Научная статья на тему 'К вопросу о модуле упругости волокон из тугоплавких оксидов'

К вопросу о модуле упругости волокон из тугоплавких оксидов Текст научной статьи по специальности «Нанотехнологии»

CC BY
93
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Труды ВИАМ
ВАК
RSCI
Область наук
Ключевые слова
МОДУЛЬ УПРУГОСТИ / MODULUS OF ELASTICITY / КЕРАМИЧЕСКОЕ ВОЛОКНО / CERAMIC FIBER / УЛЬТРАЗВУКОВОЙ МЕТОД / ULTRASONIC METHOD / ОКСИД АЛЮМИНИЯ / ALUMINA

Аннотация научной статьи по нанотехнологиям, автор научной работы — Зимичев А. М., Балинова Ю. А., Варрик Н. М.

Приведены результаты испытаний акустическим методом непрерывных волокон на основе тугоплавких оксидов, предназначенных для изготовления гибкой уплотнительной теплоизоляции. У образцов волокон состава Al 2O 3-SiO 2 после термообработки при 700, 900 и 1200°С определены рентгенофазовый состав и модуль упругости. Результаты показали, что полная кристаллизация керамической структуры при высокотемпературном обжиге приводит к повышению модуля упругости оксидных волокон.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

TO THE QUESTION OF ELASTICITY MODULUS OF FIBERS FROM REFRACTORY OXIDES

Results of tests by acoustic method of continuous fibers on a base of refractory oxides meant for production of flexible sealing thermal insulation are given. X-ray phase structure and elasticity modulus were defined for samples of Al 2O 3-SiO 2 fibers after heat treatment at 700, 900 and 1200°С. Results showed that a full crystallization of ceramic structure at high-temperature burning leads to increasing of elasticity modulus of oxide fibers.

Текст научной работы на тему «К вопросу о модуле упругости волокон из тугоплавких оксидов»

ВИАМ/2014-Тр-10-06

УДК 620.1

DOI: 10.18577/2307-6046-2014-0-10-6-6

К ВОПРОСУ О МОДУЛЕ УПРУГОСТИ ВОЛОКОН ИЗ ТУГОПЛАВКИХ ОКСИДОВ

А.М. Зимичев

кандидат технических наук

Ю.А. Балинова кандидат технических наук

Н.М. Варрик

Октябрь 2014

Всероссийский институт авиационных материалов (ФГУП «ВИАМ» ГНЦ) -крупнейшее российское государственное материаловедческое предприятие, на протяжении 80 лет разрабатывающее и производящее материалы, определяющие облик современной авиационно-космической техники. 1700 сотрудников ВИАМ трудятся в более чем тридцати научно-исследовательских лабораториях, отделах, производственных цехах и испытательном центре, а также в четырех филиалах института. ВИАМ выполняет заказы на разработку и поставку металлических и неметаллических материалов, покрытий, технологических процессов и оборудования, методов защиты от коррозии, а также средств контроля исходных продуктов, полуфабрикатов и изделий на их основе. Работы ведутся как по государственным программам РФ, так и по заказам ведущих предприятий авиационно-космического комплекса России и мира.

В 1994 г. ВИАМ присвоен статус Государственного научного центра РФ, многократно затем им подтвержденный.

За разработку и создание материалов для авиационно-космической и других видов специальной техники 233 сотрудникам ВИАМ присуждены звания лауреатов различных государственных премий. Изобретения ВИАМ отмечены наградами на выставках и международных салонах в Женеве и Брюсселе. ВИАМ награжден 4 золотыми, 9 серебряными и 3 бронзовыми медалями, получено 15 дипломов.

Возглавляет институт лауреат государственных премий СССР и РФ, академик РАН, профессор Е.Н. Каблов.

УДК 620.1

DOI: 10.18577/2307-6046-2014-0-10-6-6

А.М. Зимичев1, Ю.А. Балинова1, Н.М. Варрик1

К ВОПРОСУ О МОДУЛЕ УПРУГОСТИ ВОЛОКОН ИЗ ТУГОПЛАВКИХ ОКСИДОВ

Приведены результаты испытаний акустическим методом непрерывных волокон на основе тугоплавких оксидов, предназначенных для изготовления гибкой уплотнительной теплоизоляции. У образцов волокон состава Al2O3-SiO2 после термообработки при 700, 900 и 1200°С определены рентгенофазовый состав и модуль упругости. Результаты показали, что полная кристаллизация керамической структуры при высокотемпературном обжиге приводит к повышению модуля упругости оксидных волокон.

Ключевые слова: модуль упругости, керамическое волокно, ультразвуковой метод, оксид алюминия.

A.M. Zimichev, Yu.A. Balinova, N.M. Varrik

TO THE QUESTION OF ELASTICITY MODULUS OF FIBERS FROM REFRACTORY OXIDES

Results of tests by acoustic method of continuous fibers on a base of refractory oxides meant for production of flexible sealing thermal insulation are given. X-ray phase structure and elasticity modulus were defined for samples of Al2O3-SiO2 fibers after heat treatment at 700, 900 and 1200°С. Results showed that a full crystallization of ceramic structure at high-temperature burning leads to increasing of elasticity modulus of oxide fibers.

Keywords: modulus of elasticity, ceramic fiber, ultrasonic method, alumina.

"'Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal state unitary enterprise «All-Russian scientific research institute of aviation materials» State research center of the Russian Federation] E-mail: [email protected]

Введение

Высокотемпературные теплоизоляционные материалы с рабочими температурами >1000°С в настоящее время востребованы во многих отраслях промышленности, в частности в авиационной, автомобильной, сталелитейной, энергетической и др., где требуются стойкие к окислению гибкие прочные материалы с низкой теплопроводностью. Для производства таких материалов широко используют дискретные и непрерывные волокна на основе тугоплавких оксидов, таких как БЮ2, А1203, Zr02 и др. [1-14].

Материалы и методы

При получении непрерывных волокон оксида алюминия используют золь-гель метод - технологию получения материала требуемого состава путем приготовления во-локнообразующего раствора на основе водных растворов прекурсоров материала волокна с добавлением органических полимеров с последующим превращением его в прядомый гель, формования из него гелированных волокон, которые после сушки и обжига освобождаются от органических составляющих и обретают поликристаллическую оксидную структуру. Преимуществом данного метода является возможность формования волокна при низких температурах (в отличие от метода получения волокна из расплавов). Кроме того, этот метод дает возможность получать оксидные волокна с высоким содержанием оксида алюминия. При нагреве гелированных волокон до ~1000°С происходит последовательное образование переходных фаз А1203, которые при достаточно высокой температуре превращаются в а-А1203.

Необходимость нормирования значений модуля упругости определяется требованиями получения не только высокопрочного волокна, но достаточной его гибкости для дальнейшей переработки в изделия.

В данной работе проведены сравнительные оценочные испытания модуля упругости образцов непрерывных волокон после термообработки по трем различным режимам, а также определен фазовый состав образцов методами рентгенофазового анализа и просвечивающей электронной микроскопии.

В работе ставили задачу определения модуля упругости в зависимости от условий обжига волокон из тугоплавких оксидов.

Результаты

Исследования проводили на образцах волокна, полученного формованием из раствора в виде ровинга. Термообработку образцов ровинга, полученного при формовании одного волокнообразующего раствора, проводили по режимам:

- первая партия: нагрев 700°С, выдержка 1 ч;

- вторая партия: нагрев 900°С, выдержка 1 ч;

- третья партия: нагрев 1280°С, выдержка 1 ч.

Для каждой партии ровинга был определен фазовый состав волокон и установлены прочностные свойства при комнатной температуре. Фазовый состав волокон определяли на рентгеновском дифрактометре ДРОН-3 в ^ ^„-излучении в интервале углов 20 от 20 до 70 град по точкам с шагом 0,05 град и временем экспозиции в каждой точке 2 с. Соответствующие рентгенограммы приведены на рис. 1.

20, град

Рисунок 1. Рентгенограммы трех партий ровинга при температурах 700 (7); 900 (2); 1280°С (3)

Из приведенных рентгенограмм видно, что кривая 7, соответствующая материалу волокон ровинга после термообработки при 700°С, не имеет пиков, т. е. материал рент-геноаморфен; после термообработки при 900°С (кривая 2) видны размытые пики, соответствующие межплоскостным расстояниям переходной фазы ô-Al2O3 (1,40; 1,99) [Powder Diffraction File (PDF) 4-875], а на кривой 3 - после термообработки при 1280°С наблюдается большое число пиков, соответствующих межплоскостным расстояниям муллита (3Al2O32SiO2) и фазы a-Al2O3 [PDF 15-776 и 10-173 соответственно]. Полученные данные соответствуют результатам проведенных ранее термогравиметрических исследований нитей на основе оксида алюминия [15].

Определение модуля упругости проводили акустическим методом на установке, разработанной в ВИАМ; принцип работы установки и методика испытания описаны ранее в работах [16-18].

Приготовили по 5 образцов из каждого пучка волокон. Измерение скорости ультразвуковых волн (УЗ-волн) в образцах проводили с использованием приспособления для измерения скорости УЗ-волн в моноволокнах тугоплавких соединений ПИУВ М. Скорость измеряли несколько раз для каждого образца. Затем полученные данные обработали с помощью среды MathCAD с последующим пересчетом с помощью измеренной

скорости УЗ-волн модуля упругости с учетом плотности волокна. Данные испытаний представлены в таблице.

Результаты испытаний по определению модуля упругости образцов волокон

состава 85% A ^3-15% SiO2 после термообработки при повышенных температурах

Температура Условный номер Плотность Скорость Модуль Среднее значение

термообработки, образца волокна, УЗ-волн, упругости модуля упругости

°С г/см3 м/с ГПа

700 1 3,37 7289 179

2 3,4 6252 133

3 3,39 5484 102 85,2

4 3,4 5262 94

5 3,4 5332 97

900 6 3,41 7102 172

7 3,4 6739 154

8 3,4 6378 138 142,2

9 3,39 6120 127

10 3,39 5952 120

1200 11 3,5 9862 340

12 3,6 7812 219

13 3,55 7536 200 259,4

14 3,6 9728 340

15 3,55 7533 198

Видно, что среднее значение модуля упругости для образцов волокон после термообработки при 700°С в течение 1 ч составляет 85,2 ГПа, после термообработки при 900°С, 1 ч: 142,2 ГПа, после термообработки при 1200°С, 1 ч: 259,4 ГПа, при этом средняя плотность волокон также возрастает от 3,39 г/см (после обжига при 700°С) до 3,56 г/см (после обжига при 1200°С). Полученные данные позволяют сделать вывод о том, что модуль упругости увеличивается с повышением температуры термообработки, что связано, по-видимому, с началом при 900°С и прохождением при 1200°С процесса кристаллизации керамической структуры.

Данные рентгенофазового анализа и изображения волокон, полученные методом просвечивающей электронной микроскопии (ПЭМ), показывают начало и постепенное прохождение кристаллизации по мере увеличения температуры термообработки волокон. В частности, рентгенограмма образца после термообработки при 700°С (см. рис. 1, кривая 1) показывает его рентгеноаморфность. На изображении ПЭМ торца волокна после той же термообработки видно размытое электронное облако в виде тумана, что также характеризует структуру волокна как аморфную (рис. 2). Рентгенограмма образца после термообработки при 900°С (см. рис. 1, кривая 2) показывает начало кристаллизации, а на изображении ПЭМ этого образца (см. рис. 2, ПЭМ) отчетливо видны кольца, свидетельствующие об образовании мелкокристаллической структуры. После термообработки при 1200°С волокно уже имеет выраженную кристаллическую струк-

туру с укрупненным размером зерна, что подтверждается рентгенограммой (см. рис. 1, кривая 3) и изображением ПЭМ (см. рис. 2), на котором видны отдельные рефлексы, которые свидетельствуют о наличии более крупных разориентированных кристаллитов. Начало кристаллизации и укрупнение размера зерен можно наблюдать на фотографиях, полученных с помощью сканирующего электронного микроскопа (СЭМ), торцов волокон при повышении температуры термообработки (см. рис. 2, СЭМ).

Рисунок 2. Изображения торцов волокон (ПЭМ и СЭМ) после обжига при различных температурах

Обсуждение и заключения

Экспериментально установлена корреляция величины модуля упругости волокон

из тугоплавких оксидов со структурой после кристаллизации при термообработке.

Проведенные эксперименты показали, что структура волокон состава Al2O3-SiO2 после термообработки при температурах 700, 900 и 1200°С постепенно менялась от аморфной до кристаллической, причем наблюдалось образование мелкозернистой кристаллической структуры после термообработки при 900°С, а после термообработки при 1200°С происходил рост зерна и уплотнение структуры.

Согласно проведенным ранее исследованиям и имеющимся научным литературным данным, при температуре >700°С в алюмооксидной керамике образуются пере-

ходные фазы оксида алюминия с размером зерна от 10 до 100 нм, затем образуется равновесная фаза a-Al2O3 и происходит последующий быстрый рост пористых зерен a-Al2O3 до микронного размера и более. Кроме того, в волокнах состава Al2O3-SiO2 при температурах >1200°С по твердофазной реакции образуется равновесная фаза муллита (3Al2O32SiO2), которая склонна к образованию крупных зерен [19, 20]. Эти структурные преобразования, по-видимому, приводят к уплотнению керамики, что способствует увеличению модуля упругости волокна.

Авторы выражают благодарность Т.М. Щегловой, Г.Ю. Люлюкиной, М.А. Далину, оказавшим большую помощь в проведении экспериментов для данной работы.

ЛИТЕРАТУРА

1. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года //Авиационные материалы и технологии. 2012. №S. С. 7-17.

2. Каблов Е.Н. Авиакосмическое материаловедение //Все материалы. Энциклопедический справочник. 2008. №3. С. 2-14.

3. Ивахненко Ю.А., Бабашов В.Г., Зимичев А.М., Тинякова Е.В. Высокотемпературные теплоизоляционные и теплозащитные материалы на основе волокон тугоплавких соединений //Авиационные материалы и технологии. 2012. №S. С. 380-385.

4. Тинякова Е.В., Гращенков Д.В. Теплоизоляционный материал на основе муллито-корундовых и кварцевых волокон //Авиационные материалы и технологии. 2012. №3. С. 43-46.

5. Каблов Е.Н., Щетанов Б.В., Абузин Ю.А., Ивахненко Ю.А. Металлические и керамические композиционные материалы /В сб. материалов Международной науч.-практич. конф. «Современные технологии - ключевое звено в возрождении отечественного авиастроения». Т. 1. Казань. 2008. С. 181-188.

6. Каблов Е.Н., Гращенков Д.В., Исаева Н.В., Солнцев С.С. Перспективные высокотемпературные керамические композиционные материалы //Российский химический журнал. 2010. Т. LIV. №1. С. 20-24.

7. Каблов Е.Н., Щетанов Б.В., Ивахненко Ю.А., Балинова Ю.А. Перспективные армирующие высокотемпературные волокна для металлических и керамических композиционных материалов //Труды ВИАМ. 2013. №2. Ст. 05 (viam-works.ru).

8. Доспехи для «Бурана». Материалы и технологии ВИАМ для МКС «Энергия-Буран» /Под общ. ред. Е.Н. Каблова. М.: Фонд «Наука и жизнь». 2013. С. 36-39.

9. Щетанов Б.В., Ивахненко Ю.А., Бабашов В.Г. Теплозащитные материалы //Российский химический журнал. 2010. Т. LIV. №1. С. 12-20.

10. Krenkel W., Lamon J. Hight-Temperature Ceramic Materials and Composites /In: 7-th Internatiolal Conference on Ceramic Matrix Composites (HT-CMC 7). 2010. Р. 467-472.

11. Ceramic Fibers and Coatings. Advanced Materials for the Twenty-First Century Committee on Advanced Fibers for High-Temperature Ceramic Composites. Washington: National Academy Press. 1998. 95 р.

12. Wilson D.M., Visser L.R. High performance oxide fibers for metal and ceramic composites /In: Processing of fibers & composites. 2000. Barga. 31 p.

13. Parlier M., Ritti M.-H., Jankowiak A. Potential and Perspectives for Oxide-Oxide Composites //Journal Aerospacelab. 2011. №3. Р. 1-12.

14. Jessen T., Ustundag E. /In: 24-th Annual Conference on Composites, Advanced Ceramics, Materials and Structures //Ceramic Engineering and Science Proceedings. B. 2000. V. 21. №4. P. 549-557.

15. Зимичев А.М., Варрик Н.М. Термогравиметрические исследования нитей на основе оксида алюминия //Труды ВИАМ. 2014. №6. Ст. 06 (viam-works.ru).

16. Зимичев А.М., Варрик Н.М., Далин М.А. Измерение модуля упругости волокон из тугоплавких оксидов //Труды ВИАМ. 2014. №6. Ст. 05 (viam-works.ru).

17. Далин М.А., Генералов А.С., Бойчук А.С., Ложкова Д.С. Основные тенденции развития акустических методов неразрушающего контроля //Авиационные материалы и технологии. 2013. №1. С. 64-69.

18. Генералов А.С., Мурашов В.В., Далин М.А., Бойчук А.С. Диагностика полимерных композитов ультразвуковым реверберационно-сквозным методом //Авиационные материалы и технологии. 2012. №1. С. 42-47.

19. Способ получения высокотемпературного волокна на основе оксида алюминия: пат. 2212388 Рос. Федерация; опубл. 20.09.2003. Бюл. №34. 6 с.

20. Bunsell A.R., Miner J. Oxide Fibers for High-Temperature Reinforcement and Insulation //Metalls and Mater. Sci. 2005. V. 57. Р. 48-51.

REFERENCES LIST

1. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7-17.

2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materi-aly. Jenciklopedicheskij spravochnik. 2008. №3. S. 2-14.

3. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotempera-turnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature and heat-insulating materials based on fibers of refractory compounds] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380-385.

4. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Thermal insulation material on the basis of mullite-corundum and quartz fibers] //Aviacionnye materialy i tehnologii. 2012. №3. S. 43-46.

5. Kablov E.N., Shhetanov B.V., Abuzin Ju.A., Ivahnenko Ju.A. Metallicheskie i keram-icheskie kompozicionnye materialy [Metallic and ceramic composite materials] /V sb. materialov Mezhdunarodnoj nauch.-praktich. konf. «Sovremennye tehnologii -kljuchevoe zveno v vozrozhdenii otechestvennogo aviastroenija». T. 1. Kazan'. 2008. S. 181-188.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

6. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotem-peraturnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic composites] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20-24.

7. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armiru-jushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozi-cionnyh materialov [Promising reinforcing fibers for high temperature metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).

8. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija-Buran» [Armor for the «Buran». Materials and technologies for the ISS VIAM «Energiya-Buran»] /Pod obshh. red. E.N. Kablova. M.: Fond «Nauka i zhizn'». 2013. S. 36-39.

9. Shhetanov B.V., Ivahnenko Ju.A., Babashov V.G. Teplozashhitnye materialy [Heatproof materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 12-20.

10. Krenkel W., Lamon J. Hight-Temperature Ceramic Materials and Composites /In: 7-th Internatiolal Conference on Ceramic Matrix Composites (HT-CMC 7). 2010. P. 467-472.

11. Ceramic Fibers and Coatings. Advanced Materials for the Twenty-First Century Committee on Advanced Fibers for High-Temperature Ceramic Composites. Washington: National Academy Press. 1998. 95 p.

12. Wilson D.M., Visser L.R. High performance oxide fibers for metal and ceramic composites /In: Processing of fibers & composites. 2000. Barga. 31 p.

13. Parlier M., Ritti M.-H., Jankowiak A. Potential and Perspectives for Oxide-Oxide Composites //Journal Aerospacelab. 2011. №3. P. 1-12.

14. Jessen T., Ustundag E. /In: 24-th Annual Conference on Composites, Advanced Ceramics, Materials and Structures //Ceramic Engineering and Science Proceedings. B. 2000. V. 21. №4. P. 549-557.

15. Zimichev A.M., Varrik N.M. Termogravimetricheskie issledovanija nitej na osnove oksida aljuminija [Thermogravimetric studies strands of the alumina] //Trudy VIAM. 2014. №6. St. 06 (viam-works.ru).

16. Zimichev A.M., Varrik N.M., Dalin M.A. Izmerenie modulja uprugosti volokon iz tugoplavkih oksidov [Measurement of modulus fibers of refractory oxides] //Trudy VIAM. 2014. №6. St. 05 (viam-works.ru).

17. Dalin M.A., Generalov A.S., Bojchuk A.S., Lozhkova D.S. Osnovnye tendencii razviti-ja akusticheskih metodov nerazrushajushhego kontrolja [The main trends in the development of acoustic methods of non-destructive testing] //Aviacionnye materialy i tehnologii. 2013. №1. S. 64-69.

18. Generalov A.S., Murashov V.V., Dalin M.A., Bojchuk A.S. Diagnostika polimernyh kompozitov ul'trazvukovym reverberacionno-skvoznym metodom [Diagnosis of polymer composites ultrasonic cross-cutting method of reverberation] //Aviacionnye materialy i tehnologii. 2012. №1. S. 42-47.

19. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Method of obtaining high fiber based on alumina]: pat. 2212388 Ros. Federacija; opubl. 20.09.2003. Bjul. №34. 6 s.

20. Bunsell A.R., Miner J. Oxide Fibers for High-Temperature Reinforcement and Insulation //Metalls and Mater. Sci. 2005. V. 57. P. 48-51.

i Надоели баннеры? Вы всегда можете отключить рекламу.