Научная статья на тему 'Модель целевого распределения бюджетных средств региона и ее использование в учебном процессе ситуационного центра'

Модель целевого распределения бюджетных средств региона и ее использование в учебном процессе ситуационного центра Текст научной статьи по специальности «Экономика и бизнес»

CC BY
183
35
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Открытое образование
ВАК
Область наук
Ключевые слова
МОДЕЛЬ / РЕГИОНАЛЬНОЕ БЮДЖЕТИРОВАНИЕ / СИТУАЦИОННЫЙ ЦЕНТР / MODEL / REGION BUDGET DISTRIBUTION / SITUATIONAL CENTER

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Навроцкая М. А., Сафонова Т. Е.

Данная статья посвящена модели целевого распределения бюджетных средств региона и использованию ее в учебном процессе ситуационного центра. Авторы дают описание модели и приводят пример ее программной реализации

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Given article is devoted to the model of aimed distribution of the budget resources in the region, and shows how this model may be applied at the situational center. Authors describe the model and the example of its programming realization.

Текст научной работы на тему «Модель целевого распределения бюджетных средств региона и ее использование в учебном процессе ситуационного центра»

становки.

В каждом техническом вузе, преподаватели которого обеспокоены низким уровнем математической подготовки студентов старших курсов, естественно, накоплен свой опыт повышения эффективности изучения наукоемких дисциплин. Возможно, журнал

сочтет целесообразным освещение этого опыта. Понимая, что обмен отработанными методическими приемами полезен, мы готовы предоставить методическое обеспечение дисциплины «Методы оптимизации» (запрос по адресу [email protected]).

Литература

1. Аттетков А.В., Галкин С.В., Зарубин В.С. Методы оптимизации: Учебник для студентов высших технических учебных заведений.- М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. - 437 с.

2. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. Режим доступа: http://www.ergeal.ru.

3. Сборник задач и упражнений по высшей математике. Математическое программирование: Уч. пособие/Кузнецов А.В., Рутковский Р.А. (ред.). - Минск.: «Вышэйшая школа», 2002.- 448 с.

4. Аоки М. Введение в методы оптимизации. Основы и приложения нелинейного программирования. - М.: Наука, 1977. - 343 с.

5. Крушель Е.Г. Компьютерная поддержка учебной дисциплины «Методы оптимизации»: опыт обучения методам решения реальных оптимизационных задач//Математика Компьютер Образование: Сб. научн. тр., МОО «Женщины в науке и образовании». - М.- Ижевск, 2002. - Ч. 1. - С. 132-139.

6. Крушель Е.Г. Компьютеризация очного обучения: Рго&Сойга//Математическое обеспечение ЭВМ: Межвуз. сб. научн. тр. - Воронеж: ВГУ, 2002. - С. 82-89.

7. Крушель Е.Г. Компьютерная поддержка изучения методов оптимизации и управления в профессиональной подготовке инженеров-системотехников // Информационные технологии в образовании, технике и медицине: матер. междунар. конф., 23-26 октября 2006 г. - Волгоград: ВолгГТУ, РПК «Политехник», 2006. - С. 72-73.

8. Крушель Е.Г., Степанченко О.В. Синтез и моделирование цифровых управляющих систем с двойной шкалой времени.- М: Машиностроение-1, 2006. - 96 с.

9. Малыхин В.И. Математическое моделирование экономики: Учебн.-практич. пособие. - М.: Изд-во УРАО, 1998. - С. 28-39.

10. Методы классической и современной теории автоматического управления. - Т.1. Анализ и статистическая динамика систем автоматического управления: Учебник для студентов высших учебных заведений - Н.Д. Егупов (ред.). - М: Изд-во МГТУ им. Н.Э. Баумана, 2000.- С. 588-625.

11. Медведев Д.В. Выбор настраиваемых параметров в алгоритмах оптимизации, основанных на методе штрафных функций/Прогрессивные технологии в обучении и производстве: Матер. IV Всеросс. конф., г. Камышин, 2006г.: - В 4 т. - Волгоград, 2006. - Т. 2. - С. 139-143.

МОДЕЛЬ ЦЕЛЕВОГО РАСПРЕДЕЛЕНИЯ БЮДЖЕТНЫХ СРЕДСТВ РЕГИОНА И ЕЕ ИСПОЛЬЗОВАНИЕ В УЧЕБНОМ ПРОЦЕССЕ СИТУАЦИОННОГО ЦЕНТРА

М.А. Навроцкая, асп., вед. спец. Ситуационного центра Тел.: (495) 436-07-99; E-mail: [email protected] Т.Е. Сафонова, к.ф.-м.н., доц. каф. Информационных технологий в управлении Тел.: (495) 436-04-94; E-mail: [email protected] Российская академия государственной службы при Президенте Российской Федерации

http://www.rags.ru

Given article is devoted to the model of aimed distribution of the budget resources in the region, and shows how this model may be applied at the situational center. Authors describe the model and the example of its programming realization.

решения (особенно групповые решения по сложным, многофакторным проблемам) принимаются в среде ситуационного центра (СЦ) с активным использованием интеллектуальных информационно-коммуникацион-

Введение

Обучение принятию решений является современным направлением в общем, профессиональном и дополнительном образовании. Наиболее эффективно управленческие

ных технологий (ИКТ) [3].

Ситуационный центр - информационно-аналитическая система, предназначенная для обеспечения современными технологиями, программными и техническими средствами обработки и отображения информации коллективных действий, направленных на оперативное решение управленческих проблем. Актуальность использования ситуационных центров определяется необходимостью переработки больших объемов информации в процессе принятия управленческих решений при сохраняющихся жестких временных ограничениях.

Ситуационный центр характеризуется:

- предоставлением пользователям обобщенной информации, возможностью анализа агрегированных данных;

- наличием средств прогнозирования, выявлением тенденций развития исследуемого явления или процесса;

- ситуационным (динамическим) моделированием как возможностью получить ответ на вопрос «что будет если». В то время как прогнозирование позволяет получить сценарий развития на основе анализа текущей ситуации, моделирование позволяет вносить возмущения и определять возможные последствия, связанные с наступлением того или иного события;

- формированием рекомендаций по выбору одного из многих вариантов решения;

- возможностью проведения оценки рисков при расчете шансов реализации прогноза.

Одной из основных задач СЦ можно считать развитие технологий представления знаний в виде моделей и использование этих моделей для решения прикладных задач -прежде всего для разработки стратегий, управленческих решений, мониторинга социальных объектов, тренингов экспертных команд и т.п. В учебном СЦ знакомство с такими технологиями осуществляется на занятиях следующих видов:

лекции-демонстрации;

лекции-дискуссии;

анализ конкретных ситуаций (case-

study);

деловые игры.

Основу каждого занятия составляет одна или несколько моделей. Модель в процессе разработки и принятия управленческого решения выполняет ключевую функцию, поскольку является результатом проверки возможных гипотез, средств. Моделирование социально-экономической системы - это один из способов описания реальности, помогающий выработать адекватное управленческое решение социально-экономических проблем. Модель позволяет проиграть различные ситуации и определить возможные сценарии развития событий. Примером подобной модели является модель целевого распределения бюджетных средств региона.

Описание модели

Состояние региона, с системной точки зрения, можно рассматривать в пространстве трех основных координат: Потребности, Сферы деятельности и Территории (рис. 1).

Рис. 1. Системное представление региона

Состояние региона в целом зависит от состояния каждой из ячеек данной модели. Состояние ячейки определяется объемом средств, которые затрачены на ее развитие. Если расходная часть бюджета превышает сумму минимально необходимых затрат, то можно поставить задачу оптимизации распределения ресурсов по ячейкам куба, характеризующего состояние региона.

Каждая из ячеек - это минимально допустимый объем бюджетных средств, выделяемых на финансирование у -й сферы деятельности для удовлетворения . -й потребности населения, проживающего на к -й территории. Необходимо определить цели и найти такое распределение, которое предлагает наилучшую перспективу достижения этих целей [5].

Исходя из сказанного выше, задачу оптимального распределения бюджетных средств можно сформулировать следующим образом:

V = 1вцксцк ^ та:

сук = с,

тах-

ук

Zc.uk * Ьу, к

Сук * 0, . е (1,т)

у е(и ¡1

к е (р ¡1

где V - функция благополучия региона (целевая функция); С - общий объем расходной части бюджета; с - количество

выделенных средств для удовлетворения потребностей -й группы населения, проживающей на к -й территории, принадлежащей

сфере деятельности у ; 8*к - система весовых коэффициентов, соответствующая определенной ячейке модели; Ьу, - ограничения на объемы финансирования по сферам деятельности и территориям.

Для данной задачи оптимизации строится система ограничений путем попарного согласования в разрезах «Сферы деятельно-сти-Потребности»,«Территории-Потребнос-ти» и «Территории-Сферы деятельности».

Таким образом, искомые значения переменных - объемы ресурсов, которые нужно выделить соответствующим сферам деятельности и территориям с учетом удовлетворения потребностей населения. Коэффициентами целевой функции являются приоритеты рассматриваемых потребностей, сфер деятельности и территорий.

Коэффициенты целевой функции определяются путем построения системы весовых коэффициентов для каждого блока модели.

Система весовых коэффициентов для блока «Потребности» строится с помощью теории спектрального описания социальных ценностей [7].

В табл. 1 сведены общие численные значения ценностных предпочтений некоторых социальных групп.

Таблица 1

Социальная группа Потребность

& о р Е о К о В и К в 2. В защищенности (Б]) 3. В единении (Е]) 4. В самоутверждении (С]) о о, ё я 8 и го т ^ о ь в я к о Ж & д ■о 7. В саморазвитии (Р1)

1. Рабочие 31,3 27,4 13,0 17,7 6,1 2,3 2,2

2. Крестьяне 23,4 20,0 13,1 20,2 10,7 4,3 6,5

3. Пенсионеры 11,4 29,4 22,9 2,3 2,4 3,6 23,0

4. Безработные 33,9 22,4 17,-5 12,2 3,0 2,7 3,3

5. Интеллигенция 3,6 3,7 4,6 13,5 29,6 26,0 19,0

7. Предприниматели 27,8 20,2 4,0 33,0 7,4 3,6 4,0

8. Учащиеся 19,0 3,0 25,0 30,0 17,0 4,0 2,0

9. Военные 24,0 16,0 20,0 22,0 6,0 10,0 2,0

Система весовых коэффициентов для блока «Сферы деятельности»

Примем семь основных статей целевых расходов бюджетных средств:

1) Государственное управление и МСУ

(Г2).

2) Правоохранительная деятельность и обеспечение безопасности (Б2).

3) Промышленность, энергетика и строительство (П2).

4) Образование (О2).

5) Культура и искусство (К2).

6) Здравоохранение (З2).

7) Социальная политика (С2).

Уровень развития каждой из указанных

сфер деятельности (статей целевых расходов регионального бюджета) оказывает самое непосредственное влияние на благосостояние общества и на удовлетворение потребностей населения.

Для определения вклада каждой из сфер деятельности (статей целевых расходов регионального бюджета) в благосостояние общества эксперты строят матрицу эквивалентности, отвечая на вопрос: во сколько раз величина приращения функции V при увеличении уровня развития к -й компоненты на 1% будет больше соответствующего приращения функции V при увеличении / -й компоненты на 1%. Указанные сравнения выполняются для каждой пары из множества Г2, Б2 , П2, О2 , К2, З2 , С2. Для проведения попарного сравнения эксперты используют шкалу Т. Саати, где в качестве пределов изменения величин берутся числа, лежащие в

интервале

1,9

9

Пусть матрица AV для факторов, определяющих функцию V в условиях достаточно жесткого внешнего окружения, по мнению экспертов, имеет следующий вид:

Г2 В2 П2 О2 К2 З2 С2

Г 2 1 7 18 5 9 10 27 14 27 2 8 2 9

в2 18 1 10 20 4 9 4

7 7 21 3 14 7

П 2 9 7 1 2 14 9 2

5 10 3 15 20 5

О2 27 21 3 1 7 27 3

10 20 2 5 40 5

К 2 27 3 15 5 1 27 3

14 4 14 7 56 7

З2 8 14 20 40 56 1 8

2 9 9 27 27 9

С2 9 2 7 4 5 2 5 3 7 3 9 8 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Важность (предпочтительность) альтернативы, соответствующей строке, определяется путем суммирования элементов строки с последующим делением на сумму всех элементов матрицы:

Д^ = 0,05;

1 2 7 7

ДVБ = 0,14;

В2 ' '

Д^2 = 0,1;

ДVО = 0,15;

02

ДVК = 0,1;

К2 ' '

ДVЗ = 0,22;

З2 ' '

ДVr = 0,24.

С2

Как видно из приведенных вычислений, наибольшие значения весовых коэффициентов (коэффициентов сравнительной важности) наблюдаются в сфере социальной политики, здравоохранения и образования.

Система весовых коэффициентов для блока «Территории»

Поселения оказывают влияния друг на друга с точки зрения экономической, финансовой, транспортной, производственной деятельности. Эти влияния зависят и от масштабов поселения, и от их внутренней энергетики. Подобные влияния можно описывать через понятие потенциала.

Мы рассматриваем потенциал с точки зрения стимулирования развития определенного вида деятельности в данной точке пространства, обусловленный наличием поселения в некоторой другой точке. Воспользуемся следующим представлением о гравитационном потенциале поселения. Во-первых, потенциал не должен обращаться в бесконечность в точке, бесконечно близкой к источнику этого потенциала. Во-вторых, потенциал должен быть приблизительно постоянным в пределах конкретного поселения. Можно говорить о потенциале с точки зрения демографической: чем больше город, тем больше потребительский рынок; чем больше население, тем больше объем трудовых ресурсов. Таким образом, роль массы в гравитационном потенциале играет численность населения. В сфере экономики можно рассматривать потенциал развития производства. В этом случае роль массы играет объем производства определенного вида. Если рассматривать потенциал с финансовой точки зрения, то в качестве гравитационной массы целесообразно выбрать капитал или объем инвестиций. С точки зрения инфраструктуры региона, в качестве гравитационной массы выступает общая протяженность транспортных путей.

V

Так, формула расчета демографического потенциала влияния выглядит следующим образом:

N

иг =•

г + г0

где иг - потенциал притяжения (в смысле взаимных обменов); N - численность населения; г - расстояние в географическом, экономическом пространстве между источником потенциала и рассматриваемой точкой, учитывающие время и стоимость перемещения объектов; г0 - пространственное размещение этого поселения,

учитывающее стоимость, время перевозок внутри данного поселения [6].

Для вычисления потенциалов населенных пунктов внутри региона необходимо выполнение следующих этапов.

• На основе описанной выше стратегии выделяется от трех до девяти опорных центров внутри административных районов региона.

• Все административные районы региона объединяются в более крупные экономические районы, центрами которых являются выбранные опорные пункты. Объединение носит пространственный характер (рис. 2).

Рис. 2. Схема деления региона на экономические районы с выбором опорных центров внутри

региона

• Строится матрица расстояний между опорными центрами экономических районов (расстояния между центрами экономических районов определяются по автомобильным дорогам) (табл. 2).

• Строится таблица характеристик каждого экономического района, в которую

ходимо в выражение для потенциалов подставить численность населения N1 и рас-

входят: численность населения экономического подрайона, объем производства, объем инвестиций, протяженность автодорог и т.п. Количество характеристик зависит от количества потенциалов, которые необходимо вычислить (табл. 3).

• Вычисляются искомые потенциалы. К примеру, чтобы вычислить потенциал населения экономического района Р1 по отношению к экономическому району Р2, необ-

стояние г12. Аналогичным образом вычисляется потенциал экономического района Р2 по отношению к экономическому району

Р. Результаты расчетов потенциалов населения экономических подрайонов представляются в табл. 4.

В табл.4 сумма по строке характеризует влияние данного экономического района на демографию региона. Величина этой суммы обозначает потенциал влияния. Сумма по столбцу означает стимулирование всех поселений региона на развитие демографической ситуации в данном поселении. Аналогичным образом могут быть найдены произ-

водственные, финансовые, инфраструктурные и прочие потенциалы.

Данная модель отражает ценностный, структурный и пространственный аспекты и объединяет в себе качественные и количест-

венные методы оценки. На основе этой модели разработана деловая игра в СЦ, в которой каждая из групп учащихся строит свой вариант стратегии социально-экономического развития региона.

Таблица 2

Матрица расстояний между центрами экономических районов

Центр экономического района С! С С

г\»

С, Г21

Таблица 3

Характеристика экономических районов

Экономический район Численность населения Объем производства Объем инвестиций Протяженность автодорог

АГ, п п А

Ъ п п Л

р,; К" к 4

Таблица 4

Демографический потенциал экономических районов

Под стратегическим планированием понимается процесс определения целей и приоритетов, а также значений экономических показателей по основным, наиболее важным направлениям социально-экономического развития страны (региона) на длительную перспективу или на средний срок с одновременным формированием основ механизма их реализации [2]. В ходе деловой игры слушатели строят «Экономическую», «Социальную» и «Культурную (информационную)» стратегии развития региона. Каждая стратегия в игре определяется:

• выбором целевой группы (групп) на-

селения;

• расстановкой приоритетов сфер деятельности (статей расходов бюджета региона);

• выбором опорных центров экономических районов и вида потенциала.

Цели деловой игры:

- дать знания о моделировании как методе подготовки управленческого решения;

- проверить и закрепить полученные знания об использовании информационных технологий для подготовки и принятия управленческого решения;

- выработать умения использовать ресурсы ситуационного центра для подготовки и принятия управленческого решения;

- отработать навыки конструктивного структурированного взаимодействия при коллегиальной подготовке управленческого решения;

- развить коммуникативные способности, необходимые для согласованной коллегиальной работы по подготовке и принятию управленческого решения.

Задачи деловой игры:

- проведение оперативного анализа социально-экономической ситуации в регионе;

- выработка альтернативных стратегий развития региона с использованием интеллектуальных информационных технологий и средств визуального отображения информации;

- моделирование распределения бюджетных средств региона в соответствии с разработанными стратегиями;

- разработка проекта управленческого решения.

Программное и техническое обеспечение:

- Excel как среда моделирования;

- Power Point как средство визуализации представленных докладов;

- Word для формирования проекта решения;

- вычислительный модуль моделирования, разработанный в среде MatLab;

- видеостена для одновременного отображения информации о ходе и результатах моделирования;

- интегрированные системы управления видеостеной;

- интерактивная доска для работы лица, принимающего решение (ЛПР).

Информационное и методическое обеспечение:

- информация о регионе для проведения оперативного анализа социально-экономической ситуации, представленная в табличном, графическом и картографическом виде (презентация и раздаточный материал);

- методические материалы по проведению моделирования (презентация и раздаточный материал);

- методические материалы по подготовке презентации в ситуационном центре;

- методические материалы по работе с интерактивной доской.

Распределение ролей происходит по

инициативе участников деловой игры до начала занятия в ситуационном центре, при этом учитываются индивидуальные особенности участников. Предусмотрены следующие роли:

1. Лицо, принимающее решение о выборе стратегии распределения бюджетных средств региона:

• ведет обсуждение представленных докладов;

• руководит порядком выступлений;

• следит за соблюдением регламента;

• проводит дискуссию;

• вырабатывает проект решения.

2. Три малые творческие группы (МТГ), строящие «Экономическую», «Социальную» и «Культурную (информационную)» стратегии распределения бюджетных средств региона. Каждая из малых творческих групп распределяет внутренние роли: руководитель МТГ, представляющий результаты моделирования стратегий с использованием презентации на видеостене; аналитик МГГ, который осуществляет ввод параметров и проведение моделирования в среде Excel; эксперты МТГ проводят анализ социально-экономической ситуации в регионе, в соответствии с назначенной стратегией определяют спектры потребностей опорных групп населения, составляют матрицу эквивалентности, отдавая приоритет тем или иным статьям расходов бюджета, выбирают экономические районы региона и вид потенциала, задают вопросы докладчикам других МТГ, участвуют в дискуссии.

3. Сотрудники ситуационного центра обеспечивают техническую поддержку и сопровождение деловой игры.

4. Роль преподавателя заключается в обеспечении координации коллективной деятельности в направлении достижения цели деловой игры.

Этапы деловой игры:

• Знакомство со спецификой работы в СЦ и средствами моделирования. Постановка задачи деловой игры.

• Анализ социально-экономической ситуации в регионе.

• Выступления представителей каждой МТГ с результатами проведенного анализа социально-экономической ситуации в регионе и обоснованием выбранной стратегии распределения бюджетных средств и механизмов их реализации.

• Вопросы по докладам и ответы на них представителями МТГ.

• Моделирование выбранных стратегий:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

в перечне групп населения указываются целевые группы, значения спектров потребностей которых войдут в систему ограничений;

строятся матрицы эквивалентности (в соответствии с описанием модели), задающие приоритеты статьям расходов бюджета;

указываются опорные центры экономических районов региона и вид потенциала;

проводится расчет распределения бюджетных средств региона.

• Демонстрация каждой из МТГ результатов моделирования.

\\ X

о, •••

Рис. 3. Система весовых коэффициентов

для таблицы «Сферы деятельности-Потребности»

• Дискуссия по результатам моделирования.

• Подготовка проекта решения (ЛПР) о выборе стратегии распределения бюджетных средств на основе результатов проведенного моделирования.

Система ограничений, полученная при моделировании стратегии, имеет вид (рис. 3, 4, 5). Итоговое распределение бюджетных средств региона по сферам деятельности и экономическим районам представлено на-рис. 6:

0.050

0,030

\ \х

Рис. 4. Система весовых коэффициентов для таб-лицы «Территории-Потребности»

ч

Рис

для

. 5. Система весовых коэффициентов таблицы «Сферы деятельности-Потребности»

Ч <ь 4 ' Ч X ^

ч \

.4

Рис. 6. Гистограмма распределения бюджетных средств Нижегородской области на примере построения социальной стратегии

Деловая игра «Принятие управленческого решения в ситуационном центре с ис-

пользованием модели целевого распределения бюджетных средств региона» может

быть включена в учебные дисциплины: зовательных технологий [1, 4]. «Социальная информатика», «Принятие Проведение учебного занятия в ситуа-управленческого решения», «Ситуацион- ционном центре с использованием данной ный тренинг», «Моделирование социаль- модели повышает качество и эффективных процессов и явлений в условиях сис- ность учебного процесса, расширяет воз-темного кризиса», «Анализ и прогнозиро- можности наглядного представления дан-вание инновационных процессов». Про- ных и результатов моделирования, позволя-должительность деловой игры - 4 акад. ча- ет организовать коллективное обсуждение са. различных вариантов управленческого ре-

Игра может быть адаптирована для шения [7]. применения в среде дистанционных обра-

Литература

1. Данчул А.Н., Данилова О.С., Навроцкая М.А., Поленова Т.М., Сафонова Т.Е. Использование ситуационного центра и телекоммуникационных технологий в учебном процессе при моделировании динамики социально-экономического развития региона// «Совершенствование подготовки 1Т-специалистов по направлению «Прикладная информатика» на основе информационных технологий и Е-Ьеагт^»: Сб. научн. тр. - М: МЭСИ, 2007.

2. Кузык Б.Н. Прогнозирование и стратегическое планирование социально-экономического развития: Учебник / Б.Н. Кузык, В.И. Кушлин, Ю.В. Яковец. - М.: Экономика, 2006. - 427 с.

3. Манушин Э. А., Митин А.И. Учебный ситуационный центр как среда обучения групповому принятию решений: Методические рекомендации для системы повышения квалификации и переподготовки управленческих кадров (Сер. «Учебно-исследовательский ситуационный центр».) - М.: Изд-во РАГС, 2007. - 46 с.

4. Междисциплинарный инновационный комплекс деловых игр «Демографический кризис в России и пути его преодоления» с применением технологий учебного ситуационного центра с включением гендерного компонента (Сер. «Социальная инноватика государственного управления») / Под ред. Ф.Д. Демидова. - М.: Проспект, 2007.

5. Навроцкая М.А., Надеев А.Т. Матричный метод оптимизации распределения средств бюджета // Системный анализ и моделирование социально-экономических и политических процессов: Сб. статей. -Вып.4. - Н.Новгород: Изд-во ВВАГС, 2004 - С.60-66.

6. Навроцкая М.А., Надеев А.Т., Халин А.А. Исследование влияния поселенческих потенциалов на развитие промышленного производства в Нижегородской губернии // Системный анализ и моделирование социально-экономических и политических процессов: Сб. статей. - Вып.3. - Н.Новгород: Изд-во ВВАГС, 2003. - С.54-60.

7. Надеев А.Т. Моделирование социально-политических и экономических процессов: Учебник -Н.Новгород: Изд-во ВВАГС, 2002. - 350 с.

8. Поленова Т.М., Сафонова Т.Е., Тарасов С.Б. Методические рекомендации к учебному занятию «Анализ стратегии социально-экономического развития и безопасности региона» (Сер. «Учебно-исследовательский ситуационный центр») / Под общ. ред. А.Н. Данчула. - М.: Изд-во РАГС, 2007. - 40 с.

К ВОПРОСУ О ПЕДАГОГИЧЕСКОМ ПРОГНОЗИРОВАНИИ

В.С. Клопченко, к.ф.-м.н., доц., проф. каф. Физики Тел.: (8634) 312-037;E-mail: [email protected] Таганрогский технологический институт Южного Федерального Университета

http://www.tsure.ru

The model for forecasting of student's learning grade is expanded with a new variable - coefficient of learning discrimination. The categorical structure of knowledge can be measured by student characteristics, difficulty of learning and various probability of success.

На основании проведенного анализа методов прогнозирования, по нашему мнению, важнейшей задачей является определение узкого круга методов прогнозирования для решения широкого спектра проблем в образова-

нии (педагогике). Установлено, что наиболее сложные задачи прогнозирования возникают в педагогике, психологии и ряде других областей. Это приводит к необходимости использования одного из методов эволюционного мо-

i Надоели баннеры? Вы всегда можете отключить рекламу.