Теплотворную способность водоугольных суспензий определяли на калориметре В - 08. Она составила для водоугольного топлива из подготовленного шлама марки Д (сухая масса угля) -7600 ккал/кг; СС - 7600 ккал/кг; Г - 8200 ккал/кг.
Полученные характеристики водоугольного топлива (угольный шлам марки Д) представлены в табл. 3.
Сравнивая данные технологических характеристик полученных суспензий (табл. 3) и норм технологических характеристик водоугольных
суспензий, заложенных в технологический регламент комплекса трубопровода Белово - Новосибирск (табл. 4), можно сделать вывод, что полученные водоугольные суспензии приемлемы для прямого сжигания в топках котлоагрегатов.
Проведенные исследования и полученные данные, показывают возможность получения высококонцентрированных водоугольных суспензий из угольных шламов Кузбасса, приемлемых для прямого сжигания в вихревых топках котлоагрегатов.
СПИСОК ЛИТЕРАТУРЫ
1. Мурко В.И. // Химия твердого топлива. 2001. № 2. С. 62-72.
2. Зайденварг В.Е., Трубецкой К.Н., Мурко В.И., Нехороший И.Х. Производство водоугольного топлива. -М.: Издательство Академии горных наук, 2001. 176 с.
3. Мурко В.И., Заостровский А.Н., Клейн М.С., Папина Т.А. Повышение качества угля для приготовления водоугольного топлива // Материалы Международной научно-практической конф. “Энергетическая безопасность России. Новые подходы к развитию угольной промышленности”, Кемерово, 2002. -С. 84.
4. Мурко В.И., Заостровский А.Н. Выбор углей для приготовления водоугольных суспензий и закономерности формирования их структурно-реологических характеристик // Вестн. КузГТУ. 2001. № 5. С.49 - 54.
5. Папин А.В., Солодов Г.А., Заостровский А.Н., Папина Т.А. Процесс формирования структуры высококонцентрированных водоугольных суспензий приготовленных из обогащенных угольных шламов методом масляной агломерации // Вестн. КузГТУ. 2003. № 4. С. 96-99.
□ Авторы статьи:
Солодов Геннадий Афанасьевич
- докт. техн. наук, проф., зав. каф. химической технологии твёрдого топлива и экологии
Заостровский Анатолий Николаевич
- канд. техн. наук, доц. каф. химической технологии твёрдого топлива и экологии КузГТУ, ст. науч. сотр. Института угля и угле-химии СО РАН
Папин Андрей Владимирович
- вед. инженер Института угля и угле-химии СО РАН
Папина Татьяна Александровна
- аспирант Института угля и углехимии СО РАН
Клейн Михаил Симхович
- канд. техн. наук, доц. кафедры обогащения полезных ископаемых
УДК 622.765.06
М.С. Клейн
КИНЕТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА МАСЛЯНОЙ АГЛОМЕРАЦИИ
Метод масляной агломерации угольных шла-мов может использоваться перед пенной флотацией как первая стадия обогащения мелкого угля, в результате которой происходит селективное образование углемасляных комплексов с высоким извлечением в них микрочастиц угля. При последующей флотации агломерированного угля увеличивается скорость процесса снижается расход реагентов, повышается селективность разделения угольных и минеральных частиц [1-3].
Одной из причин ограниченного практического применения этого метода является недостаточная, по сравнению с флотацией, изученность механизма образования углемасляных комплексов,
что не позволяет разработать и использовать научно обоснованные оптимальные условия агломерации частиц угля и масла. В данной работе рассматривается первый этап создания модели процесса, включающий разработку алгоритма расчета и математическое описание переходов угольных частиц в масляную фазу. В дальнейшем необходимо установить физико-химические закономерности и константы скоростей отдельных стадий процесса, провести экспериментальную проверку модели. Полная кинетическая модель процесса масляной агломерации позволит изучить механизм взаимодействия частиц мелкого угля с масляной фазой, выявить наиболее значимые техно-
логические факторы и оптимизировать процесс.
Масляная агломерация угольных шламов проходит при интенсивном перемешивании полидис-персной пульпы, содержащей мелкий уголь и капли масляной фазы. В турбулентных потоках пульпы частицы и капли многократно сталкиваются между собой, при этом одновременно происходит образование и разрушение комплексов, содержащих омасленные частицы угля различной крупности. При равенстве скоростей этих процессов в системе устанавливается равновесие, уровень которого определяет достигаемую степень агломерации угольных частиц. На скорость образования и разрушения агрегатов оказывает влияние ряд промежуточных процессов: закрепление масляных капель на частицах угля и отрыв от них, перераспределение масла на поверхности угольных частиц в результате столкновения частиц между собой, перенос каплями масла мелких частиц на поверхность крупных, растекание капель масла по угольной поверхности и др.
Кинетическая модель описывает развитие процесса агломерации во времени и может быть основана на вероятностном способе [4, 5]. Модель должна отражать основные стадии процесса агломерации - столкновение, закрепление и сохранение контакта между мелкими частицами и каплями масла, каплями масла и крупными частицами, мелкими частицами и омасленными крупными частицами. Для упрощения математического описания модели при ее составлении приняты следующие допущения.
1. В агломерируемой пульпе находятся две фракции частиц угля - мелкая и крупная. Внутри каждой фракции частицы имеют одинаковые размеры и свойства поверхности и обладают не зависимой от крупности способностью к взаимодействию с масляной фазой.
При выборе граничного размера между мелкими и крупными частицами учитывается, что масляная агломерация проводится для максимального извлечения в углемасленные агрегаты микрочастиц угля крупностью менее 20-30 мкм [1], т.к. критический размер частиц угля, сталкивающихся с пузырями воздуха в процессе флотации по инерционному механизму и эффективно извлекаемых в пенный продукт, не превышает 40-50 мкм [6]. Кроме того, внутренний масштаб турбулентности, от размера которого зависят скорости и механизм взаимодействия объектов агломерации [7], в реальных условиях процесса находится в диапазоне от 15 до 30 мкм (диссипация энергии 103-3-104 Вт/м3).
2. Все капли масла, полученные предварительным эмульгированием или дроблением турбулентными пульсациями, имеют одинаковые для конкретных условий процесса размеры и свойства.
3. Этапы столкновения мелких частиц с масляной фазой и закрепления частиц на ней можно отделить один от другого при условии, что по-
верхностные свойства частиц влияют на процесс их сближения только на малых, по сравнению с размером частиц, расстояниях. Движение частиц до такого расстояния относится к этапу столкновения, а на меньших расстояниях - к этапу закрепления.
4. При перемешивании механической мешалкой достигается равномерное распределение частиц и капель по всему объему пульпы.
Модель масляной агломерации угольных частиц включает четыре вида объектов агломерации: м - мелкие частицы угля, к - капли масла, р -крупные частицы угля, о - омасленные крупные частицы. Объекты могут находиться в двух основных состояниях: п - в пульпе и ф - в масляной фазе, которая представлена отдельными каплями масла в пульпе - к и омасленными крупными частицами - о.
При разработке кинетической модели в первую очередь составляется макроскопическую модель, в которой в целом рассматривается картина переходов мелких частиц угля из пульпы в масляную фазу и влияние на процесс агломерации общих факторов. Затем на основе последовательного описания промежуточных этапов процесса составляются микромодели отдельных переходов между состояниями объектов агломерации, после включения которых в макромодель создается полная кинетическая модель процесса масляной агломерации.
Для количественного описания процесса агломерации введены следующие обозначения и общие расчетные формулы:
И, - полное число объектов / в состоянии , в начальный момент времени;
N,{1}- число объектов / в состоянии, в момент времени г;
N,-{1} - число объектов I, совершивших переход из состояния, в состояние/ к моменту времени Р;
е, (г) =
N (г)
извлечение объектов / в со-
П,
стояние, к моменту времени Р;
N -/ ( )
ёе,- / (г) = ■
- извлечение объек-
П,
тов /' на переходе из состояния, в состояние / за отрезок времени &.
Если принять, что на переходе ,/ объекты / не влияют друг на друга и свойства их не меняются во времени, то для этого перехода можно записать
ёе/ (г)=■
К/ [п, - К/ (г)]
-ёг, (1)
п
После интегрирования уравнения (1) при условии, что К/ не зависит от времени, и началь-
ных условиях е'/■ (г)| г=0 = 0 получим
е,/{г} = 1 - exp{ - К^/ г}. (2)
В уравнениях (1-2) К/ = Ж/ Ж// Ж/ - константа скорости перехода объекта I из состояния , в состояние / в единицу времени г; Ж/С - вероятность столкновения объекта - на переходе из состояния , в состояние / в единицу времени г; Ж,/
- вероятность закрепления, равная отношению числа закрепившихся частиц к числу столкнувшихся, и Ж/ - вероятность удержания объекта /,
равная отношению числа удерживаемых частиц к числу закрепившихся при таком переходе.
Вероятность столкновения объектов агломерации определяется из закономерностей
движения частиц разной крупности в турбулентном поле скоростей и рассчитывается с учетом действия различных механизмов столкновений: градиентного, диффузионного и инерционного.
Вероятность закрепления объекта Ж/ связана с закономерностями утончения тонких пленок жидкой фазы при сближении частиц и зависит от свойств угольной поверхности и масла и условий перемешивания пульпы. При разработке данной
модели, принимаем, что вероятность Ж/ является постоянной величиной в любой момент времени.
При расчете вероятности удержания Ж/ используется константа скорости отрыва К", величина которой может быть пропорциональна кинетической энергии турбулентного вихря, создающего разность давлений, достаточную для отрыва частицы.
Макроскопическая модель процесса агломерации
Модель процесса составляется для расчета количества перешедших в масляную фазу мелких угольных частиц к моменту времени г. Масляная фаза состоит из отдельных капель масла в пульпе и растекшихся капель и масляных пленок на поверхности крупных частиц. В этом случае
аы; (г) = [КМ Nм (г) + КМ ым (г)]ёг. (3)
При составлении уравнений для определения количества мелких частиц, перешедших на капли
масла N м (г) и омасленные частицы Ым (г), необходимо учитывать, что число свободных мелких частиц в пульпе N33 (г) уменьшается за счет
одновременного закрепления их на каплях и на омасленных крупных частицах. Значит,
Nм (г) = [пм - Nм (г) - N; (г)].
Обозначив отношение N; {г)/Nм {г} =В,
расчетные зависимости для N; (г) и Nм (г) запишем в виде:
dN; (г) = км [пм - (1+В)N; (г)]ёг (4) (г) = км [пм - (1+В-1)N; (г)]ёг (5)
Подставив (4) и (5) в уравнение (3) и преобразовав его, получим выражение для расчета общего извлечения мелких частиц в масляную фазу к моменту времени г
ем (г) = (1+В)-1 ем (г) + (1+В-1)-1 ем (г) .(6)
Важным фактором, влияющим на скорость процесса агломерации угля при низких расходах масляного реагента, является занятость поверхности масляной фазы осевшими на нее мелкими частицами. Зависимость, устанавливающая влияние занятости масляной поверхности, должна включать число осевших в масляной фазе частиц в момент времени г. Введение этой зависимости в дифференциальные уравнения (4) и (5) значительно усложнит модель. Поэтому, в рамках составляемой модели, примем, что извлечение перешедших в масляную фазу угольных частиц прямо пропорционально отношению свободной площади поверхности масляной фазы Бс{г} в момент времени г к общей площади поверхности масляной фазы Бф. Тогда
Бс{г}ем^, Бф - Бз{г} м*
еф {г} = ^^еф {г} =---------
ф Бф ф Бф ф
еф; {г} =
= еф № - Сф {г}] =
еф*{0
1 + Сф {г}еф {г}
(7)
где Бз{г} - суммарная площадь сечения всех осевших в масляной фазе мелких частиц в момент
времени г; еф (г) - извлечение перешедших в масляную фазу угольных частиц без учета занятости поверхности масла [ Сф (г) = 0]; Сф (г)- коэффициент занятости поверхности масляной фазы.
Обозначив коэффициент занятости поверхности масляных капель - СЗ (г) , коэффициент занятости омасленной поверхности крупных частиц -СЗ (г) , то можно записать (6) с учетом (7) в виде:
Л
ем {г} = {1 + В }-1-
ем {г}
+
1 + СЗ {ге {г}
+{1+В~1}~1-
ем {г}
1 + со {гем* {г}
Коэффициент занятости СЗ (г) поверхности масляных капель радиусом гк осевшими мелкими частицами радиусом гм определяется из выражения
пм г2
п м
(9)
4NЗ (і)г2
Для расчета коэффициента С3( і) примем,
что площадь омасленной поверхности крупных частиц равна отношению объема масляного реагента на омасленных крупных частицах
ШМЄК0 (і)/рм к средней толщине масляной пленки И. Тогда
пмж г2Ир С3 (і) - —-----. (10)
о \ / з / .4 4 '
тмЄо ( 0
После подстановки (9) и (10) в (8) остались не найденными значения єМ (і) и Є ОМ (і). Урав-
_М* ґ^\ М* />\
нения для определения Є з ( і) и Є 0 ( і) выводятся при раздельном рассмотрения осаждения мелких частиц на каплях масла и на омасленных крупных частицах.
Осаждение Мелких частиц на каплях Масла.
Для расчета количества мелких частиц, осевших на каплях масла, используем уравнение (4), в котором константа
км - жк (і) жк жк (і). щ)
Вероятности ЖЩ (і) и ЖЩ (і) в присутствие крупных частиц зависят от времени і, поэтому для решения (4) необходимо установить эти зависимости.
Вероятность столкновения мелкой частицы с каплями Ж™ (і) пропорциональна числу находящихся в пульпе в момент времени і капель масла N’3 (і), часть которых перешла в состояние омасленных крупных частиц в количестве N К0 (і). Следовательно, можно записать
жСМ (і ) - ЖСМ* ^п (і) жпк (і) - жпк „
(12)
- ж
см* пп Nпо(і) шсм*г1 „К
пк -------- ----- жпк [1 -„по(і)]>
где ЖЗЗЗЗ (г) - вероятность столкновения мелкой частицы с каплями масла при постоянном количестве их в пульпе, т.е. когда N’3о (г) = 0 .
Для определения екпо (г) запишем уравнение
перехода капель масла в состояние омасленных крупных частиц:
dNЗо (г) = КЗо [пЗ - N: (г)ё,
решив которое при условии, что не зависит К от г, найдем
„по (і) - 1 - ехр(-Кпоі).
Подстановкой (13) в (12) получим
(13)
Жсм {г} = Ж™ ехр{-К%о г}. (14)
Вероятность удерживания частиц на каплях Ж К (г) определим через константу скорости отрыва КЗп (г) , равную отношению числа оторвавшихся частиц dNКЗм (г) к числу закрепившихся на каплях dN3; (г) за отрезок времени Л. Решив уравнение
dNЗ; (г) = КЗЗпм [ N3; (г) - N3: (г )]Ш, найдем еЗп {г} = 1 - ехр{ - К Зп г}.
Тогда вероятность удержания частиц на каплях
ЖкЗп {г} = 1 -еКЗпм{г} = ехр{-Кзмг}. (15)
Подставив (14) и (15) в (11), а затем в уравнение dN; (г) = Км [пм - N; (г)^г и решив его,
получим формулу для расчета извлечения мелких частиц на капли масла
,М*
(і) — 1 - ехр{—
т^сзм к пк
ттск . тттм
Кпо + Ккп
(16)
X [1 - ехр(-і{кпо + Ккп1))]}
где
К
сзм
пк
зм
пк
Осаждение мелких частиц на омасленных крупных частицах
1. Мелкая частица может оказаться на омасленной крупной частице двумя путями: после столкновения с омасленным участком поверхности крупной частицы и после закрепления на капле масла, которая затем осела на поверхность крупной частицы. В этом случае число мелких частиц, оказавшихся на омасленных крупных частицах в момент времени і,
N: (і) - N1 (і)+N:0 (і). (17)
Значение N320 (і) можно найти из уравнения
N (і) - кМ [пМ - N1 (іМ. (18)
Количество мелких частиц, попавших в углемасляные агрегаты с каплями масла,
N1 (і) -„по (і )„Мк (і )пМ. (19)
2. Для определения числа омасленных круп-
ных частиц N° (і), рассмотрим механизм их образования в процессе агломерации. Омасливание крупных частиц происходит в результате осажде-
X
п
п
7S
М.С.Клейн
ния капель масла на крупных частицах и столкновения омасленных частиц с другими крупными частицами при условии, что место столкновения частиц приходится на омасленный участок.
Тогда общее число омасленных к моменту времени t крупных частиц
N о (t) = Nпо (t) + NКр (t).
Число омасленных крупных частиц, образовавшихся после столкновения с каплями масла
N ко (t) = пкпєІ (t),
где извлечение є'к0 (t) рассчитывается по формуле (13). При расчете числа омасленных крупных частиц, образовавшихся в результате столкновения с омасленными участками других частиц
Nкр (t), будем исходить из следующих соображений.
В результате попадания одной крупной частицы в омасленный участок другой частицы образовавшийся агрегат тут же разрушается турбулентными пульсациями на две частицы с одинаковой площадью омасленных участков, т. е. в результате одного столкновения дополнительно появляется одна омасленная частица.
Уравнение для расчета єкор (t) запишется в виде:
dN кор (t) = К- [ N по (t) + NКр (t )]dt.
Решив это уравнение, получим
єКр (t) = єк„ (t )[ехр(КК; t) — 1].
Суммарное извлечение капель на поверхность омасленных крупных частиц ) в момент
времени t
є0 (t) = єпо (t) + єор (t) =
(20)
=exp(K крt)—exp[(—t( Кпо— К0р)].
Общее число омасленных в момент времени t крупных частиц N0 (t) равно произведению числа капель в начальный момент пк на єК (t) .
3. Для определения количества мелких частиц, попавших в углемасляные агрегаты в результате столкновения их с омасленными крупными частицами, необходимо учитывать степень покрытия угольной поверхности маслом (коэффициент омасливания М), т.к. при попадании мелкой частицы на чистую поверхность крупной вероятность закрепления равна нулю. Для определения площади поверхности крупной частицы, покрытой маслом, используем коэффициент растекания капель P, равный отношению диаметра площади, занятой растекшейся каплей, к диаметру капли dK. Значение коэффициента P принимается с учетом смачиваемости угольной поверхности маслом и
условий растекания капли по гидрофобной поверхности. Коэффициент М для одного столкновения капли с крупной частицей равен отношению площади растекшейся капли на поверхности крупной частицы Бк, к общей ее поверхности Бр,
М =Бк/Бр={Рdt)2/4d2p.
Число мелких частиц, прилипших к омаслен-ным крупным частицам за малый отрезок времени
О, рассчитывается по уравнению (18), в котором
км = жо (г жожм (г).
Найдем зависимости Жпм (г) и Ж^ (г). Вероятность столкновения одной мелкой частицы с омасленными участками крупных частиц Жп^ (г) равна произведению числа омасленных частиц в пульпе N° (г) = е'к (г)п’к в момент времени г на вероятность столкновения одной мелкой частицы с одной омасленной крупной Ж,^1 = МЖ™1. Тогда
жпм {г} = мп ^Жо'1 = = еко омкмжсм1 = е’к о^пм*
где Кпо1* = пкпМЖспм1; е1 (г) - определяется по
формуле (20).
Вероятность удержания мелких частиц на омасленных крупных Ж^ (г) определяется через
тг ом
константу скорости отрыва К0п аналогично расчету формулы (15): Жо^ {г} = ехр{-К т;t}.
Подставив выражения Жпм {г} и Жом {г} в (18) и обозначив Ксзм = К™ Ж™, получим
по по по
уравнение, в котором для простоты опущены обозначения зависимости N и е от времени {г},
dN;о = кпом [ехр{ кор г} -
- ехр{-{кпо - кор ю]ехр{-ктм }[пм - N;о ]си.
(21)
Решение уравнения (21) дает формулу для расчета извлечения мелких частиц из пульпы на омасленные крупные частицы в момент времени г
ем* = 1 - ехр{ - ксом х
1 - ехр[-г{ктм - кор}] - 1
тгск . тгЗм
1 (22)
Кор + Коп }
-1 - ехР[-гкпо - кор + коп)]
кк - кск + ком кпо кор + коп
Подставив (16) и (22) в (8), получим кинетиче-
скую модель процесса масляной агломерации, частиц в масляную фазу в момент времени г.
позволяющую рассчитывать извлечение мелких
СПИСОК ЛИТЕРАТУРЫ
1. Клейн М.С., Байченко А.А., Почевалова Е.В. Обогащение и обезвоживание тонких угольных шламов с использованием метода масляной грануляции // Горный информационно-аналитический бюллетень, 2002. № 4. С. 237-239.
2. Клейн М. С. Селективная сепарация по смачиваемости мелких угольных и породных частиц // Проблемы ускорения научно-технического прогресса в отраслях горного производства: Материалы Международной научно-практической конференции. -М.: ННЦ ГП - ИГД им. А.А.Скочинского, 2003. С. 385-392.
3. Обогащение ультратонких углей // Елишевич А.Т., Оглоблин Н.Д., Белецкий В.С., Папушин Ю.Л. - Донецк: Донбас: 1986 - 64 с.
4. Теория и технология флотации руд / О.С. Богданов, И.И. Максимов, А.К. Поднек и др. - М.: Недра, 1980.- с. 431.
5. О закономерностях адгезионного взаимодействия при масляной селекции углей / Сергеев П. В., Елишевич А.Т., Галушко Л.Я., БутузоваЛ.Ф. // Химия твердого топлива, 1989. № 2. С. 127-131.
6. Самыгин В.Д., Шифрина Э.Д. Совершенствование флотации частиц граничной крупности // В кн.: Итоги науки и техники. Горное дело. - М.: ВИНИТИ, 1969. С. 5-41.
7. Левич В.Г. Физико-химическая гидродинамика. - М.: Издат. физ.-мат. литер, 1959. 700 с.
□ Автор статьи:
Клейн Михаил Симхович
- канд. техн. наук, доц. кафедры обогащения полезных ископаемых