УДК 621.436
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА ХРАНЕНИЯ ТЕПЛОТЫ В
ТЕПЛОВОМ АККУМУЛЯТОРЕ
П.В.Дружинин!, А.А Коричев2, И.А Косенков3
1,2Санкт-Петербургский государственный университет сервиса и экономики,
192171, Санкт-Петербург, ул. Седова, дом 55/1 3 Санкт-Петербургский государственный инженерно экономический университет
191002, Санкт-Петербург, ул.Марата, д.27
Разработана математическая модель одного из трех процессов эксплуатации системы предпускового разогрева двигателя - режима хранения теплоты.
Ключевые слова: математическая модель, двигатель внутреннего сгорания, предпусковая тепловая подготовка, режим хранения теплоты, тепловой аккумулирующий материал, тепловой аккумулятор фазового перехода, тепловой аккумулятор.
Актуальность вопроса предпускового разогрева мобильных машин в настоящее время возросла в связи с необоснованным повышением цен на различные виды энергоносителей и сокращением в городских автотранспортных предприятиях и агропромышленном комплексе (АПК) отапливаемых помещений для хранения мобильной техники. Отсюда возникает необходимость быстрого и эффективного предпускового разогрева мобильных машин в зимний период.
Применение наиболее эффективных способов и средств запуска мобильных машин, обеспечивающих наименьшие затраты и наиболее надежное техническое состояние ДВС, является важнейшей задачей.
Хранение мобильной техники в условиях отрицательных температур может осуществляться как в закрытом (отапливаемом и не отапливаемом) помещении, так и в открытом - на специальных площадках. При открытом (безгаражном) хранении в зимний период эксплуатации применяются различные способы и средства, облегчающие пуск ДВС и использование мобильных машин по назначению. В большинстве случаев способы безгаражного хранения связаны с применением тепловой подготовки мобильных машин.
Эксплуатация мобильных машин в районах с неблагоприятными климатическими условиями (отрицательными температурами воздуха) связана с быстрым охлаждением механизмов, агрегатов и имеет ряд осо-
бенностей. Производительность мобильных машин в зимний период резко снижается. При безгаражном хранении водитель затрачивает много времени на пуск и прогрев ДВС. В результате низких температур воздуха системы и механизмы мобильной техники интенсивно охлаждаются, что затрудняет не только пуск двигателей, но и уменьшается надежность мобильных машин, ухудшается экономичность, увеличивается расход топлива, усложняется обслуживание мобильных машин и их работа.
Под безгаражным хранением понимается процесс содержания технически исправных мобильных машин на открытых площадках, обеспечивающий его готовность к выезду для использования по назначению. Преодоление трудностей, возникающих при безгаражном хранении автомобилей при низких температурах и в том числе трудностей пуска двигателя, может быть решено с помощью использования теплоты, получаемой от внешнего источника.
Совершенствование системы предпусковой подготовки ДВС мобильных машин на основе теплового аккумулятора фазового перехода (ТАФП) и является одним из путей решения данной задачи. Конструкция и принцип работы ТАФП рассмотрен нами в [1]
Во время работы ДВС при температуре окружающей среды Т0 поток охлаждающей жидкости (ОЖ) с переменным во времени массовым расходом Ож =Ож(т) и посто-
ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СЕРВИСА №2(12) 2010
63
янной температурой входа Тжвх = const поступает в ТАФП, отдает часть своей теплоты и с параметрами Ож = Ож (т) и
Тжт=Тжшх(т) вновь поступает в ДВС, где ТжвыхСО - температура ОЖ на выходе из ТАФП. В процессе зарядки ТАФП часть утилизируемой энергии рассеивается в окружающей среде с переменной во времени интенсивностью Оп = <2„(т).
Накопление ТАФП теплоты происходит за счет плавления фазопереходного ТАМа [1], когда по трубному теплообменнику проходит поток ОЖ. Слой тепловой изоляции препятствует интенсивному теплообмену ТАМа с окружающей средой.
Конструкция системы предпускового разогрева двигателя [1] позволяет эксплуатировать ее в трех режимах:
I - режим зарядки ТАФП;
II - режим хранения теплоты;
III - режим разрядки ТАФП (режима разогрева двигателя).
Целью создания детерминированной математической модели процесса хранения теплоты в ТАФП является получение зависимостей, позволяющих изучать его функционирование в течение этого процесса.
Основной математической зависимостью для рассматриваемого процесса является зависимость, позволяющая рассчитывать среднюю по всему теплоаккумулирующему объему температуру теплоаккумулирующего материала (ТАМ) ТТ в каждый момент времени т.
Для построения математической модели введем следующие допущения.
1. Тепловое состояние ТАМа будем описывать с помощью средней по всему теплоаккумулирующему объему температуры ТТ, изменяющейся во времени.
Весь процесс хранения тепловой энергии условно разделим на два периода. Первый период - охлаждение ТАМа в жидкой фазе от начальной температуры, равной конечной температуре нагрева ТАМа ТТ кон в
процессе зарядки ТАФП, до средней температуры 1'т, равной температуре фазового перехода Тф = Тпл. Второй период - кристалли-
зация ТАМа при Тф = Тпл. Практический интерес представляет только первый период. Поэтому в дальнейшем будем рассматривать процесс хранения теплоты в интервале температур Тф < Тт < 7'./ кои.
2. Коэффициенты переноса (коэффициенты теплопроводности, теплоотдачи) и удельные массовые теплоемкости материалов, участвующие в процессе теплопередачи, не зависят от температуры.
Согласно [2, - 4] и с учетом сделанных выше допущений справедливы следующие уравнения в дифференциальной форме:
- уравнение теплопередачи от ТАМа к окружающему воздуху
аО,ют=ко-Рпов-{Тт-Т0)ат, (1)
где: аОпот - бесконечно малое количество теплоты, рассеиваемое ТАФП в окружающую среду в течение времени ОСТ, Дж; к0 - коэффициент теплопередачи от ТАМа к окружающему воздуху, Вт/(м2-К); ^ов - площадь поверхности ТАФП, излучающей теплоту, м ; Т 0 - температура окружающей среды, К;
- уравнение теплового баланса для
ТАМа
аОт = ттСу(хТт, (2)
где: а()т- бесконечно малое изменение энергоемкости ТАФП при изменении температуры ТАМа на <хТг, Дж; тт - масса ТАМа, кг;
С Ж - удельная массовая теплоемкость ТАМа в жидкой фазе, Дж/(кг-К).
Так как
а(2,ош = -а(2г-> (3)
то с учетом (1), (2) после несложных преобразований получаем следующее линейное дифференциальное уравнение первого порядка с постоянными коэффициентами:
dTT
dx
к -F к -F •Т
О ПОб t 'J1 _ О ПОб О ______________ Q
( 4 )
Известно, что при т = 0 средняя по теплоаккумулирующему объему температура ТАМа Тт равна конечной температуре его нагрева ТТ кон в процессе зарядки ТАФП. Следовательно, начальным условием для реше-
64
НИИТТС
ния дифференциального уравнения (4) будет являться следующее выражение:
TT (0) = Т„ = const.
T Т кон
Тогда, решая уравнение (4) с учетом начального условия (5), получаем:
К 'Кое mT ■Сж
■ х
•(6)
Исследуем общее решение (6). Если т = 0, то в соответствии с (6)77 (0) = ^кон, что
соответствует начальному условию (5).
Функция (6) позволяет определить время хпот, в течение которого ТАМ охлаждается от Тт = ТТкон до Тт = Тф. Действительно, если положим х = хпот , ТТ{хпот) = Тф, то получаем
X =
mT-C'г , -In
-71
Т -Т
1ф 1о
( 7 )
к-рт
Таким образом, уравнения (6), (7) и представляют собой искомые математические зависимости, позволяющие анализировать функционирование ТАФП в процессе хранения теплоты.
В заключение можно сделать следующие выводы:
1. Полученное уравнение (6) представляет собой экспоненциальную зависимость, что соответствует ходу изменения большинства физических величин, изменяющихся во времени. Так, например, закон изменения массы радиоактивного распада вещества во времени, давления в атмосферном воздухе от высоты и многие другие представляют собой экспоненциальную зависимость.
2. В отличие от математической модели процесса зарядки ТАФП, в которой потери учитывались введением КПД зарядки т/з, в рассматриваемой модели тепловые потери
рассчитываются в явной форме, путем вычисления коэффициента теплопередачи £о.
3. Решение вопроса дол^с^Ьрочного аккумулирования тепловой энергии - актуальная задача в промышленности, сельском хозяйстве, энергетике и других областях, а также и для обеспечения надежности пуска ДВС мобильных машин. Надежность пуска ДВС мобильных машин, предназначенных для эксплуатации в условиях низких температур, может обеспечиваться применением и совершенствованием системы предпусковой подготовки ДВС мобильных на основе ТАФП. В результате разработана математическая модель одного из режимов эксплуатации системы, получены аналитические выражения и математические зависимости, позволяющие изучать функционирование ТАФП в процессе хранения теплоты.
Литература
1. .Дружинин П.В, Коричев А.А, Косенков И.А. Ппредпусковая подготовка двигателей внутреннего сгорания при технической эксплуатации транспортных машин./ Технико-технологические проблемы сервиса. №4(10) 2009 - с. 7 - 12
2. Лыков А.В. Теория теплопроводности: Учеб. пособие для вузов. - М.: Высшая школа, 1967. - 599 с.
3. Михеев М.А., Михеева И.М. Основы теплопередачи. М.: Энергия, 1973. - 320 с., ил.
4. Хоблер Т. Теплопередача теплообменники. - Пер. с польского А.В. Плисса под ред. П.Г. Романова. - Л.: ГНТИХЛ, 1961.-821 с.
5. Двигатели внутреннего сгорания. В 3 кн. Кн. 3. Компьютерный практикум. Моделирование процессов в ДВС. Учебник для вузов/И.Н. Лукашин, М.Г. Шатров, Т.Ю. Крачевская и др.: Под ред. И.Н. Лукашина и М.Г. Шатрова. - 2-е изд. перераб. и доп. - М.: Высш. шк., 2005. - 414 с.: ил.
1 Дружинин Петр Владимировия, д.т.н., профессор кафедры “Технология обслуживания транспортных средств”
СПбГУСЭ, тел(812) 700 62 16; + 7(921)976 95 86 '
2 Коричев Андрей Александрович, к.т.н., доцент, заведующий кафедрой “Технология обслуживания транспортных
средств " СПбГУСЭ, тел(812) 700-62-16 ; 8(812) 450 94 72; E-mail: akorichev(a)vandex. ru
3 Косенков Иван Алексеевич, аспирант кафедры управления качеством и машиноведение Санкт-Петербургского государственного инженерно экономического университет, +7(921)325 85 05; Е-mail: [email protected]
ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СЕРВИСА №2(12) 2010
б5