волны в ЭВВ, сенсибилизированном газовыми порами.

Однако невыполнимость условий (1) и (2) следует из простых соображений. Действительно, согласно (7)

<0, следовательно, условие (2) не

¿Р,

выполняется.

Допустим, что выполняется условие (1). Учитывая, что

. = _о_ = О, - V

} = V ~ V, ,

оо

где V — массовая скорость в т. V,, ОЩ,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

а Р =■

на основании (1), (7),

имеем следующее неравенство:

Рис. 2. Зависимость скорости детонации по длине скважинного заряда при нижнем инициировании при различные квн: ряд 1 - квн=2,2; ряд 2 - квн=2,0; ряд 3 - квн=1,5

Рис. 3. Зависимость к,

'гофр

по длине скважинного

заряда при нижнем инициировании при различныгх квн: ряд 1 - квн=2,2; ряд 2 - квн=2,0; ряд 3 - квн=1,5

Ш,

_ 1

1 V

п

V

1+-

пР

(15)

и

а

Согласно [16],--1 < к, а из фи-

I и ш,

зических соображений понятно, что

II а

п > к. т.к.

V V

■_ 1 < к < п,

Следовательно, в рассматриваемых ЭВВ разрыва детонационной волны на неограниченно возрастающие струи не происходит.

Однако, как показывают численные исследования, условие (3) выполняется очень часто.

Гофрировка зоны сжатия приводит к тому, что в областях выпуклости детонационной волны (по направлению потока) возникают зоны повышенного давления, обусловленные тем, что:

• продукты детонации, двигаясь вглубь области выпуклости, двигаются в сторону уменьшения радиуса кривизны фронта волны. Продукты взрыва будут находиться в стесненных условиях и их сжатие будет передаваться фронту волны [17—19];

• косым отражением звуковых волн, спонтанно испускаемых гофрированным детонационным фронтом, от поверхности разрыва [10, 12, 13].

Введем в рассмотрение коэффициент пересжатости

где Qv — теплота взрыва; ДQ — количество теплоты, поступившей в зону реакции при рассеянии звуковых волн, отраженных от боковых поверхностей области выпуклости детонационного фронта, а также вследствие дополнительной работы сил увеличенного давления.

Тогда расчет параметров детона-

кпер = 1 + -

(16)

то неравенство (15) не выполняется. ции в пересжатом режиме можно вес-

ти на основании [11], если вместо Qv использовать эффективную теплоту Q = к Q . (17)

пер пер^-у х '

Процесс детонации в этом случае на Р-У-диаграмме будет описываться штриховыми линиями (см. рис. 1).

Введем в рассмотрение коэффициент гофрировки у2

кпер =

+1

1 У2 3

1 - +

с с

32

V

Ц2 пР, + к,

(18)

Из вышесказанного ясно,

если

кГ044> >0, то возникает гофрировочная

неустойчивость, если кгофф <0 - нет.

На рис. 2 приведены зависимости скорости детонации в ЭВВ типа «Си-бирит-1200» при различных Квнеш. при нижнем инициировании 12-метрового скважинного заряда (величина глобул эмульсии - 2,5 мкм, радиус газовых пор при внешнем давлении 1 атм — 50 мкм, плотность при атмосферном давлении - 1,07 г/см3). Штриховые линии указывают на « срыв» детонационного процесса.

Если ввести в рассмотрение число

П = -3/- -1 (показатель политропы

продуктов взрыва при однополитроп-ном приближении [14, 20]), то на основании (10)—(14) и (18) условие возникновения гофрировочной неустойчивости запишется в виде неравенства

(

к

1+V.

V

Л

00 у

,(1

г0фр

V - V

1 - , V

00 у

(

V + V,

V

Л

— (п,+ 1)- 1

> 0.

(19)

На рис. 3 приведено изменение кг0фр. Срыв детонации при переходе в зону кг0фр.< 0 объясняется тем, что пересжатый режим детонации обеспечивается «перекачкой» энергии реакции в область выпуклостей газового тела (по потоку). Это создает высокую энергетическую плотность в данных частях зоны реакции и снижает в других. Поэтому при ликвидации гофрировки давление в оставшихся частях зоны реакции недостаточно для поддержания высокоскоростных режимов. В зоне реакции падает температура, замедляются химические реакции. Это приводит к резкому возрастанию предельного и критического диаметров. В результате наблюдается быстрое снижение скорости детонации вплоть до полной остановки детонационного процесса.

Расчеты показывают, что степень пересжатости напрямую связана с инициирующим воздействием. Более сильный и продолжительный импульс формирует гофрировку с более глубокими выступами (впадинами), в которых способно рассеяться большее количество отраженной энергии.

Данное обстоятельство объясняет сложившуюся в мировой практике тенденцию к применению все более мощных средств инициирования ЭВВ, сенсибилизированных газовыми порами.

Полученные результаты позволяют получить полезные в практическом отношении результаты для обеспечения надежности детонации скважин-ных зарядов, выборе средств и способов их инициирования.

В заключении авторы выражают благодарность д.т.н. Андрееву В.В. за плодотворное обсуждение рассматриваемого вопроса.

СПИСОК ЛИТЕРАТУРЫ

1. Зельдович Я.Б. // ЖЭТФ, 1940, Т.10, вып. 5. С. 542-568.

2. Трофимов B.C. Обобщение гидродинамической теории детонации на случай турбулентного движения среды // Взрывное дело. Выпуск №103/60. — М.: ЗАО « МВК по взрывному делу при АГН », 2010. — С.3-15.

3. Дремин А.Н. Пульсирующий детонационный фронт // ФГВ, 1983, Т. 19, №4. С. 159-169.

4. Аттенков A.B., Соловьев B.C. О возможности разложения гетерогенных ВВ во фронте слабой ударной волны // ФГВ, 1987, Т.23, №4. С.113-125

5. Даниленко B.A., Афанасенков А.Н. О спиновой детонации гетерогенных твердых взрывчатых веществ // Письма в ЖТФ, 1978, Т.4, вып.1. С.35-38.

6. Даниленко B.A., Кудинов B.M. Особенности детонации крупногабаритных зарядов смесевых ВВ // ФГВ, 1980, Т. 16, №5. С.56-63.

7. Даниленко B.A., Кудинов B.M. Особенности потери устойчивости детонации в удлиненных зарядах // ФГВ, 1983, Т.19, №2. С.101-105.

8. Козак Г.Д., Кондриков Б.Н., Об-ломский B.Б. Спиновая детонация в твердых веществах // ФГВ, 1989, Т. 25, №4. С.86-93.

9. Кукиб Б.Н., Иоффе B.Б., Жученко Е.И., Фролов А. Б., Оверченко М.Н., Лавров B.B., Шведов К. К. Детонационная способность современных промышленных взрывчатых веществ.// 4-ая международная конференция. Физические проблемы разрушения горных пород.18-22 октября 2004 года, Москва, ИПКОН РАН. С.293-296.

10. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VI. Гидродинамика. М.: Наука, 1988, 736 с.

11. Кутузов Б.Н., Горинов С.А. Физико-технические основы создания эмульсионных и гранулированных ВВ и средств их инициирования. // ГИАБ, 2011, №7. Препринт. С.34-52.

12. Дьяков С. П. Об устойчивости ударных волн. // ЖЭТФ, 1957. — Т. 27. — С. 288—295.

13. Конторович В.М. Отражение и преломление звука на ударных волнах // Акустический журнал, 1959. — Т. 5. — С. 314—323.

14. Баум В.А Станюкович КП, Шехтер Б.И. Физика взрыва. М.: Физматгиз, 1959. 800 с.

15. Горинов С.А. Теоретическая оценка детонационных параметров гранэмитов. // ГИАБ, 2010, №8, С.121-130.

16. Горинов С.А. Аппроксимационный метод расчета детонационных параметров низкоплотных аммиачно-селитренных ВВ // ГИАБ, 2010, №10, С.244-256.

17. Зельдович Я.Б. Сходящаяся цилиндрическая детонационная волна // ЖЭТФ, 1959, Т.36. С.782-792.

18. Станюкович К.П. Неустановившиеся движения сплошной среды. М.: Гостехиздат, 1955.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

19. Айвазов Б.В., Зельдович Я.Б. Образование пересжатой детонационной волны в сужающейся трубке // ЖЭТФ, 1947, Т.17. С.888-900.

20. Шведов К.К., Дремин А.Н. О параметрах детонации промышленных ВВ и их сравнительной оценке. Взрывное дело, № 76/33. М., Недра, 1976. С. 137-150. Е2Е

КОРОТКО ОБ АВТОРАХ -

Горинов С.А. — кандидат технических наук, ЗАО «Спецхимпром», e-mail: [email protected],

Кутузов Б.Н. — профессор, доктор технических наук, Московский государственный горный университет, e-mail: [email protected].

^___

i Надоели баннеры? Вы всегда можете отключить рекламу.