УДК 622.3.817
МИГРАЦИЯ РАДОНА В НАДРАБОТАННЫХ ПОРОДАХ
Н.М. Качурин, Г.В. Стась, С.А. Воробьев, Мпеко Нсендо Арди
Рассмотрена вертикальная миграция радона во вмещающих породах, описывающаяся первым законом Фика совместно с уравнением неразрывности диффузионного потока, с учетом процессов сорбции и радиоактивного распада. Учитывая особенности диффузионного процесса вертикальной диффузии радона, можно считать этот процесс установившимся.
Ключевые слова: радон, диффузия, горные породы, сорбция, радиоактивный распад, математическая модель.
Вертикальное распределение радона во вмещающих породах с учетом уравнения неразрывности диффузионного потока радона и первого закона Фика можно записать в следующем виде:
Ё^ + Ё1 = а™^ ёгаа[сКп(г,г)] }, (1)
о1 с? г
где М, q - масса свободного и сорбированного радона в единичном объеме породы; - коэффициент эффективной диффузии радона; с^ - концентрация радона в породах, расположенных над залежью урана.
Адаптируя уравнение (1) к реальным условиям вертикальной диффузии в надработанных породах, получим
дС»„ ^ д2С
2 -ИКп 2 ЛКпСКп , (2)
дг дг
где - эффективная константа скорости процессов сорбции и радиоактивного распада радона; - мощность источника генерации радона за
счет радиоактивного распада урана.
Учитывая особенности диффузионного процесса вертикальной диффузии радона, можно считать этот процесс установившимся, тогда переходя к удельной активности газовых смесей, представим уравнение (2) в следующем виде:
¿2 л вп
ЪпАПП =о . (3)
где АВП - удельная активность по радону газовой смеси во вмещающих породах.
Граничные условия для вертикальной миграции имеют вид:
ТЛ аАКп
~ иКп~,-
аг
- ¿ВП - с°п^г, Нш А2п ф ю, (4)
г^-ю
г-0
где - интенсивность образования радона в подрабатываемом урановом месторождении.
Решение уравнения (3) для условий (4) можно записать следующим образом:
ГВП ' ~
аВП(^)
0,5 J
Кн
^ехр
к
Кн
В
Кн
(5)
ФВКнкКн
Дифференцируя зависимость (5) в точке ъ = И, где И - расстояние от урановой залежи до почвы рассматриваемой выработки, найдем абсолютное радоновыделение из подрабатываемого уранового месторождения
(С):
С -Л
I
ВП Кн
IВП ехр
1 Кн ехр
-И
к
Кн
В
Кн
(6)
Разработана программа ЯпУР для вычислительных экспериментов с использованием стандартного пакета МЛТИЕМЛТ1СЛ 2.2. Пример и результаты использования программы представлены на рис. 1.
Рис. 1. Пример и результаты использования программы ЯиУР для вычислительных экспериментов
ТЧТТ тзтт
Графики зависимости отношения величин 1К11 / 1К11 от расстояния И для различных значений / БКп представлены на рис. 2. Анализируя профили диффузионного потока радона во вмещающих породах, следует
отметить высокий темп снижения скорости миграции радона при уменьшении величины коэффициента эффективной диффузии [1-3]. Разумеется, что такие результаты вычислений совпадают с данными натурных наблюдений по другим газам, например по метану, поступающему из подрабатываемых угольных пластов. Такое косвенное подтверждение адекватности разработанной математической модели можно считать в данном случае приемлемым, так как в настоящее время нет необходимой эмпирической базы данных. При этом результаты вычислений показывают, что абсолютная радонообильность будет пропорциональна величине интенсивности образования радона в подрабатываемом урановом месторождении.
ь ->
Рис. 2. Графики зависимости отношения величин ¡В / ЛЩ от расстояния Н, м. Значения у/ХКп / ВКп соответственно равны: 1 - 0,001; 2 - 0,005; 3 - 0,01; 4 - 0,05; 5 - 0,1
Эта величина имеет физический смысл диффузионного потока радона на контакте надрабатываемой ураносодержащей линзы и надрабаты-ваемого породного слоя. Следовательно, интенсивность образования радона в подрабатываемом урановом месторождении является одним из важнейших параметров геофизического исследования угольных месторождений промышленного значения в Подмосковном бассейне. Таким образом, новые математические модели газовыделения позволяют расширить круг задач, решаемых при геологических исследованиях. Разумеется, что без совместного решения этих задач невозможно дать достоверную прогнозную оценку газовой опасности по любому газу, и в данном случае это относится к радону.
Список литературы
1. Качурин Н.М., Поздеев А.А., Стась Г.В. Прогноз выделения радона в горные выработки угольных шахт// Известия ТулГУ. Естественные науки. 2012. Вып. 1. Ч. 2. С. 133-142.
2. Качурин Н.М., Поздеев А.А., Стась Г.В. Выделения радона в атмосферу горных выработок угольных шахт// Известия ТулГУ. Науки о Земле. 2012. Вып. 1. С. 46-56.
3. Радон в атмосфере угольных шахт / Н.М. Качурин [и др.]// ГИАБ. 2012. Вып.8. М.: Изд-во МГГУ. С. 88-94.
Качурин Николай Михайлович, д-р техн. наук, проф., зав. кафедрой, [email protected] , Россия, Тула, Тульский государственный университет,
Стась Галина Викторовна, канд. техн. наук, доц., galina_stas@,mail.ru, Россия, Тула, Тульский государственный университет,
Воробьев Сергей Александрович, научный сотрудник, [email protected], Россия, г. Белгород, Белгородский национальный исследовательский университет,
Мпеко Нсендо Арди, аспирант, galina_stas@,mail.ru, Россия, Тула, Тульский государственный университет
MIGRATING RADON THROUGH ROCKS N.M. Kachurin, G. V. Stas, S.A. Vorobev, Mpeko Nsendo Ardy
Vertical migrating radon though rocks is described by the first Fick law jointly with equation of continuity for diffusion flow with taking into account processes of sorption and radioactive disintegration. Vertical migrating radon can be considered as stationary process taking into account specific of diffusion process.
Key words: radon, diffusion, rocks, sorption, radioactive disintegration, mathematical model.
Kachurin N.M., Doctor of Science, Full Professor, Chief of a Department, ecology @,tsu.tula.ru, Russia, Tula, Tula State University,
Stas G.V., Candidate of Technical Science, Docent, [email protected], Russia, Tula, Tula State University,
S.A. Vorobev, Scientific Associate, [email protected], Russia, Belgorod, Belgorod National Researching University,
Mpeko Nsendo Ardy, Post Graduate Student, galina_stas@,mail. ru, Russia, Tula, Tula State University