Научная статья на тему 'Использование стабильной агрегированной валюты для международных сравнений динамики ВВП'

Использование стабильной агрегированной валюты для международных сравнений динамики ВВП Текст научной статьи по специальности «Экономика и бизнес»

CC BY
226
47
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МЕЖДУНАРОДНЫЕ СРАВНЕНИЯ ВВП / ДИНАМИКА НОМИНАЛЬНОГО ВВП В ТЕКУЩИХ ЦЕНАХ / СТАБИЛЬНАЯ АГРЕГИРОВАННАЯ ВАЛЮТА / INTERNATIONAL COMPARISONS OF GDP / DYNAMICS OF NOMINAL GDP IN CURRENT PRICES / STABLE AGGREGATE CURRENCY

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Колесов Дмитрий Николаевич, Сутырин Сергей Феликсович, Хованов Николай Васильевич

Показано неблагоприятное влияние высокого уровня изменчивости курсов обмена валют на точность оценок номинального ВВП. Для уменьшения неточности этих оценок предложено использовать стабильную агрегированную валюту, имеющую минимальный уровень изменчивости своей меновой ценности. Приведен пример применения такой стабильной агрегированной валюты для международных сравнений динамики номинальных ВВП разных стран

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Stable Aggregate Currency Using for International Comparisons of GDP Dynamics

The adverse impact of the high level of currencies exchange rates' volatility on the accuracy of nominal GDP estimations is demonstrated. To reduce these estimations inaccuracy, using of a stable aggregate currency with minimal level of exchange-value volatility is proposed. An example of such stable aggregate currency application for international comparisons of different countries' nominal GDP dynamics is given.

Текст научной работы на тему «Использование стабильной агрегированной валюты для международных сравнений динамики ВВП»

МИРОВАЯ ЭКОНОМИКА

УДК 330.55.051+336.748

Д. Н. Колесов, С. Ф. Сутырин, Н. В. Хованов

ИСПОЛЬЗОВАНИЕ СТАБИЛЬНОЙ АГРЕГИРОВАННОЙ ВАЛЮТЫ ДЛЯ МЕЖДУНАРОДНЫХ СРАВНЕНИЙ ДИНАМИКИ ВВП*

Введение

Одной из первых жертв практически любого достаточно существенного кризиса мировой финансово-экономической системы становится способность экономистов адекватно сравнивать различные страны по динамике значений их макроэкономических показателей, имеющих денежную форму, по причине обычно сопровождающей такой кризис повышенной изменчивости как цен на товары и услуги, так и обменных курсов национальных валют [1; 2]. В настоящей работе рассматривается только проблема учета влияния изменчивости валютных курсов на результаты международных сравнений различных стран по динамике номинальных валовых внутренних продуктов (НВВП) в текущих ценах (NGDP — Nominal Gross Domestic Product in current prices — по терминологии Международного валютного фонда). При этом сами годовые значения НВВП для стран предполагаются равными числам, приведенным на сайте МВФ (www.imf.org). Разумеется, делая такое предположение, исследователь абстрагируется, например, от следующих сложных аспектов реальности, учет которых необходим при

* Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 10-06-00130).

Дмитрий Николаевич КОЛЕСОВ — канд. экон. наук, доцент, зав. кафедрой экономической кибернетики Экономического факультета СПбГУ. Область научных интересов — экономико-математические модели динамики рынков ценных бумаг; оценка и прогнозирование показателей корпоративных облигаций; теория и приложения экономико-математических моделей и методов.

Сергей Феликсович СУТЫРИН — д-р экон. наук, профессор, зав. кафедрой мировой экономики Экономического факультета СПбГУ. Область научных интересов — международные экономические отношения, история экономической мысли, модели международной торговли. Николай Васильевич ХОВАНОВ — д-р физ.-мат. наук, профессор кафедры экономической кибернетики Экономического факультета СПбГУ. Область научных интересов — стохастические модели риска и неопределенности; теория и методы принятия решений в условиях дефицита числовой информации; теория и приложения экономико-математических моделей и методов.

© Д. Н. Колесов, С. Ф. Сутырин, Н. В. Хованов, 2011

более глубоком изучении сравнительной динамики НВВП: средняя ошибка при оценке таких макроэкономических показателей, как ВВП, обычно составляет около 10% [3, с. 240-241], достигая в некоторые периоды для некоторых стран 50% [4]; величина ВВП, подсчитанная для определенного года, в течение последующих лет существенно корректируется [5]; официальная статистика ряда стран позволяет увеличивать объем ВВП путем добавления фиктивных арендных выплат (imputed rents), как бы производимых самим себе собственниками жилья [6]; широкое применение, например в США, нашли так называемые «гедонистические коэффициенты» (hedonic coefficients), позволяющие добиваться (путем учета «степени удовлетворения» потребителей производимой продукцией) изменения в нужном направлении различных оценок объема ВВП [7], и т.д.

В первом разделе статьи сравнивается динамика НВВП четырех стран (Великобритании, Японии, России и США) и зоны евро (зона евро может в данном контексте рассматриваться как отдельная страна — Euroland, эмитирующая свою суверенную валюту). Использование для получения пяти временных рядов значений НВВП указанных стран в единицах соответствующих пяти валют (евро, британский фунт, японская иена, российский рубль и доллар США) демонстрирует сильную зависимость динамики НВВП всех пяти рассматриваемых стран от выбора базовой валюты, что существенно затрудняет адекватное международное сравнение исследуемой динамики.

Для преодоления выявленных затруднений с использованием отдельных национальных валют при оценке динамики НВВП предлагается использовать в качестве базовой стабильную агрегированную валюту (Stable Aggregated Currency — SAC), определяемую «корзиной» национальных валют, объемы которых подобраны так, чтобы минимизировать колебание индекса меновой ценности агрегированной валюты на рассматриваемом интервале времени. Кратко излагается метод составления валютной корзины, определяющей стабильную агрегированную валюту.

В третьем разделе производится сравнение динамики НВВП пяти рассматриваемых стран с использованием стабильной агрегированной валюты, сформированной на основе статистических данных МВФ за период 2000-2008 гг., и обсуждаются коррективы, которые вносит использование этой составной валюты.

В Заключении описывается общая схема использования стабильной агрегированной валюты для оценки динамики НВВП различных стран и указывается на возможность перенесения этой схемы на случай изучения других макроэкономических показателей.

Динамика объемов НВВП, измеряемых в национальных валютах

Рассмотрим зону евро (Euro zone — EZ), обозначаемую ci, а также четыре страны: С2 —Великобритания (GB); сз — Япония (JP); С4 — Россия (RU); С5 — Соединенные Штаты Америки ( US) (здесь и далее аббревиатуры названий стран, кроме зоны евро, даются в соответствии с международным стандартом ISO 3166). Национальными валютами стран ci,..., С5 являются: gi —единая европейская валюта, единицей измерения ei которой служит евро (ei — EUR); g2 —британский

фунт стерлингов (e2 — GBP); дз —японская иена (ез — JPY); g4 —российский рубль (е4 — RUR); д5 —доллар США (е5 — USD) (здесь и далее аббревиатуры названий валют даются в соответствии с международным стандартом ISO 4217). Единицы ei ,. . . , e5 рассматриваемых валют слишком мелки для измерения НВВП рассматриваемых стран (например, объем НВВП США составляет триллионы дол-

ларов, а японский НВВП — сотни триллионов иен). Поэтому далее используются соответствующим образом масштабированные единицы ei*, ..., е5* валют

дь ..., д5: e1*=EUR*=1012EUR, e2*=GBP*=1012GBP, e3*=JPY*=1014/РУ= 1012/РУ’, e4*=RUR*=1013RUR=1012RUR\ е5*=иББ*=1012USD, где /РУ’= 100/РУ, RUR,= 10RUR. Коэффициент обмена с* 0) валют д*, д- стран с*, с- указывает число еди-

ниц е* валюты д-, которые можно обменять на единицу е* валюты д* в момент времени (например, в фиксированный день) 0.

Обозначим ж(£; с*/с-) объем НВВП за год £ страны с*, исчисляемый в масштабированных единицах е* национальной валюты д- страны с-, г,^ = 1,..., 5, £ =

2000,..., 2008. Для представления НВВП в единицах разных валют используются «годовые» коэффициенты обмена с*(г,^’;£), представляющие собой средние геометрические с*(г,^’; £) = |с*(г,^;1) • ... • с*(г,^’; 0) • ... • с*(г,^’; 0(£))]1/0(г:) «ежедневных» коэффициентов обмена с*(г,^’; 0), 0(2000) = 0(2004) = 0(2008) = 366, 0(£) = 365 для остальных значений £ = 2001, 2002, 2003, 2005, 2006, 2007. Выбор среднего геометрического для оценки «годовых коэффициентов обмена» обеспечивает выполнение для с*(г, _?; £) следующих основных свойств, которые выполняются и для ежедневных коэффициентов обмена с* (г, ^’; 0): транзитивность (для любых г, _?’, к имеет место соотношение с*(г, к;£) • с*(к, _?; £) = с*(г,^’;£)), обратная симметричность (с*(^’, г; £) = 1/с*(г,_?;£)) и рефлексивность (с*(г, г; £) = 1). Эти свойства годовых коэффициентов обмена позволяют корректно пересчитывать годовой объем ж(£; с*/с-) НВВП страны с*, исчисляемый в масштабированных единицах е* валюты д- страны с-, в годовой объем ж*(£; к) = ж*(£;_?’) • с*(^’; к; £), исчисляемый в масштабированных единицах е^ валюты дй страны сй.

Усредненные (средние геометрические) коэффициенты обмена с*(г,^’; £) =

с*(ХУ^*,и$Д*;£), указанные в табл. 1, вычислены для масштабированных единиц е*,...,е5 валют #1,...,#5 по ежедневным значениям коэффициентов обмена с* (г, 5; 0) = с*(ХУ^*, Ц^Р»*; 0), ХУ^* = Е^Д*, СВР*, 7РУ*, ДиД*, приведенным на сайте МВФ (www.imf.org).

Таблица 1. Усредненные (годовые) коэффициенты обмена валют

і с*(ЕиК*, иЯО*; і) с*(СВР*, иЯ И*; і) с*(^Г,[/Ж‘;() с* (Ш К*, и во*; г)

2000 0.9228 1.5145 0.9281 0.3550

2001 0.8952 1.4402 0.8232 0.3420

2002 0.9436 1.5011 0.7996 0.3194

2003 1.1300 1.6340 0.8631 0.3253

2004 1.2423 1.8310 0.9247 0.3474

2005 1.2437 1.8185 0.9086 0.3544

2006 1.2552 1.8414 0.8596 0.3680

2007 1.3696 2.0008 0.8496 0.3911

2008 1.4669 1.8436 0.9691 0.4027

Данные табл. 1 позволяют построить временные ряды значений у (£; с*/с-) = ж(£; с*/с-)/ж(2000; с*, с-) нормированного номинального внутреннего валового продукта (ННВВП) страны с*, г,^ = 1,..., 5, £ = 2000,..., 2008. Заметим, что, поскольку объем ж(£; с*/с-) НВВП страны с* в момент времени £ и объем ж(2000; с*/с-) НВВП этой же страны в 2000 г. измеряются в одних и тех же единицах валюты д-, постольку величина у(£; с*/с-) нормированного номинального внутреннего валового продукта страны с* не зависит от выбора единицы измерения валюты д-. Знания годовых коэффициентов обмена с*(^’, к; £) позволяют корректно пересчитывать значение у(£; с*/с-) объема ННВВП страны с*, полученное с использованием валюты д-, в значение у(£; с^/с^), вычисляемое с использованием валюты д^: у(£; с*/с^) = ж(£; с*/с-) • с*(^’, к; £)/ж(2000; с*/с-) • с*(^', к; 2000).

При анализе 25 временных рядов у (£; с*/с-), г,^ = 1,..., 5, обнаруживаются несоответствия в оценках приращений ,г(£; с*/с-) = у(£; с*/с-) — у(£ — 1; с*/с-) ННВВП одной и той же страны с*, оцененных с использованием разных национальных валют д-, =

1,..., 5. Для примера рассмотрим табл. 2, где приведены значения у (£ ; JP/XY) ННВВП Японии, полученные с использованием валют стран ХУ = Е^, СВ, JP, Ди, и5.

Таблица 2. Значения ННВВП Японии, полученные с использованием

разных валют

ь у (*; ^/Е^) у (*; ЗР1 СВ) у(Ц JPf.JP) у (4; .JP/RU) У (гР/ив)

2000 1.0000 1.0000 1.0000 1.0000 1.0000

2001 0.9049 0.9231 0.9897 0.9112 0.8777

2002 0.8223 0.8483 0.9759 0.9345 0.8407

2003 0.7408 0.8408 0.9754 0.9899 0.9071

2004 0.7332 0.8165 0.9907 1.0087 0.9870

2005 0.7248 0.8136 0.9978 0.9785 0.9768

2006 0.6872 0.7688 1.0092 0.9017 0.9346

2007 0.6328 0.7109 1.0259 0.8525 0.9391

2008 0.6635 0.8664 1.0100 0.9297 1.0546

Из табл. 2 видно, что при измерении НВВП в национальной валюте ННВВП Японии в 2008 г. упал по сравнению с 2007 г. на ^(2008; JP/JP) « 1.6%, а при использовании единой европейской валюты — вырос на ^(2008; JP/EZ) « 3%. Если же единицей измерения объема НВВП служит валюта США д5, то японский ННВВП демонстрирует неправдоподобный годовой рост на ^(2008; JP/US) « 11.6%.

Существенные различия динамики японского ННВВП при использовании различных базовых валют хорошо видны на рис. 1, где указаны графики временных рядов у (£ ; JP/EZ), у (£ ; JP/JP), у (£ ; JP/U5), £ = 2000,..., 2008.

Рис. 1. Динамика значений ННВВП Японии в национальных валютах разных стран.

Выявленная существенная зависимость временного ряда ж*(£; _?) (у (£; г/^’) =

ж*(£;^)/ж*(2000;_?’)) значений НВВП (ННВВП) страны с* от выбора базовой валюты д-,

І = 1,5, не позволяет сделать однозначный вывод о сравнительной динамике валового производства товаров и услуг в разных странах. Очевидной причиной такой неопределенности оценки этих временных рядов является невозможность отделить изменения самого НВВП от изменений коэффициентов обмена национальных валют, используемых в качестве единиц измерения. Действительно, значения ж*(£;і) НВВП страны с*, измеренного в единицах е* базовой валюты д-, связаны со значениями ж*(£; к), измеренными в единицах ек валюты д^, формулой ж*(£; к) = ж*(£;і) • с*(і, к; і), включающей в себя весьма изменчивый коэффициент обмена с*(і, к; і). Именно изменчивость коэффициентов обмена, определяющих относительные меновые ценности валют, не позволяет успешно использовать эти валюты в качестве единиц измерения объема НВВП, ибо, как заметил еще А. Смит, «товар, который сам подвергается постоянным колебаниям в своей ценности, никоим образом не может быть точным мерилом ценности других товаров» [8, с. 90].

Построение стабильной агрегированной валюты

Для формализации представлений, связанных с определяемым далее понятием стабильной агрегированной валюты, используем так называемую простую модель обмена, подробно описанную, например, в работах [9; 10]. В этой модели фиксируется конечное множество О = {ді,...,дп} различимых между собой безгранично делимых простых экономических благ ді, ...,дп, объемы которых измеряются в соответствующих единицах из заданного множества Е = {еі, ...,еп}. Предполагается, что единица е* блага д* обменивается в фиксированный момент времени і на с(і, і; і) единиц е- блага д-. Совокупность всех таких положительных коэффициентов обмена с(і, І; і) образует матрицу обмена С (і) = (с(і, і; і)), с(і, і; і) > 0, і, і = 1,..., п.

Построенная простая модель обмена может быть расширена путем введения агрегированных (составных, композитных, сложных и т.д.) экономических благ, каждое из которых представляет собой некоторый упорядоченный набор (вектор) С = (ді, —,?«) объемов (количеств) ді, ..., соответствующих простых благ, ді + ... + > 0, > 0,

і = 1, ...,п. Среди всех агрегированных экономических благ можно выделить базовые агрегированные блага, каждое из которых определяется нормированным вектором С = («і,..., «„), V* > 0, «і + ... + = 1. Любое агрегированное благо С = (ді,..., дп) пред-

ставимо в виде С = А • С = (А• «і,..., А• -у„), где А = ді +... + д„ > 0, V* = д* • (ді +... + д„)-і, «і + ... + = 1. Поэтому «естественной» единицей ее измерения количества (объема)

агрегированного блага С = (ді, —,?«) может служить соответствующее базовое благо С = («і, ...,«„). При таком выборе единицы измерения ес объем (количество) составного блага С = (ді, ..., дп) измеряется величиной д = ді + ... + дп.

Коэффициент обмена с(«, к; і) базового агрегированного блага С = («і,..., «„) и простого блага д^ из множества О на момент времени і можно определить формулой с(«, к; і) = «і с(1, к; і) + ... + «п с(п, к; і), показывающей, сколько единиц е^ простого блага д^ меняется на единицу ее базового блага С = («і, ...,«„). Отсюда следует, что коэффициент обмена с(-С,С/), указывающий, сколько единиц ес/ агрегированного блага С' = («/,..., «П) обменивается на единицу ес композитного блага « = («і,..., «„), определяется формулой с('С,С/;і) = с(«,к;і)/с(-С/,к;і). Включив в рассмотрение введенные коэффициенты обмена сложных благ, получаем расширенную простую модель обмена [11; 12].

Заметим, что при обмене д* единиц е* простого блага д* на д- единиц е- простого блага д- фактически происходит установление отношения эквивалентности

qjej = qj ej между разнокачественными экономическими благами, имеющими, вообще говоря, и разную количественную определенность. Такой эквивалентный обмен качественно различных предметов обмена устанавливается на основе их «равноценности», выражаемой одинаковой рыночной «ценой», измеряемой в единицах некоторого «денежного» (монетарного) товара, в качестве которого на протяжении экономической истории человечества выступали как различные реальные товары (мерные куски золота, серебра, связки шкурок пушного зверя и т. д.), так и их символы (от ракушек каури и бумажных денег до электронных записей в памяти компьютера).

Иными словами, предполагается, что существует некоторый общий числовой показатель (индекс, индикатор), являющийся функцией IND(qe; C(t)) именованного числа qe, где q — абстрактное число, e — единица измерения, которое принимает равные значения /ND(qjej; C(t)) = IND(qjej; C(t)) для эквивалентных (qjej = qjej) именованных величин qj ej и qj ej. Параметрами, определяющими индекс IND(qe; C(t)), служат, вообще говоря, все коэффициенты обмена, входящие в матрицу обмена C(t). Введенный индекс IND(qe; C(t)) можно интерпретировать, вслед за А. Смитом, как меру меновой ценности (value in exchange) соответствующего экономического блага [8, с. 87].

В рамках простой модели обмена исследователю на каждый момент времени t непосредственно даны пропорции c(i, j;t) попарного («бартерного») обмена простых экономических благ gj, gj, i,j = 1, ...,n. Желательно, чтобы конструируемый непосредственно ненаблюдаемый индекс меновой ценности был согласован с наблюдаемыми пропорциями бартерного обмена. Это условие согласованности индекса меновой ценности IND(qe; C(t)) с матрицей C(t) = (c(i,j; t)) наблюдаемых в момент времени t коэффициентов обмена состоит в требовании выполнения соотношения c(i, j; t) = IND(ej; C(t))/IND(ej; C(t)) для всех пар gj, gj простых экономических благ. Индекс меновой ценности, удовлетворяющий указанному условию согласованности, естественно назвать монетарным (денежным) индексом меновой ценности, так как с его помощью пропорцию обмена c(i, j; t) любых двух простых экономических благ gj, gj можно представить в виде отношения «цен» IND(ej; C(t)), IND(ej; C(t)) (т. е. значений индекса меновой ценности единиц ej, ej) этих благ.

В качестве монетарного индекса меновой ценности простого экономического блага gj будет использоваться среднее геометрическое Ix(i; t) = Ix(i; C(t)) коэффициентов обмена c(i, 1),..., c(i, n): /x(i; t) = GM(c(i); t) = [c(i, 1; t)•...•c(i, n; t)]1/n. Аналогично в качестве монетарного индекса меновой ценности агрегированного экономического блага c = (vi,..., vn) выбирается геометрическое среднее /x(v; t) = /x(v; C(t)) коэффициентов обмена c(c, 1; t),..., c(v, n; t): Jx(v; t) = [c(v, 1; t) •... • c(v, n; t)]1/n. В пользу выбора именно мультипликативных индексов (индексов Джевонса [13, с. 30]) меновой ценности можно привести ряд формальных (например, выполнение для среднего геометрического многих «естественных» условий-аксиом, обычно налагаемых на индексы) и прагматических (например, удобство работы со статистическими данными о случайных коэффициентах обмена, имеющих логарифмически нормальное распределение) аргументов [14; 13; 15; 11; 16].

Для оценки изменений значений мультипликативного монетарного индекса Ix(i; t) меновой ценности простого экономического блага gj на целочисленном временном интервале [1, T] относительно значения Ix(i; to) в фиксированный момент времени to удобно использовать нормированный показатель Nx(i;t/to) = Ix(i;t)/Ix(i;to), to G [1,T], t = 1, ...,T, показывающий, во сколько раз значение Ix(i; t) монетарного индекса, принимаемое в момент времени t, отличается от его значения Ix(i;to) в момент времени to (Nx(i;to/to) = 1). Аналогично, для оценки изменений значений мультипликативно-

го монетарного индекса Ix (v; t) меновой ценности композитного экономического блага у = (vl,...,vn) на целочисленном временном интервале [1,T] относительно значения Ix(v; to) в фиксированный момент времени to можно использовать нормированный показатель Nx(v ; t/to) = Ix(v ; t)//x(v; to), to Є [1,T], t = 1, ...,T (NK(v ; to/to) = 1). Заметим, что значение нормированного показателя Nx(i; t/to) (нормированного показателя Nx(v; t/to)) не зависит от выбора единиц измерения объема простого блага g* (составного блага у).

Изменчивость (волатильность— volatility) временных рядов Nx(i;t/to), Nx(v ;t/to), t = 1,...,T, можно оценивать, например, различными статистическими характеристиками разброса значений этого временного ряда вокруг некоторого фиксированного значения. При выборе в качестве точек отсчета средних значений

1 T 1 T MEAN{i-,t0) = -'52Nx{i\t/to), MEAN(v]to) = -YJNx(v-,t/to) (1) t=l t=l

временных рядов мерами разброса могут служить средние арифметические

1 T

AS DM (i; to) = ~Y^[Nx{i;t/t0) - MEAN^t0)}2,

T л t=l

1 T

ASDM(v; t0) = ^J2 */*o) - MEAN(v; t0)]2

t=l

(2)

квадратичных отклонений [Nx(i; t/t0)-MEAN(i; t0)]2, [Nx(v; t/t0)-MEAN(v; t0)]2, t =

1,..., T, значений Nx(i; t/t0), Nx(v; t/t0) от средних значений MEAN(i; to), MEAN(v ; t0) (аббревиатура ASDM означает Average of Squared Deviations from Mean).

При выборе же в качестве точек отсчета значений Nx(i; to/to) = 1, Nx(v; to/to) = 1 показателей Nx(i; t/to), Nx(v; t/to) в фиксированной точке to мерами разброса могут служить средние арифметические ASDU(i; to), ASDU(v; to) квадратичных отклонений [Nx(i; t/to) — 1)]2, [Nx(v; t/to) — 1)]2, t = 1,...,T(ASDU — Average of Squared Deviations from Unit):

1 T 1 T ASDU(i; to) = ft 52 Ші;*/*о) “ і)]2’ ASDU(v;t0) = - ^Ш^Фо) ~ I)]2- (3)

t=l t=l

Введенные статистические характеристики ASDM(v;to), ASDU(v; to) изменчивости временного ряда значений показателя Nx(v; t/to) связаны простым и легко интерпретируемым соотношением ASDU(v ; t0) = ASDM(v ; t0) + [1 — MEAN(v; t0)]2.

Выбрав, например, в качестве меры разброса значений временного ряда Nx(v ; t/to), t = 1,...,T, статистику ASDM (у; to), можно поставить следующую оптимизационную задачу: найти базовое экономическое благо у* = (v*,..., v^), v* > 0, v* + ... + v^ = 1, при котором величина ASDM(v ; to) принимает минимальное значение: min ASDM(v ; to) =

ASDM (у *; t0).

Базовое составное благо у* = (v *,..., v^), обладающее минимальной изменчивостью, измеряемой величиной ASDM(v *; to), можно назвать стабильным агрегированным благом. В случае, когда рассматриваемые простые экономические блага g 1, ...,gn представляют собой валюты разных государств, мы будем называть составное благо

V* = (v *, v^) стабильной агрегированной валютой и использовать для его обозначе-

ния аббревиатуру SAC (Stable Aggregate Currency) [17; 18; 10; 12].

Итак, стабильная агрегированная валюта V * = (v *,..., v^) соответствует минимальному (на дискретном временном интервале [1,T]) значению меры ASDM(V*;to) разброса значений показателя Nx(v ; t/to) изменения монетарного индекса Jx(v *; t) меновой ценности. При определенных условиях этот факт делает возможным использование стабильной агрегированной валюты v* = (v *, ...,v^) в качестве относительно стабильной «счетной единицы» (unit of account) для измерения меновой ценности других экономических благ (простых и составных) и, в частности, для мониторинга динамики меновой ценности этих благ [1; 17; 18; 10; 12].

Действительно, пусть мера волатильности ASDM(v *;to) стабильной агрегированной валюты V* существенно меньше аналогичной меры разброса ASDM(i; to) (ASDM(v; to)) простой валюты g* (агрегированной валюты v). Тогда наблюдаемые на протяжении дискретного интервала времени [1,T] изменения коэффициента обмена c(i,V *; t) (коэффициента обмена c(v, V *; t)) можно отнести, с определенной долей уверенности, на счет изменения меновой ценности самого простого блага д* (составного блага V), поскольку индекс меновой ценности стабильного агрегированного блага V * практически не изменялся на протяжении рассматриваемого интервала времени.

При описанных выше условиях появляется возможность практически исключить влияние выбора национальной валюты на сравнительную оценку динамики НВВП различных стран за счет использования соответствующей стабильной агрегированной валюты.

Оценка объема НВВП в единицах стабильной агрегированной валюты

Воспользуемся изложенным в предыдущем пункте методом построения стабильной агрегированной валюты (SAC) для определения соответствующей корзины валют по статистическим данным МВФ за 2000-2008 гг., представленным на сайте www.imf.org. В состав SAC включим валюты четырех стран (EZ, GB, JP, US), на долю которых приходится основная часть международных расчетов. Простые вычисления дают следующие номинальные масштабированные объемы простых валют в корзине, определяющей SAC: 0.245 EUR*; 0.166 GBP *; 0.309 JPY *; 0.280 USD* [10].

Статистические характеристики изменчивости временных рядов значений нормированного показателя NK(i;t/to) = Ix(i;t)/Ix(i;to) (Nx(v;t/to) = Ix(V;t)//x(v;to)), to = 2000, t = 2000,..., 2008, показывающего, во сколько раз значение (i; t) (Ix(v*; t)) монетарного индекса меновой ценности простой валюты д* (составной валюты V *), принимаемое в год t, отличается от его значения Ix(i;to) в год to = 2000, приведены в табл. 3.

Таблица 3. Меры разброса значений показателей изменения индексов меновой ценности валют

Валюта EUR* GBP* JPY* USD* EUR* SAC

Размах значений ряда 0.333 0.142 0.209 0.213 0.146 0.005

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Стандартное отклонение от среднего 0.109 0.045 0.055 0.073 0.049 0.002

Коэффициент вариации 0.094 0.043 0.062 0.078 0.053 0.002

Стандартное отклонение от единицы 0.197 0.067 0.128 0.098 0.082 0.003

В табл. 3 для пяти простых валют (EUR, GBP, JPY, RUR, USD) и для стабильной составной валюты у * = SAC приведены следующие статистические характеристики из-

менчивости (волатильности) нормированных временных рядов значений Nx(i; t/2000), i = 1,..., 5, Nx(v *; t/2000) показателей изменения меновой ценности валют (далее формулы указаны только для простых валют): (1) размах значений временного ряда RANGE(i; 2000) = Max {Nx(i; t/2000)}- Min {Nx(i; t/2000)}, RANGe(sAC ;2000); (2)

стандартное отклонение от среднего (Standard Deviation from Mean) SDM(i\ 2000) = лУА^]7]Щ1^20Ш)~, SDM(SAC\ 2000); (3) коэффициент вариации (Variation Coefficient) VAC(i; 2000) = SDM(i; 2000)/MEAN(i; 2000), VAC(SAC; 2000); (4) стандартное отклонение от единицы (Standard Deviation from Unit) SDU(i] 2000) = \J AS DU (i; 2000), SDU(SAC; 2000).

Из табл. 3 видно, что стабильная агрегированная валюта имеет минимальные значения всех четырех использованных мер волатильности. Для более наглядного представления соотношений мер изменчивости рассматриваемых валют поделим для каждой такой меры ее значения для простых валют на значение этой меры для SAC (табл. 4).

Таблица 4. Относительные значения мер изменчивости меновой ценности валют

Валюта EUR GBP JPY USD RUR SAC

Размах значений ряда 66.6 28.4 41.8 42.6 29.2 1.0

Стандартное отклонение от среднего 54.5 22.5 27.5 36.5 24.5 1.0

Коэффициент вариации 47.0 21.5 31.0 39.0 26.5 1.0

Стандартное отклонение от единицы 65.7 22.3 42.7 32.7 27.3 1.0

Из данных табл. 4 видно, что изменчивость меновой ценности любой из простых валют EUR, GBP, JPY, USD, RUR в десятки раз (!) превосходит изменчивость меновой ценности стабильной агрегированной валюты SAC при всех четырех используемых мерах волатильности (RANGE, SDM, VAC, SDU).

Поскольку меновая ценность SAC оказалась практически неизменной на протяжении рассматриваемого периода времени (2001-2008 гг.), постольку измерение НВВП в единицах этой агрегированной валюты позволяет выявить изменения ценности самого НВВП, в отличие от случаев, когда использование других (существенно более изменчивых) валют не позволяет отделить изменение их меновой ценности от изменения ценности самого НВВП.

Обосновав, таким образом, целесообразность использования стабильной агрегированной валюты при международных сравнениях НВВП различных стран, рассмотрим динамику нормированных значений y(t;JP/JP), y(t;JP/SAC) ННВВП Японии, вычисленных с использованием национальной валюты JPY и составной валюты SAC соответственно, а также разность D(t;JPY,SAC)=y(t;JP/JP)-y(t;JP/SAC) и относительную разность d(JPY,SAC)=D(JPY,SAC)/y(t;JP/SAC) этих значений (см. табл. 5 и построенные по данным этой таблицы графики рис. 2).

Таблица 5. Ряд значений ННВВП Японии, вычисленных с использованием национальной (JPY) и составной (SAC) валют

Значение ННВВП Годы

2000 2001 2002 2003 2004 2005 2006 2007 2008

y(t;JP/JP) 1.000 0.990 0.976 0.975 0.991 0.998 1.009 1.026 1.010

y(t;JP/SAC) 1.000 0.923 0.872 0.865 0.878 0.874 0.842 0.810 0.885

D(t;JPY,SAC) 0.000 0.066 0.104 0.110 0.113 0.124 0.167 0.216 0.125

d(JPY,SAC) 0.000 0.072 0.119 0.127 0.129 0.142 0.198 0.267 0.141

Рис. 2. Динамика значений ННВВП Японии в национальной и в стабильной агрегированной валюте.

Анализ рис. 2 и табл. 5 показывает, что применение на рассматриваемом девятилетнем промежутке времени стабильной агрегированной валюты (SAC) вносит существенные поправки в оценку нормированных значений НВВП Японии, полученных при использовании японской национальной валюты: относительные различия d( JPY, SAC) рядов значений ННВВП страны варьируются примерно от 7% (в 2001 г.) до почти 27% (в 2007 г.).

Несколько иной результат сравнения динамики ННВВП, подсчитанного с использованием национальной (RUR) и стабильной агрегированной валюты (SAC), имеет место для России (см. табл. 6 и соответствующие графики на рис. 3).

Таблица 6. Ряд значений ННВВП России, вычисленных с использованием национальной (RUR) и составной (SAC) валют

Значение ННВВП Годы

2000 2001 2002 2003 2004 2005 2006 2007 2008

y{t\RU / RU) 1.000 1.224 1.481 1.813 2.334 2.960 3.683 4.532 5.704

y(t;RU I SAC) 1.000 1.241 1.381 1.584 2.031 2.644 3.440 4.309 5.427

D(t;RUR,SAC) 0.000 -0.016 0.100 0.228 0.302 0.317 0.243 0.224 0.276

d( RUR, SAC) 0.000 -0.013 0.072 0.144 0.149 0.120 0.071 0.052 0.051

Анализ рис. 3 и табл. 6 показывает, что применение для оценки ННВВП России стабильной агрегированной валюты (SAC) вносит относительно меньшие (по сравнению с рассмотренным выше случаем оценки японского ННВВП) поправки в значения y(t; RU/RU), полученные при использовании российской национальной валюты: относительные различия d(RUR, SAC) рядов значений ННВВП страны варьируются от примерно 1,3% (в 2001 г.) до менее чем 15% (в 2004 г.).

Сравнительно небольшая величина расхождений временных рядов y(t; RU/RU), y(t; RU/RU) оценок ННВВП России (как было указано в начале статьи, расхождение в десятки процентов между различными оценками макроэкономических показателей

Рис. 3. Динамика значений ННВВП России в национальной и в стабильной агрегированной валюте.

типа ВВП — обычное дело в экономической статистике) может быть объяснена, по нашему мнению, следующими обстоятельствами. Во-первых, российский рубль, строго говоря, не имеет «свободно плавающего» рыночного курса, поскольку он официально привязан к курсу агрегированной евро-долларовой валюты через фиксацию соответствующего «коридора» для рублевой стоимости этой композитной валюты. Иными словами, курс рубля определяется в рамках мягкого варианта «валютного регулирования» (currency board) [19]. Во-вторых, в настоящее время состав евро-долларовой корзины (0.45 EUR и 0.55 USD) очень близок к составу стабильной бинарной агрегированной валюты, обеспечивающей на рассматриваемом промежутке времени (2000-2008 гг.) минимальную изменчивость показателя меновой ценности [20; 21].

Совместное действие указанных двух факторов (ограничение варьирования рублевого курса бивалютной корзины коридором, устанавливаемым Центральным банком РФ, и достаточно малый разброс нормированной меновой ценности этой корзины, не слишком отличающийся от разброса построенной стабильной агрегированной валюты SAC) и может служить объяснением наблюдаемой близости графиков y(t;RU/RU), y(t;RU/RU) оценок ННВВП России, полученных с использованием отечественной и стабильной агрегированной валюты соответственно.

Заключение

Итак, продемонстрирован существенный разнобой оценок нормированного номинального валового внутреннего продукта (ННВВП) четырех стран (GB, JP, RU, US) и зоны евро (EZ), полученных за период 2000-2008 гг. с использованием пяти валют (GBP, JPY, RUR, USD, EUR). Этот разнобой делает некорректным международное сравнение динамики производства товаров и услуг различных стран на основе денежных оценок в единицах какой-либо одной национальной валюты.

Неадекватность модели международного сравнения динамики ННВВП с использованием одной фиксированной валюты является следствием значительной изменчиво-

сти меновой ценности любой из рассматриваемых пяти валют. Построенная из национальных валют корзина (0.245EUR*; 0.166GBP*; 0.309JPY*; 0.280USD*} определяет стабильную агрегированную валюту (SAC), которая имеет в десятки раз меньшие значения характеристик изменчивости своей меновой ценности, чем любая из простых валют, входящих в эту корзину. Такая высокая стабильность показателя меновой ценности построенной составной валюты SAC и позволяет использовать ее в качестве общей базовой денежной единицы измерения объема номинальных ВВП разных стран.

Разумеется, описанная общая схема построения стабильной агрегированной валюты и ее использования для измерения номинального ВВП может быть распространена и на случаи сравнительной оценки динамики других макроэкономических показателей отдельных стран и мировой экономики в целом. При этом в качестве стабильной единицы ценности могут использоваться не только составные валюты, но и товарные, а также смешанные товарно-валютные корзины.

Литература

1. Колесов Д. Н., Сутырин С. Ф., Хованов Н. В. Проблемы сравнения макроэкономических показателей стран в условиях кризиса // Материалы международной научной конференции «Мировой экономический кризис и Россия: причины, последствия, пути преодоления». Санкт-Петербург, 12-13 ноября 2009 г. Секции 1-5. СПб.: ЭФ СПбГУ, 2009. С. 165-166.

2. Сергеева О. Г. Оценка ВВП России в контексте динамики мировой валютной системы // Материалы конференции «Пути развития национальной экономики». Санкт-Петербург, 18 апреля 2008 г. Секция 2. СПб.: ОЦЭиМ, 2008. С. 53-54.

3. Моргенштерн О. О. О точности экономико-статистических наблюдений. М.: Статистика, 1968. 324 с.

4. Бойко И. П. Так на сколько же процентов выросла экономика России в 1997 году? // Вестн. С.-Петерб. ун-та. Сер. 5: Экономика. 1998. Вып. 3. С. 43-57.

5. Franses P. Why is GDP typically revised upwards? // Statistica Neerlandica. 2009. Vol. 63. Is. 2. P. 125-130.

6. Frick J., Grabka M. Imputed rent and income inequality: a decomposition analysis for Great Britain, Germany and the U.S. // Review of Income and Wealth. 2003. Series 49. N 4. P. 513-537.

7. Collinsa A., Scorcub A., Zanolac R. Reconsidering hedonic art price indexes // Economics Letters. 2009. Vol. 104. Is. 2. P. 57-60.

8. Смит А. Исследование о природе и причинах богатства народов. М.: Эксмо, 2007. 960 с.

9. Хитров Г. М., Хованов Н. В. Простая модель обмена: основные предположения и ближайшие следствия // Вестн. С.-Петерб. ун-та. Сер. 5: Экономика. 1992. Вып. 4. № 26. С. 101106.

10. Hovanov N. V., Kolari J. W., Sokolov M. V. Computing currency invariant indices with an application to minimum variance currency baskets // Journal of Economic Dynamics and Control. 2004. Vol. 28. P. 1481-1504.

11. Хованов Н. В. Простая модель обмена: аддитивные и мультипликативные монетарные индексы меновой ценности // Вестн. С.-Петерб. ун-та. Сер. 5: Экономика. 2007. Вып. 3. С. 83-92.

12. Hovanov N. V., Kolary J. W., Sokolov M. V., Sutyrin S. F. Transnational corporations multicurrency assets denomination in units of an aggregated minimal risk currency // Proceedings of the International Scientific School “Modeling and Analysis of Safety and Risk in Complex Systems”. St. Petersburg, June 28-July 1, 2005. SPb.: RAS, 2005. P. 179-186.

13. Фишер И. Построение индексов. М.: ЦСУ, 1928. 464 с.

14. Колесников Г. И., Корников В. В., Хованов Н. В. Мультипликативные монетарные индексы // Обозрение прикладной и промышленной математики. 2007. Т. 14. Вып. 6. С. 10491057.

1б. Хованов Н. В. Простая модель обмена: теория стохастических индексов меновой ценности экономических благ // Вестн. С.-Петерб. ун-та. Сер. б: Экономика. 2003. Вып. 2. С. 7б—91.

16. Brodsky D. Arithmetic versus geometric effective exchange rates // Weltwirtschaftliches Archiv. 1982. Band 118. P. б46-б62.

17. Хованов Н. В. Измерение меновой ценности экономических благ в единицах стабильной агрегированной валюты // Финансы и бизнес. 200б. № 2. С. 33-43.

18. Хованов Н. В., Колесов Д. Н., Соколов М. В., Колари Дж. В. Простая модель обмена: агрегированные валюты минимальной волатильности // Применение математики в экономике. Вып. 1б. СПб.: СПбГУ, 2004. С. 43-61.

19. Hanke S. H. On Dollarization and Currency Boards: Error and Deception // Journal of Policy Reform. 2002. Vol. б. N 4. P. 203-222.

20. Ненашев Д. А., Сергеева О. Г., Хованов Н. В. Бинарные валюты минимального риска // Труды 9-й международной научной школы «Моделирование и анализ безопасности и риска в сложных системах». Санкт-Петербург, 7-11 июля 2009 г. СПб.: ГУАП, 2009. С. 38-44.

21. Sergeeva O. G. Stable aggregate binary currency construction: theory and application // Bulletin of economic and scientific students’ society. N 3. Applied Analysis in Economics. SPb.: IBI, 2009. Р. 134-14б.

Статья поступила в редакцию 20 января 2011 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.