УЧЕНЫЕ ЗАПИСКИ Ц А Г И Том II ' 1971
№ 1
УДК 532.526.048.3.011.6
ИССЛЕДОВАНИЕ ТЕЧЕНИЯ ПЕРЕД СФЕРОЙ, ПОМЕЩЕННОЙ В СЛЕДЕ ТЕЛА, ПРИ СВЕРХЗВУКОВОМ
ОБТЕКАНИИ
В. С. Хлебников
Описано экспериментальное исследование течения, которое образуется перед сферой, расположенной в следе другого тела, при сверхзвуковом обтекании. Проанализирована перестройка течения (появление головного скачка перед задним телом) при изменении расстояния между телами, параметров набегающего потока и формы переднего тела.
Исследования проводились при помощи теплеровских фотографий картины течения с использованием данных изменения распределения давления и теплового потока по поверхности сферы.
Сверхзвуковое обтекание двух тел, одно из которых находится в следе другого, рассматривалось в ряде работ. Так, в работе [1] был проведен расчет такого течения по упрощенной модели и получена зависимость критического расстояния перестройки 1Кр от геометрии тел и числа М^. В работе [2] рассматривалось сверхзвуковое обтекание двух разделяющихся тел. В ней, кроме данных теоретического исследования течения до перестройки, приведены результаты испытаний по разделению свободно летящих моделей на аэробаллистической трассе в виде оптической картины течения и величины донного давления в зависимости от расстояния между телами. Донное давление измерялось специальным датчиком, установленным в днище переднего тела.
Настоящая статья посвящена экспериментальному исследованию течения, образующегося перед сферой, расположенной в следе другого тела, и перестройки течения в зависимости от расстояния между телами, параметров набегающего потока и формы переднего тела. Испытания проведены в сверхзвуковой аэродинамической трубе с осесимметричной рабочей частью с подогревом потока при числах Моо = 3 и 5. Получены распределения давления, тепловога потока по поверхности сферы и теплеровские фотографии картины течения.
Переднее тело имело форму усеченного конуса или сферы. Оно крепилось на тонкой державке ромбовидного профиля, уста-
Фиг. 1
новленной под углом 60° к набегающему потоку. Державка могла перемещаться вдоль по потоку с заданным шагом.
Модель заднего тела имела форму сферы. Ее диаметр в 2,4 раза превосходил диаметр миделя переднего тела. По поверхности сферы в двух перпендикулярных друг к другу меридиональных направлениях располагались датчики давления или тепловых потоков. Сфера крепилась сзади на державке, внутри которой проходила трасса от датчиков к групповому регистрирующему манометру (ГРМ) или осциллографу. Общий вид моделей в трубе представлен на фиг. 1.
При установке моделей в трубе следили за тем, чтобы задняя модель попадала в зону окна Теплера и оси симметрии переднего и заднего тела совпадали.
После запуска трубы и выхода ее на рабочий режим фотографировалась картина течения и измерялось распределение давления или теплового потока по поверхности заднего тела.
На фиг. 2 представлены фотографии течения при Мсс=3 за
усеченным конусом, в следе которого на различных расстояниях £ от него располагалась сфера. На этих фотографиях видно, чта в зависимости от расстояния между телами реализуются две схемы течения.
1. При расстояниях между телами, меньших /кр(//оГ< 4,8, где диаметр миделя переднего тела), перед сферой наблюдалось срывное течение, схема которого представлена на фиг. 3. Между передним и задним телами образуется срывная зона /. За течением разрежения II в области отрыва пограничного слоя от переднего тела наблюдается скачок III. Вниз по течению за скачком /// во внешнем потоке, граничащем со срывной зоной У, образуется течение сжатия IV, которое оканчивается скачком V. Разделяющая линия тока IV присоединяется к сфере за скачком V. Схема течения в этом случае напоминает схему срывного течения около сферы с иглой, помещенной в сверхзвуковом потоке [3].
2. При расстояниях между телами, больших /кр(//<і>4,8), срывное течение перестраивается и реализуется другая схема течения (фиг. 4). Вниз по потоку от застойной зоны I и скачка II, замыкающего эту зону, в следе перед сферой образуется головной скачок III. Из-за провала в профиле скорости на оси следа головной скачок III вытянут в направлении переднего тела.
На фиг. 5 и 6 приведены кривые распределения по поверхности сферы давления р, отнесенного к давлению торможения в набегающем потоке, и числа Стантона при Моо = 3. Число Стантона вычислялось по стандартной программе, составленной
А. Я. Юшиным по параметрам в набегающем потоке.
Для тех отношений 1/(1, при которых реализуется первая схема течения, давление р и число Стантона Б!» имеют максимальные значения на сфере при |<р|^50° (угол f отсчитывался от точки О
4а
Фиг. 2
/ V < ... в ///= 13 lf.lt 5,6 В,0
- * /~Г -V 5 >
X Я 2 —} -
—1 "'^7 £
-Г- /
— * — в, / к.
/ -у г
о
Фиг. 5
st0. о 1/4‘1,б * 1/4=5,6 • V р е,ь 4 4,й % ~
/ "Ч
/ У А ч
/ Л, Ч / . У К V ч
-4 105 л Л
п
? \
] Ф / —О \ N
{' XV У
)
-50 Д м°
Фиг. 6
по сфере, как показано на фиг. 1). Это соответствует на фотографиях области присоединения.
Внутри срывной зоны давление р и число Стантона мало изменяются в окрестности точки О.
На фиг. 5 и 6 приведены также кривые распределения давления р и числа Стантона по поверхности той же сферы, помещенной в невозмущенный набегающий поток (//е? = оо) при Моо=3. Распределение числа Стантона соответствует такому режиму течения, когда пограничный слой на сфере из ламинарного переходит в турбулентный, Не=ь1,13-106 (число Рейнольдса определялось по значениям параметров в набегающем потоке и диаметру сферы). Это подтверждается приведенными (пунктир на фиг. 6) расчетными значениями числа в точке торможения для ламинарного, а в ее окрестности для турбулентного пограничного слоя. Совпадение экспериментальных и расчетных данных удовлетворительное.
Давление р в области присоединения в 3—4 раза меньше давления в точке торможения на сфере в невозмущенном потоке (см. фиг. 5), а число в 1,5—1,7 раза больше (см. фиг. 6). Сравнение носит в основном качественный характер, так как расстояния между датчиками на модели не позволяли с достаточной точностью определять максимальные значения давления и числа Стантона в области присоединения. Давление р и число внутри срывной зоны в окрестности точки О меньше соответствующих значений в точке торможения на сфере в невозмущенном потоке в 8 и 2 раза. Перестройка течения сопровождается возникновением перед сферой головного скачка и значительным возрастанием давления по сфере, а следовательно, возрастанием ее сопротивления. Так, давление в точке О на сфере возросло по сравнению с давлением в этой же точке до перестройки в 3 раза.
Головной скачок, образовавшийся после перестройки течения, пульсирует. Это подтверждают фотографии течения, сделанные при одних и тех же условиях обтекания, но в различные моменты времени. Профиль давления р в окрестности точки О на сфере при расстояниях между телами, больших /кр, но близких к нему, имеет местный минимум (см. фиг. 5), который объясняется провалом в профиле полного давления на оси следа перед головным скачком. При увеличении расстояния между телами этот провал уменьшается и соответственно давление в окрестности точки О увеличивается.
Давление р в точке О после перестройки течения примерно в 2 раза меньше давления в точке торможения на сфере в невозмущенном потоке.
Наибольшее значение числа на сфере зафиксировано
в точке О. Оно превосходило величину числа Стантона в точке торможения на той же сфере в невозмущенном потоке в 2,2 раза. Такое увеличение коэффициента теплопередачи объясняется наличием в следе перед головным скачком турбулентных пульсаций.
В литературе сравнительно давно отмечались экспериментальные факты влияния турбулентных пульсаций равномерного потока на теплообмен в критической точке [4]. Одна из первых работ в этой области принадлежит Лойцянскому [5]. В этой работе показано, что при относительной величине турбулентных пульсаций
приблизительно в 1,5 раза по сравнению с тем, что было, когда турбулентные пульсации имели ничтожно малую величину. С уве-
тепловые потоки в критическои точке возрастали
личением интенсивности турбулентных пульсаций возрастает и величина теплового потока. Результаты аналогичных исследований ■опубликованы в целом ряде других работ, например в [6], [7], и включают данные о влиянии интенсивности и масштабов турбулентных пульсаций на теплопередачу при различных характерных числах Ие в ламинарной окрестности критической точки.
При увеличении расстояния между телами после перестройки течения величина числа в точке О на сфере уменьшается
{см. фиг. 6), что соответствует затуханию турбулентных пульсаций в следе при уделении от переднего тела.
0,92-10*
1 7
И Ж
А к 1—^ € > 4
I ч л >-
I Г / м=з-, Ле*1,53у10е —
| 1
< ч ^ / 1 1
V
-4- о гй епа-а/геоа
• усеченный-конус-сфера
О 1 г 3 Ь 5 е 7 1/4
л.
0015
0,010
Фиг. 8
Ле* 0,67-10*'
V
-
т
*
о сфера-сфера усеченный конус- сфера
1 г
6 г/а
Распределение давления р и числа бЪ*, по поверхности сферы, расположенной в следе за сферой, при числе Моо = 3, а также распределение этих параметров по поверхности сферы, расположенной в следе за усеченным конусом или сферой, при Моо = 5, имеют качественно такой же характер, как и описанный выше, хотя и отличаются количественно.
На фиг. 7 и 8 приведены кривые изменения давления и числа Стантона в точке О на сфере в зависимости от величины 1\й для
комбинаций тел сфера —сфера и усеченный конус—сфера при Моо = 3 и 5.
Перестройка течения при одних и тех же условиях в набегающем потоке и одинаковом отношении Djd (D—диаметр задней сферы) для комбинации тел сфера—сфера происходит при меньших расстояниях между телами, чем для комбинации тел усеченный конус—сфера (см. фиг. 7 и 8).
Для одной и той же комбинации тел и фиксированных значений числа Мсо и отношения Djd, но разных значений числа Рейнольдса перестройка течения происходила при меньшем расстоянии между телами и меньшем значении числа Re (см. фиг. 7 и 8).
Для комбинации тел сфера —сфера при числе Моо = 5 и почти одном и том же значении числа Рейнольдса (Re=s0,92-106 и 1,01 * Ю6) были проведены испытания при двух разных значениях Djd=2,4 и 3,6. Перестройка течения при большем значении Did происходила на значительно большем расстоянии между телами (/Kp/d ^ 5,6), чем при меньшем значении Djd (lKpld^ 3,6).
Приведенные результаты показывают, что расстояние между телами, при котором происходит перестройка течения, для определенной комбинации переднего и заднего тел зависит от чисел Moo, Re и отношения Djd. В процессе исследования на задней сфере определены зоны максимальных значений давления и теплового потока в зависимости от схемы срывного течения.
В заключение автор выражает большую благодарность
В. Я- Нейланду за ряд полезных замечаний при анализе результатов работы.
ЛИТЕРАТУРА
1. Семенкевич Ю. П. О перестройке сверхзвукового отрывного течения между телами. Труды I республиканской конференции по аэромеханике, теплообмену и массообмену. Изд. Киевского университета, 1969.
2. Кудрявцев В. Н., Черкез А. Я., Шилов В. А. Исследование сверхзвукового обтекания двух разделяющихся тел. „Изв.
АН СССР. МЖГ“, 1969, № 2.
3. Н е й л а н д В. Я., Т а г а н о в Г. И. О конфигурации передних срывных зон при симметричном обтекании тел сверхзвуковым потоком газа. „Инженерный журнал*, т. 3, вып. 2, 1963.
4. Хинце И. О. Турбулентность. М., Физматгиз, 1963.
5. JI о й ц я н с к и й Л. Г., Ш в а б Б. А. Труды ЦАГИ, 1935.
6. Ке s t i n J., Maeder P. H. and S о gi n H. H. The influence of turbulence on the transfer of heat to cylinders near the stagnation point. ZAMP, v. XII, 1961.
7. Lavender W. I and P e i D. С. T. The effect of fluid turbulence on the rate of heat transfer from spheres. Intern. Heat and Mass. Transfer., part 10, № 4, 1967.
Рукопись поступила MjlV 1970 г.