УДК 621.752.3 Ю. д. БУРЬЯН
Л. д. ИВДНОВ М. В. СИЛКОВ Д. О. БЛБИЧЕВ
Омский государственный технический университет
Федеральный н аучно-производственный центр «Прогресс», г. Омск
ГИДРОПНЕВМОИЗОЛЯТОР С ПЕРЕМЕННОЙ ПРИВЕДЁННОЙ МЛССОЙ В ИНЕРЦИОННОМ ПРЕОБРЛЗОВЛТЕЛЕ ДВИЖЕНИЯ
В ра боте рассмотрена виброизоляционная опора, состоящая из резинокордной оболочки, з аполненной жидкостью и содержащей гидравлический инерционный преобразователь движения, которая через гибкую резиновую мембрану соединена с гидропневматическим аккумулятором. Рассмотрено влияние дискретного изменения приведённой м ассы в ГИТ на в иброизоляционные х ара ктеристики опоры, что позволяет производить н астройку системы н а минимальное значение коэффициента передачи усилия н а основание в зависимости от частоты возмущающего воздействия. Ключевые слова: виброизоляция, резинокордная оболочка, пневмопружина, инерционный преобразователь движения.
Пневматические упругие элементы на базе ре-зинокордных оболочек давно и с успехом применяются в качестве виброизоляционных опор в различных отраслях промышленности. Их широкое применение обусловлено тем, что они обладают рядом уникальных положительных качеств:
— низкие частоты собственных колебаний;
— возможность регулирования характеристик (жёсткость, нагрузочная способность);
— надёжность и длительность эксплуатации и т. д.
Характеристики пневмоамортизатора могут быть
значительно улучшены при использовании вместе с пневмоэлементом гидравлического инерционного преобразователя движения на базе РКО, заполненной жидкостью. Методы расчёта и результаты экспериментальных работ по гидроопорам с гидравлическими инерционными преобразователями движения, или по терминологии [1] гидравлическими инерционными трансформаторами (ГИТ) достаточно полно изложены в работах Института машиноведения им. А. А. Благонравова Российской академии наук [1—2].
Анализ резинокордных виброопор с ГИТ, в которых в одном конструктиве параллельно установлены гидравлический инерционный преобразователь движения на базе РКО с жидкостью и резинометал-лический или пневматический амортизатор, приведён в работах [3 — 4].
Принципиальные схемы пневмовиброизолятора с ГИТ на базе РКО модели И-09 и гидропневмоакку-мулятором приведены на рис. 1.
Принцип действия рассматриваемой опоры с ГИТ заключается в том, что при действии на опору периодического усилия от виброактивного силового агрегата жидкость в ГИТ и, следовательно, в инерци-
Рис. 1. Принципиальная схема пневмовиброизолятора: 1 — вывешиваемая масса m0; 2 — блок инерционных трубок; 3 — диафрагма; 4 — гидропневматический аккумулятор; 5 — основание; 6 — РКО И-09; Р0 — давление в гидропневматическом аккумуляторе; F(t) — сила, действующая со стороны виброактивного агрегата
онных трубках будет совершать возвратно-поступательное движение. Диафрагма 3 и ёмкость гидропневматического аккумулятора с давлением Р0 служит для компенсации объёма вытесняемой жидкости при перемещении опорной поверхности по отноше-
нию к основанию, и для создания силы упругости и силы, компенсирующей вес вывешиваемого тела. Масса жидкости в инерционных трубках будет иметь скорость большую, чем скорость опорной поверхности, на величину, равную отношению площади условного поршня, перемещающего жидкость (в первом приближении площадь эквивалентного сечения РКО) к площади сечения инерционной трубки. Вследствие этого на силовой агрегат и основание будет действовать дополнительная инерционная нагрузка с приведённой массой, на 2 — 3 порядка превышающей массу жидкости в инерционных трубках. Динамический эффект от этой инерционной нагрузки будет заключаться, как это показано в [1—3], в значительном снижении передачи вибрационного усилия на основание в области частот настройки виброопоры с ГИТ.
Необходимо отметить, что инерционные трубки при малом диаметре могут обеспечивать демпфирование в опоре, хотя известно, что для целей виброизоляции, т. е. для уменьшения передачи усилия на основание, демпфирование должно быть малым.
Для кинетической энергии жидкости в ГИТ можно записать [1]
Т ^ 2 +
Т = т--+ т
2
■2 тР 2
(1)
где х — скорость перемещения массы т0; т — масса жидкости в полостях опоры; тк — масса жидкости в инерционной трубке; Утр — скорость жидкости в трубке.
А
Учитывая, что Утр = х-, где А — площадь пор-
Б тр
шня, ^гр — суммарная площадь сечения инерционных трубок, инерционная составляющая будет иметь вид:
d (дТЛ ..
* Г тпр ■ Х
(2)
А2
где тпр = тк + т.
При колебаниях массы т0 около положения статического равновесия можно записать:
тоX = ¥Н) - А(х) ■ Р,,
(3)
где А(х) — эффективная площадь РКО; Р, — давление жидкости в РКО.
Полагая, что давление жидкости в РКО в основном определяется давлением в газовой полости, инерционным воздействием от тпр и сопротивлением в дросселе для Р, можно записать [5]
Рис. 2. Принципиальная схема гидроиневмовибронзолятора: 1 — крышка; 2 — прижимное кольцо; 3 — резинокордная оболочка; 4 — подвижный сектор; 5 — электродвигатель; 6 — корпус ГИТ; 7 — резиновая мембрана; 8 — корпус гидропневмоаккумулятора; 9 — полость с газом и давлением Р_
Рис. 3. Принципиальная схема дискретного перекрытия инерционных трубок: 1 — корпус ГИТ; 2 — подвижный сектор; 3 — электродвигатель
Р, =(Рго + Ра )
V
X
Ут - Г А(х)Мх
Учёт демпфирования в опоре из-за движения жидкости в ГИТ в первом приближении при условии ламинарного движения можно оценить по коэффициенту проводимости инерционной трубки [6]
- р + тпр ■ Х . Ьп
А(х) А(х)
(4)
где Рго — начальное избыточное давление в газовой полости;
Ра — атмосферное давление; У — начальный объём газовой полости;
го '
п — показатель политропы.
К = %аТР = ^^, (5)
пр 128^1 8
где т — динамическая вязкость жидкости (Па с); 1 — диаметр и длина трубки. Из условия равенства расходов имеем:
КпрАр = БтрX др ,
-I.
о
го 1>
п
По 1 2 3 4
тпр, кг 16 8 5,3 4
Таблица 2
По 1 2 3 4
К 0,25 0,125 0,083 0,0625
Рис. 4. Модель в пакете Б1ши11пк
Рис. 5. Зависимость Кп от I: 1 — К=0,25; 2 — К=0,125; 3 — К=0,083; 4 — К=0,0625; 5 — без ГИТ
где Ар — перепад давления из-за сопротивления _Рсо
А ^соп
в дросселе; хдр = —— х , а если учесть, что Ар = -А-,
то получим:
^сопр = ЬПр х,
(6)
А2
где ьпр = р 8т-1
Ь тр
Если в первом приближении принять, что А(х)
ющее поведение опоры при однонаправленном движении, будет иметь вид [3]
К + тпр )х + Ьпр х + С1х = р (í),
(7)
(Р + Р )■ А2
где С = 1 го а >-+ СрКо;
* го
Срко — коэффициент жёсткости резинокордной составляющей.
При данном допущении А(х) — сом! выражение
сом!;, то дифференциальное уравнение, описыва- для коэффициента передачи
14
K (w) =
F H'
где |й(гю) — амплитуда усилия, передаваемого через опору на основание, будет соответствовать результатам работы [4]
Результаты расчётов в пакете Simulink представлены на рис. 5. Анализ графиков Кп (w) показывает, что частоты настройки на min Кп в лежат в диапазоне 4—10 Гц, что позволяет производить настройку колебательной системы на min К в зависимости от
п
частоты возмущающего воздействия.
Kn =
(Z2 - л)2 + 4v?Z2
1
Z2
л л + 1
л + 1
(8)
bn
где Z = —; п = ——; V
®о тпр 2то ■ ®о
Рассмотрен один из вариантов дискретного изменения приведённой массы в ГИТ за счёт перекрытия фигурным сектором инерционных трубок. Сектор разворачивается микроэлектродвигателем шагового типа, обеспечивая перекрытие одного, двух или трёх инерционных трубок.
Принципиальная схема такого устройства показана на рис. 2 и 3.
В качестве примера будем полагать, что блок инерционных трубок с двигателем и сектором установлен в РКО И-09. В этом случае для площади условного поршня А можно принять А = 5'10-3 м2 и, принимая диаметр й и длину 1 инерционных трубок одинаковыми и равными й=10 мм, 1 =50 мм для величин приведённых масс для различного количества п одновременно включённых трубок, получим результаты, представленные в табл. 1.
Для оценки влияния дискретного перекрытия инерционных трубок на диапазон частот с минимальным значением коэффициента передачи Кп усилия на корпус примем, что колебательная система с однонаправленным движением по координате х и с ГИТ описывается, как и ранее, следующей системой уравнений (7).
Полагая, что m0 = 64 кг, ю0 =
С
m + m
Библиографический список
1. Системы виброзащиты с использованием инерционности и диссипации реологических сред / Б. А. Гордеев [и др.]. - М. : Физматлит, 2004. - 176 с.
2. Мугин, О. О. Экспериментальные исследования виброизолятора с преобразованием движения инерционных элементов / О. О. Мугин, А. А. Синёв // Вестник научно-технического развития. - 2012. - № 4 (56). - С. 24-31.
3. Бурьян, Ю. А. Резинокордная пневмогидравлическая опора с инерционным преобразователем движения / Ю. А. Бурьян, С. Н. Поляков, Ю. П. Комаров // Омский научный вестник. Сер. Приборы, машины и технологии. -2013. - № 3 (123). - С. 68-72.
4. Бурьян, Ю. А. Виброизоляционная опора с гидравлическим инерционным преобразователем движения на базе резинокордной оболочки / Ю. А. Бурьян, Ю. Ф. Галуза, С. Н. Поляков // Судостроение. - 2014. - № 1. - С. 40-42.
5. Трибельский, И. А. Расчётно-экспериментальные методы проектирования сложных резинокордных конструкций / И. А. Трибельский, В. В. Шалай, А. В. Зубарев, М. И. Трибельский. - Омск : Изд-во ОмГТУ, 2011. - 238 с.
6. Попов, Д. Н. Динамика и регулирование гидро- и пневмо-систем / Д. Н. Попов. - М. : Машиностроение, 1987. -464 с.
собственная частота колебаний, равная при тпр = 0, ю0 = 2р/0, /0 = 2 Гц.
Оценка влияния дискретного переключения инер-
|Д(г'®)|
ционных трубок на коэффициент Кп = ^—-—^ про-
\р (Н
изведена в пакете МаШЬ/БшиПпк.
Модель уравнений в пакете БтиНпк (1) приведена на рис. 4. Значения коэффициента обратной связи К
по ускорению К = 1/п, где п = в зависимости
тпр
пр
от количества трубок п0 приведёны в табл. 2.
БУРЬЯН Юрий Андреевич, доктор технических наук, профессор (Россия), заведующий кафедрой основ теории механики и автоматического управления Омского государственного технического университета (ОмГТУ).
Адрес для переписки: [email protected] ИВАНОВ Андрей Анатольевич, студент гр. ПМ-151 факультета транспорта, нефти и газа ОмГТУ. СИЛКОВ Михаил Владимирович, кандидат технических наук, доцент (Россия), доцент кафедры основ теории механики и автоматического управления ОмГТУ.
БАБИЧЕВ Денис Олегович, инженер-конструктор 1-й категории ФНПЦ «Прогресс», г. Омск. Адрес для переписки: [email protected]
Статья поступила в редакцию 19.09.2016 г. © Ю. А. Бурьян, А. А. Иванов, М. В. Силков, Д. О. Бабичев
Книжная полка
Балакин, П. Д. Динамика машин : учеб. пособие / П. Д. Балакин. - Омск : Изд-во ОмГТУ, 2016. -350 с.
Показана логика составления основного набора математических моделей движения механических систем и сопутствующих инженерных приложений на основе фундаментальных положений аналитической механики. Предназначено студентам и магистрантам механико-машиностроительных факультетов, а также аспирантам, чьи научные интересы связаны с изучением динамического поведения и конструированием механических систем.
о
оз
2
2
+ 4v0iZ