Обратные задачи
87
Список литературы
1. Dedok V A. Neural Network Solution of the Inverse Anomalous Diffusion Problem // 2017 Siberian Symposium on Data Science and Engineering (SSDSE). Proceedings, 93-98.
2. Бондаренко А.Н., Бугуева Т.В., Дедок В.А. Нейросетевой подход к решению обратных задач теории аномальной диффузии // Сибирский журнал индустриальной математики, 2016, том XIX, №3(67), С.3-14.
Some inverse problems for elliptic equations
A. Bukhgeim
Wichita State University
Email: [email protected]
DOI: 10.24411/9999-017A-2019-10177
We plan to consider several inverse problems for elliptic systems and equations.
Итерационный метод идентификации правой части параболического уравнения, зависящей от пространственных переменных
B. И. Васильев, Л. Су
Северо-Восточный федеральный университет им. М. К. Аммосова
Email: [email protected]
DOI: 10.24411/9999-017A-2019-10178
В работе для многомерного параболического уравнения рассмотрена обратная задача определения правой части, зависящей только от пространственных переменных. Для численного решения поставленной обратной начально-краевой задачи используется метод сопряженных градиентов в сочетании с методом конечных разностей с неявной аппроксимацией по времени с весовым множителем ое[0,1]. Обсуждаются результаты вычислительного эксперимента для модельных задач с квазиреальными решениями, включая и задачи с условиями переопределения имеющими случайные ошибки.
Работа выполнена при финансовой поддержке гранта Правительства РФ (договор №14.Y26.31.0013) и Российского фонда фундаментальных исследований (код проекта 17-01-00732).
Использование математических методов для решения систем дифференциальных уравнений описывающих процесс окисления изопропилбензола
М. К. Вовденко, И. М. Губайдуллин Институт нефтехимии и катализа СО РАН Email: Mikhail_vovdenko@rambler. ru DOI: 10.24411/9999-017A-2019-10179
Окисление изопропилбензола кислородом воздуха является одной из стадий технологического процесса получения фенола и ацетона в т.н. кумольном методе [1]. В ходе данной стадии происходит химическое превращение изопропилбензола (ИПБ) в гидроперекись изопропилбензола (ГП ИПБ), которая впоследствии распадается на фенол и ацетон на следующей технологической стадии.
Процесс окисления является радикально-цепным процессом, соответственно в данной реакции можно выделить определенные элементарные стадии [2, 3]. Для составления математической модели и описания протекания реакции можно применить закон действующих масс, и на его основе записать систему дифференциальных уравнений, для решения которой необходимо применение специальных математических методов [4]. Также описание кинетической модели осложняется тем, что процесс окисления является гетерофазным (газ-жидкость), и для большей точности модели необходимо включение в ее состав слагаемых, описывающих массообменную составляющую [5].
Список литературы
1. Закошанский В.М. Фенол и ацетон: анализ технологий, кинетики и механизма основных реакций. - СПб.: ХИМИЗДАТ, 2009. - 608 с.:ил.
2. Kazuo Hattori, Yuxi Tanaka, Hiroyuki Suzuki, Tsuneo Ikawa and Hiroshi Kubota. Kinetics of liquid phase oxidation of cumene in bubble column// Journal of chemical Engineering of Japan - 1970 - P.72-78.
3. Макалец Б.И., Кириченко Г.С., Стрыгин Е.И. и др. Кинетическая модель жидкофазного окисления кумо-ла в гидроперекись// Нефтехимия. - 1978- Т 18 № 2 - С 250-255.
88
Секция 5
4. Губайдуллин И.М., Сайфуллина Л.В., Еникеев М.Р. "Информационно-аналитическая истема обратных задач химической кинетики". Учебное пособие. Изд-е Башкирск. Ун-та.- Уфа, 2003. - 89 с.
5. Bhattacharya, A. Kinetic modeling of liquid phase autoxidation of cumene / Bhattacharya, A // Chemical Engineering Journal - 2008 - P. 308-319
Об одном алгоритме статистической регуляризации
Ю. В. Гласко
Научно-исследовательский вычислительный центр Московского государственного университета им. М. В. Ломоносова Email: [email protected] DOI: 10.24411/9999-017A-2019-10180
В докладе рассматривается обратная задача определения источника в заданной области в рамках математической модели диффузии [1, 3]. Ищется функция распределения плотности в источнике. Ее точечная оценка [2] основана на случайной выборке из равномерного распределения. Мощность выборки варьируется от 1 до 16. Значения выборки зависят от граничного условия плотности. Для каждой модели граничного условия проводим по 3 численных эксперимента для N опытов метода Монте-Карло (N=300).
Решая обратную задачу для граничного условия при заданном источнике [3], мы ищем точечную оценку функции распределения плотности в источнике, которая минимизирует квадрат невязки между рассчитанным и заданным значениями плотности на границе. Расчеты проведены и для сглаживающего функционала.
Список литературы
1. Glasko V.B. Inverse Problems of Mathematical Physics. New York: AIP. 1988.
2. Пытьев Ю.П., Шишмарев И.А. Курс теории вероятностей и математической статистики для физиков. М.: МГУ 1983.
2. Glasko Yuri V Interpretation Algorithms for Hydrocarbon Deposits // Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields. Switzerland: Springer. 2019. P. 113-125.
Численный алгоритм восстановления диэлектрической проницаемости среды
В. А. Дедок
Институт математики СО РАН Email: [email protected] DOI: 10.24411/9999-017A-2019-10181
В работе исследуется численный метод решения обратной задачи по восстановлению коэффициента диэлектрической проницаемости среды [1]. В качестве исходных данных обратной задачи используется модуль вектора электромагнитной напряженности электромагнитного поля, являющегося результатом интерференции двух полей с точечными источниками. Восстанавливаемые неоднородности диэлектрической проницаемости имеют точечный характер. Для указанной обратной задачи предложен численный алгоритм решения, приводятся тестовые расчеты на симулированных данных, исследуются варианты ослабления требований к форме неоднородностей.
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 17-01-00120), интеграционным проектом СО РАН 0314-2018-0009.
Список литературы
1. А. Л. Карчевский, В. А. Дедок, "Восстановление коэффициента диэлектрической проницаемости по модулю рассеянного электрического поля", Сиб. журн. индустр. матем., 21:3 (2018), 50-59; J. Appl. Industr. Math., 12:3 (2018), 470-478.