УДК 544.723.21+541.183+661.183.45+661.183.6
ИССЛЕДОВАНИЕ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ NaK- И Na-ФОРМ ЦЕОЛИТА LSX
© И. Н. Павлова1, О. С. Травкина1, И. Е. Алехина2*, Г. Ф. Гариева1
1 Институт нефтехимии и катализа РАН Россия, Республика Башкортостан, 450075 г. Уфа, проспект Октября, 141.
Тел./факс: +7 (347) 231 27 50.
2Башкирский государственный университет Россия, Республика Башкортостан, 450074 г. Уфа, ул. Заки Валиди, 32.
Тел./факс: +7 (347) 229 97 08.
E-mail: [email protected]
Изучена устойчивость кристаллической решетки цеолита LSX в NaK- и Na-формах в условиях высокотемпературной обработки в атмосфере воздуха. Исследовано влияние температуры термообработки цеолитов NaKLSX и NaLSX на значения их равновесных адсорбционных емкостей по парам Н2О, СбНб и н-С7Н1б. Проведен сравнительный анализ термической стабильности цеолита LSX в NaK- и Na-формах с известными промышленными образцами цеолитов NaA и NaX. Установлено, что образцы цеолита LSX в NaK- и Na-формах устойчивы в условиях термообработки при 650 °C в атмосфере воздуха, а при 750 °C и выше наблюдается аморфизация их кристаллической решетки.
Ключевые слова: синтез, цеолиты NaKLSX и NaLSX, термическая стабильность, адсорбенты.
Введение
Распространение в конце ХХ в. новых адсорбционных процессов, к которым, прежде всего, относятся циклические адсорбционные процессы очистки и разделения газовых смесей, способствовало расширению исследований, направленных на получение нового поколения адсорбентов. В настоящее время перспективными адсорбентами для производства газообразного азота и кислорода в сравнительно небольших количествах являются адсорбенты на основе низкомодульного цеолита Х (LSX) в различных катионообменных формах, работа которых основана на селективном поглощении азота из воздуха [1—9].
Цеолит LSX с отношением SiO2/Al2O3, равным 2.0, относится к группе цеолитов типа фожазит (рис. 1) и представляет интерес ввиду того, что среди всех рассматриваемых фожазитов именно он обладает максимальным числом тетраэдрических ионов алюминия в кристаллической решетке и, следовательно, располагает наибольшим числом потенциальных центров адсорбции для таких молекул, как N2 и СО2.
Рис. 1. Кристаллическая структура цеолита NaX.
В адсорбционных установках цеолит применяют в виде гранул, которые получают с использованием различных связующих веществ в три основные стадии: приготовление высокодисперсного цеолитного порошка, его последующая грануляция с применением связующего материала и термообработка при 600-650 °С в атмосфере воздуха в течение 4-8 ч. Цеолит LSX синтезируют в ^К-форме [10], а затем переводят в другие катионообменные формы. Сведения о термической стабильности цеолита LSX в ^К- и формах в условиях высокотемпературных термообработок в литературе отсутствуют, поэтому целью нашей работы стало изучение термической устойчивости кристаллической решетки цеолита LSX в ^К- и формах в условиях высокотемпературной обработки в атмосфере воздуха.
Экспериментальная часть
Цеолит LSX в ^К-форме синтезировали по известной методике [10]. форму указанного цеолита получали из исходного образца путем ионного обмена в растворе №С1. Эксперименты по ионному обмену проводили в изотермическом реакторе периодического действия с мешалкой при 70 °С и исходной концентрации соли в растворе 70 г/л (избыток второго обменного катиона по отношению к калию).
Для сравнения термической стабильности образцов цеолита LSX с цеолитами ^А и NaX использовали порошкообразные образцы последних, произведенных в ООО «Ишимбайский специализированный химический завод катализаторов». Химические составы жидкой и твердой фаз анализировали гравиметрическим методом, а также методами комплексонометрического титрования и пламенной фотометрии [11].
* автор, ответственный за переписку
Рис. 2. Рентгенограммы цеолитов NaKLSX (а), NаLSX (б), NaA (в) и NaX (г) после термообработки при 450 °С в течение 3 ч.
Фазовый состав цеолитов определяли с использованием автоматического дифрактометра PHILIPS PW 1800. Использовали метод Дебая -Шерера (метод порошка). Условия съемки: 9/29 — сканирование; вращение держателя — 1 обс-1; материал анода — медь; диапазон съемки — 5—55°/29; шаг — 0.05°; экспозиция на шаге — 2 с; напряжение и ток анода — 40 кВ и 30 мА, соответственно.
Дериватографический анализ образцов проводили с использвоанием дериватографа Q—1500D со скоростью подъема температуры 10 °С/мин, в интервале температур 25—1000 °С.
ИК-спектры образцов в виде таблеток с KBr регистрировали в диапазоне от 4000 до 400 см-1 с разрешением 4 см-1 с использованием прибора VERTEX70V (фирма BRUKER).
Для измерения удельной поверхности (SN, м2/г) и объема пор (Vn, см3/г) синтезируемых образцов использовали метод низкотемпературной (77.4 K) адсорбции азота на приборе Sorptomatic-1900 (фирма Fisons) [13, 14].
Для определения равновесных адсорбционных емкостей (см3/г) полученных адсорбентов по Н2О — А(Н2О), СбНб - А(СбНб) и Н-С7Н16 - А(н-СуН1б) использовали распространенный в промышленной практике эксикаторный способ [15].
Результаты и их обсуждение
Результаты рентгенофазового анализа исходных образцов цеолитов LSX в NaK и Na-формах (NaKLSX и NaLSX) представлены на рис. 2. Там же для сравнения приведены данные РФА образцов NaA и NaX (ООО ИСХЗК). Видно, что все образцы имеют высокие степени кристалличности.
Результаты дериватографического анализа образцов приведены на рис. 3. Видно, что по мере повышения температуры до 500-550 °С наблюдается непрерывная потеря массы (кривая ТГ) вследствие удаления воды. На всех кривых ДТА цеолитов наблюдаются экзотермические пики с максимумами при 774 °С и 848 °С - у цеолитов NaKLSХ и NaLSХ, при 779 и 838 °С - у ШЛ и NaХ, соответственно. Они обусловлены фазовыми переходами в исследованных образцах.
Для дальнейшей оценки термической стабильности цеолитов NaKLSX, NаLSX, ШЛ и NaX, их подвергали термообработке при 650, 750, 850 и 950 °С в изотермическом режиме в атмосфере воздуха в течение 4 ч.
На рис. 4 представлены рентгенограммы цеолитов NaKLSX, NаLSX, ШЛ и ШХ после термообработки при 650, 750 и 850 °С в атмосфере воздуха в течение 4 ч. Видно, что данные РФА хорошо согласуются с данными дериватографического анализа образцов.
Следует отметить, что увеличение температуры термообработки образцов до 850 °С и выше приводит к разрушению кристаллической решетки всех исследованных образцов цеолитов. Поэтому дальнейшие исследования проводили у образцов, прокаленных не выше 750 °С в атмосфере воздуха в течение 4 ч.
ИК-спектры образцов цеолитов NaKLSX, NaLSX, ШЛ и ШХ показали, что после термообработки при 750 °С в атмосфере воздуха в течение 4 ч изменения интенсивности полос поглощения в области частот колебаний алюмокремнекислородного каркаса в структурах указанных цеолитов происходят за счет изменения соответствующих колебаний
по внешним связям тетраэдров, что хорошо согласуется с литературными данными [15].
т боо 800 Температура, °С Рис. 3. Дериватограммы цеолитов NaKLSX, NaLSХ, NaА и NaХ.
В табл. 1 представлены данные низкотемпературной адсорбции азота, полученные на образцах цеолитов NaKLSX, NaLSX, ШЛ и NaX после термообработки при 450, 650 и 750 °С в атмосфере воздуха в течение 4 ч. Из представленных в табл. 1 данных следует, что повышение температуры термообработки цеолитов с 450 до 650 не приводит к изменению значений и Уп исследуемых образцов. При 750 °С наблюдается снижение значений & и Уп у всех форм цеолитов из-за частичной аморфизации их кристаллической решетки.
Из представленных в табл. 2 данных следует, что значения А(Н2О), А(н-С7Шв) и А(СбНб) при повышении температуры термообработки с 450 до 650 °С у цеолитов NaKLSX, NаLSX, NаЛ и NаX сохраняются. При 750 °С наблюдается снижение значений указанных выше характеристик.
29,град
Рис. 4. Рентгенограммы образцов цеолитов после термообработки при 650 (а), 750 (б) и 850 °С в атмосфере воздуха в течение 4 ч.
Значения равновесных адсорбционных емкостей по парам воды А(Н2О, см3/г), н-гептану А(н-С7Н16 см3/г ) и бензолу А(СбНб, см3/г) тех же образцов приведены в табл. 2.
Таблица 1
Влияние температуры термообработки на удельную поверхность SN и объем пор Уп порошкообразных цеолитов NaKLSX, _NаLSX, NаA и NаX*_
1 Образец 1 NaKLSX NaLSX NaA NaX
t, °С 450 650 750 450 650 750 450 650 750 450 650 750
Sn, м2/г 687 682 235 716 702 296 12 10 0 720 645 430
Vu, см3/г 0.26 0.26 0.17 0.28 0.28 0.15 0.02 0.02 0 0.29 0.28 0.24
* По данным низкотемпературной адсорбции азота.
Таблица 2
Влияние температуры термообработки на равновесные адсорбционные емкости А порошкообразных цеолитов NaKLSX, _NаLSX, NаA и NаX_
Образец NaKLSX NaLSX NaA NaX
t, °С 450 650 750 450 650 750 450 650 750 450 650 750
A(H2O), см3/г * 0.31 0.30 0.15 0.31 0.29 0.21 0.25 0.24 0.14 0.30 0.29 0.26
А(н-С7Н1б), см3/г ** 0.30 0.29 0.14 0.29 0.28 0.20 0.12 0.09 0.07 0.30 0.29 0.25
А(СбНб), см3/г ** 0.30 0.28 0.11 0.31 0.27 0.19 0.08 0.05 0.05 0.29 0.28 0.22
* A(H2O) при t = 20-23 °С, р/ро = 0.7, 48 ч. ** A(«-CvHi6) и А(С6Н6) при t = 20-23 °С, р/ро = 0.7, 24 ч.
Выводы
С использованием методов РФА, ИК-спектро-скопии и адсорбционных методик исследована термическая стабильность образцов цеолита LSX в NaK- и Na-формах в интервале температур 450-950 °С. Обнаружено, что цеолит LSX в NaK- и Na-формах, так же, как и промышленные образцы цеолитов NaA и NaX, устойчивы в условиях термообработки при 650 °С в атмосфере воздуха, а при 750 °С и выше наблюдается аморфизация их кристаллической решетки, которая приводит к снижению значений предельных адсорбционных емкостей определенных по воде, н-гептану и бензолу.
ЛИТЕРАТУРА
1. Ruthven D. M. Principles of Adsorption and Adsorption Processes. N.Y.: Wiley, 1984. Р. 433.
2. Yang R. T. Gas Separation by Adsorption Process. Boston: Buttenvorths, 1987. Р. 35.
3. Глупанов В. Н., Шумяцкий Ю. И., Серегин Ю. А., Брехнер С. А. Получение кислорода и азота адсорбционным разделением воздуха ЦИНТИХИМНЕФТЕМАШ, 1991. С. 44.
4. Ruthven D. M., Farooq S., Knaebel K. // Pressure Swing Adsorption. N.Y.: VCH, 1994.
5. Шумяцкий Ю. И., Афанасьев Ю. М. Адсорбция: процесс с неограниченными возможностями. М.: Высшая школа, 1998. С. 78.
6. Feuerstein M., Engelhardt G., McDaniel P. L., MacDougall J. E., Gaffney T. R. // Solid-state nuclear magnetic resonance investigation of cation siting in NaLSX zeolites // Micro- and Mesoporous Materials. 1998. V. 26. P. 27-35.
7. Bülow M., Shen D. Thermodynamics of nitrogen and oxygen sorption on zeolites LiLSX and CaA // Micro- and Mesoporous Materials. 2001. V. 48. P. 211-217.
8. Bülow M., Shen D. Sorption kinetics of atmospheric gases on Li,RE (rare earth)-LSX zeolite beads as sorbents for oxygen PVSA processes // Micro- and Mesoporous Materials. 2007. V. 105. P. 163-169.
9. Zanota M.-L., Heymans N., Gilles F., Su B.-L., Weireld G. De. Thermodynamic study of LiNaKLSX zeolites with different Li exchange rate for N2/O2 separation process // Micro-and Mesoporous Materials. 2011. V. 143. P. 302-310.
10. G. H. Kühl. Crystallization of low-solica faujasite // Zeolites. 1987. V. 7. Р. 451-457.
11. Крешков А. П., Ярославец А. А. Курс аналитической химии. M.: Химия, 1975. Т. 1. С. 471.
12. Брунауэр С. Адсорбция газов и паров. M.: ИЛ, 1948. Т. 1. С. 781.
13. Грег С., Синг К. Адсорбция. Удельная поверхность. Пористость. M.: M^, 1984. С. 310.
14. Кельцев Н.В. Основы адсорбционной техники. M.: Химия, 1984. С. 592.
15. Брек Д. Цеолитные молекулярные сита. M.: M^j, 1976. С. 78.
16. Аглиуллин M. Р., Талипова Р. Р., Алёхина И. Е. Золь-гель синтез силикагелей из смесей олигоэтоксисилоксанов // Вестник Башкирского университета. 2013. Т. 18. №»2. С. 367-371.
Поступила в редакцию 02.02.2014 г.
THE STUDY OF NaK- AND Na- FORMS OF LSX ZEOLITE © I. N. Pavlova1, O. S. Travkina1, I. E. Alekhina2*, G. F. Garieva1
1 Institute of Petrochemistry and Catalysis of RAS 141 Octyabrya Ave., 450075 Ufa, Republic of Bashkortostan, Russia.
2Bashkir State University 32 Zaki Validi St., 450074 Ufa, Republic of Bashkortostan, Russia.
Phone: +7 (347) 229 97 08.
E-mail: [email protected]
The emergence of new adsorption processes, which primarily include cyclic adsorption processes of purification and separation of gas mixtures, contributed to research aimed at development of a new generation of adsorbents. Currently the new effective adsorbents for the production of gaseous nitrogen and oxygen in relatively small quantities are adsorbents based on low-modulus zeolite X (LSX) in various cation forms. These adsorbents perform selective absorption of nitrogen from air. The authors studied the stability of crystal lattice of zeolite LSX in NaK- and Na- forms in the conditions of high-temperature treatment in air atmosphere. The effect of heat treatment of zeolites NaKLSX and NaLSX on their equilibrium values of the adsorption capacities at vapours of H2O, C6H6 and n-C7Hi6 was studied. The comparative analysis of the thermal stability of zeolite LSX in NaK- and Na- forms with industrial samples of zeolite NaA and NaX was held. It was found that the samples of zeolite LSX in NaK- and Na-forms are stable in conditions of heat treatment at 650oC in air atmosphere and at 750oC and above the amorphization of their crystal lattices had happened.
Keywords: synthesis, zeolites NaKLSX and NaLSX, thermal stability, adsorbents.
Published in Russian. Do not hesitate to contact us at [email protected] if you need translation of the article.
REFERENCES
1. Ruthven D. M. Principles of Adsorption and Adsorption Processes. N.Y.: Wiley, 1984. Pp. 433.
2. Yang R. T. Gas Separation by Adsorption Process. Boston: Buttenvorths, 1987. Pp. 35.
3. Glupanov V. N., Shumyatskii Yu. I., Seregin Yu. A., Brekhner S. A. Poluchenie kisloroda i azota adsorbtsionnym razdeleniem vozdu-kha [Prodicing of Oxygen and Nitrogen by Adsorption Air Separation]. TsINTIKhIMNEFTEMASh, 1991. Pp. 44.
4. Ruthven D. M., Farooq S., Knaebel K. // Pressure Swing Adsorption. N.Y.: VCH, 1994.
5. Shumyatskii Yu. I., Afanas'ev Yu. M. Adsorbtsiya: protsess s neogranichennymi vozmozhnostyami [Adsorption: the Process of Unlimited Possibilities]. Moscow: Vysshaya shkola, 1998. Pp. 78.
6. Feuerstein M., Engelhardt G., McDaniel P. Solid-state nuclear magnetic resonance investigation of cation siting in NaLSX zeolites // Micro- and Mesoporous Materials. 1998. Vol. 26. Pp. 27-35.
7. Bülow M., Shen D. Micro- and Mesoporous Materials. 2001. Vol. 48. Pp. 211-217.
8. Bülow M., Shen D. Micro- and Mesoporous Materials. 2007. Vol. 105. Pp. 163-169.
9. Zanota M.-L., Heymans N., Gilles F., Su B.-L., Weireld G. De. Thermodynamic study of LiNaKLSX zeolites with different Li exchange rate for N2/O2 separation process // Micro- and Mesoporous Materials. 2011. Vol. 143. Pp. 302-310.
10. G. H. Kühl. Zeolites. 1987. Vol. 7. Pp. 451-457.
11. Kreshkov A. P., Yaroslavets A. A. Kurs analiticheskoi khimii [Course of Analytical Chemistry]. Moscow: Khimiya, 1975. Vol. 1. Pp. 471.
12. Brunauer S. Adsorbtsiya gazov i parov [Adsorption of Gases and Vapors]. Moscow: IL, 1948. Vol. 1. Pp. 781.
13. Greg S., Sing K. Adsorbtsiya. Udel'naya poverkhnost'. Poristost' [Adsorption. Specific surface. Porosity]. Moscow: Mir, 1984. Pp. 310.
14. Kel'tsev N.V. Osnovy adsorbtsionnoi tekhniki [Fundamentals of Adsorption Technology]. Moscow: Khimiya, 1984. Pp. 592.
15. Brek D. Tseolitnye molekulyarnye sita [Zeolite Molecular Sieves]. Moscow: Mir, 1976. Pp. 78.
16. Agliullin M. R., Talipova R. R., Alekhina I. E. Vestnik Bashkirskogo universiteta. 2013. Vol. 18. No. 2. Pp. 367-371.
Received 02.02.2014.