А.Я. Ларионова, А. К. Экарт
ГЕНЕТИЧЕСКАЯ СТРУКТУРА И ДИФФЕРЕНЦИАЦИЯ ПОПУЛЯЦИЙ ПИХТЫ СИБИРСКОЙ В ТОМСКОЙ ОБЛАСТИ
Работа выполнена при частичной финансовой поддержке РФФИ-ККФН (грант № 07-04-96822),
РФФИ (грант № 08-04-90001-Бел_а).
Проведено сравнительное исследование суходольной и болотных популяций пихты сибирской (Abies sibirica Ledeb.), произрастающей в южно-таежной подзоне Западной Сибири на территории Тимирязевского лесхоза Томской области. В анализ включены выборки из популяций, расположенных на типичных евтрофных болотах, осушенном евтрофном болоте, заболоченном участке со слаборазвитым торфяным горизонтом и на суходоле. В каждой выборке на основании анализа аллельного разнообразия 20 локусов, кодирующих ферменты, определена генетическая структура и получены количественные оценки уровней внутри- и межпопуляционного генетического разнообразия. Установлено, что изученные популяции пихты характеризуются слабой подразделенностью и низким уровнем генетической дифференциации. Уровень наблюдаемых между ними различий сопоставим с уровнем различий, характерным для разных выборок из одной популяции.
Ключевые слова: пихта; суходол; болото; генетическая структура; дифференциация популяций.
Пихта сибирская (Abies sibirica Ledeb.) является одним из основных видов, образующих темнохвойную формацию лесов северо-востока европейской части России и Сибири. Ареал пихты простирается от бассейна Северной Двины на западе до верховьев Алдана на востоке; северная граница распространения вида достигает Полярного круга, южная проходит по хребту Хэнтей [1]. В значительной части своего ареала пихта сибирская растет на равнине (южнее распространения вечной мерзлоты), но встречается также в горах, поднимаясь там до верхней границы леса. Наиболее крупные массивы горных пихтарников связаны с СаяноАлтайской горной страной [1, 2]. Среди равнинной тайги наибольшие площади пихтачей приходятся на Томскую, Пермскую, Тюменскую области и Республику Коми [3].
Генетическая изменчивость пихты сибирской изучалась в различных районах ее естественного распространения, включая Урал и прилегающие к нему районы Западной Сибири, Южную Сибирь, Среднюю Сибирь, Прибайкалье и Забайкалье. Получены сведения о генетической структуре, внутри- и межпопуляционном генном разнообразии, географической дифференциации популяций в пределах исследованной части ареала вида [4-11], исследованы его таксономические и филогенетические взаимоотношения с другими видами пихт [12, 13]. Кроме того, имеются данные о генетической структуре популяций пихты сибирской, произрастающей в разных высотных поясах Западного и Восточного Саяна [7, 14, 15], отличающихся резко выраженными градиентами и гетерогенностью всех факторов среды. Показано, что экологическая гетерогенность среды обитания на разных высотных уровнях гор может вносить существенный вклад в генетическую дифференциацию популяций пихты сибирской. Наиболее значительные различия в генетической структуре выявлены между самыми удаленными друг от друга по градиенту высоты популяциями пихты.
В настоящем сообщении представлены материалы по изучению генетического разнообразия, структуры и степени дифференциации популяций пихты сибирской, произрастающей в разных условиях водно-минерального питания на болотах Томской области. Ранее такие исследования в Западной Сибири, где сосредоточены основные площади равнинных пихтарников и наблю-
дается высокая заболоченность территории, не проводились. Следует, однако, отметить, что имеются данные, полученные в результате кариологического анализа болотной и суходольной популяций пихты из района наших исследований [16-18], которые свидетельствуют о том, что пихта из разных по степени увлажненности местообитаний различается по ряду кариотипических признаков, в частности по числу и встречаемости вторичных перетяжек в хромосомах, числу ядрышек в интерфазных ядрах, разнообразию хромосомных перестроек и патологий митоза.
Материалы и методы исследований
В качестве объектов исследования были выбраны популяции (ценопопуляции) пихты сибирской в южнотаежной подзоне Западно-Сибирской низменности на территории Тимирязевского лесхоза Томской области, расположенные на суходоле и болотах с различными типами водно-минерального питания (осушенное ев-трофное болото, два типичных евтрофных болота, заболоченный участок со слаборазвитым торфяным горизонтом; табл. 1). Все популяции находятся в непосредственной близости друг от друга, расстояние между ними не превышает 10 км. Материалом для исследования послужили вегетативные почки, собранные отдельно с каждого из включенных в анализ деревьев. Гомогенизацию почек пихты осуществляли в 1-2-х каплях экстрагирующего буфера 0,05 М трис-НС1 pH 7,7, содержащего дитиотрейтол (0,06%), трилон Б (0,02%), Р-меркаптоэтанол (0,05%) и поливинилпирролидон (3%). Разделение экстрактов проводили методом горизонтального электрофореза в 13%-ном крахмальном геле в трех буферных системах: I - морфолин-цитрат-ной, рН 7,0 [19]; II - трис-цитратной, рН 8,5 / гидроокись лития-боратной, рН 8,1 [20]; III - трис-ЭДТА-боратной, рН 8,6 [21]. Составы гелевых и электродных буферов не отличались от рекомендуемых. Условия разделения экстрактов во всех буферных системах были одинаковыми: 6 часов при силе тока 40 мА и напряжении 170 V.
Гистохимическое окрашивание ферментов осуществляли по стандартным прописям [22-25] с некоторыми модификациями. В исследование включено 11 ферментов пихты сибирской, аллозимные варианты кото-
рых хорошо разделяются в указанных выше буферных системах (табл. 2). Идентифицировано 20 локусов, пригодных для изучения генетического разнообразия этого вида. Обозначение ферментов, локусов и аллелей производили по Ф. Айала [26].
Для определения уровня внутрипопуляционного генетического разнообразия использовали стандартные показатели: процент полиморфных локусов при 95%-ном (Р95) и 100%-ном (Р100) критериях полиморф-ности, среднее число аллелей на локус (А), средняя наблюдаемая (Но) и ожидаемая (Не) гетерозиготности,
Характеристика включенных в исы
эффективное число аллелей (Пе) [27]. Популяционную структуру и степень подразделенности популяций определяли с помощью показателей Б-статистик Райта [28]. Количественную оценку степени генетических различий между популяциями производили по методу, предложенному М. Неи [29]. Для вычисления показателей использовали пакеты компьютерных программ РОРвБМ 1.32 [30] и БЮБУБ 1 [31]. Кластеризацию популяций по генетическим расстояниям проводили на основании невзвешенного парно-группового метода кластерного анализа (ИРвМА) [32].
Т а б л и ц а 1
ование популяций пихты сибирской
Популяции Район расположения Географические координаты Высота над уровнем моря, м Тип леса, состав древостоя
Суходол Окрестности поселка, 86-й квартал, Тимирязевский район 56°22'с.ш. 84°33'в.д. 125 Мелкоосочково-зеленомошный 5Е3П1К1Л+Б, Ос, С
Осушенное евтрофное болото 56°23'с.ш. 84°40'в.д. Травяно-зеленомошный 6К3Е1С+П, Л, Б
Евтрофное болото 1 56°21'с.ш. 84°34'в.д. Осоково-зеленомошный, кочкарный 5К3Е1П1Б+Л
Заболоченный участок Осоково-вейниковый 4Е3К2П1Б
Евтрофное болото 2 56°21'с.ш. 84°35'в.д. Осоково-зеленомошный 5Е3К1П1С+Л, Б
Т а б л и ц а 2
Изученные ферментные системы, их аббревиатура, классификационные номера и использованные в работе буферные системы
Фермент Аббревиатура КФ Буферная система
Фосфоэнолпируваткарбоксилаза PEPCA 1.15.1.1 I
Малатдегидрогеназа MDH 1.1.1.37 I
6-фосфоглюконатдегидрогеназа 6-PGD 1.1.1.44 I
Шикиматдегидрогеназа SKDH 1.1.1.25 I
Изоцитратдегидрогеназа IDH 1.1.1.42 I
Фосфоглюкоизомераза PGI 5.3.1.9 II
Глутаматоксалоацетаттрансаминаза GOT 2.6.1.1 II
Лейцинаминопептидаза LAP 3.4.11.1 II
Фосфоглюкомутаза PGM 2.7.5.1 III
ГЛУТАМАТДЕГИДРОГЕНАЗА GDH 1.4.2.3 III
Флюоресцентная эстераза FE 3.1.1.2 III
Результаты исследований и их обсуждение
В ходе электрофоретического анализа включенных в исследование ферментов пихты сибирской, произрастающей на территории Томской области в условиях различной влагообеспеченности, выявлено 25 аллельных вариантов, кодируемых 20 ген-ферментными ло-кусами (табл. 3). Полиморфными в изученных популяциях оказались лишь четыре локуса: Mdh-3, Pgm-2, Skdh-1 и 6-Pgd-1, остальные локусы (Gdh, Lap-1, Lap-2, Mdh-1, Mdh-2, Mdh-4, Pgi-1, Pgi-2, Pgm-1, Pepca, Fe-3, Idh-1, Idh-2, Got-1, Got-2, 6-Pgd-2) были мономорфны-ми. Наиболее высокий уровень изменчивости среди полиморфных локусов обнаруживают локусы Pgm-2 и 6-Pgd-1. Выявленные в этих локусах аллели во всех популяциях пихты представлены достаточно широко, а гетерозиготность по каждому из них превышает 30%. Локус Skdh-1 характеризуется средним уровнем изменчивости. В совокупной выборке популяций наблюдаемая и ожидаемая гетерозиготности по этому локусу составляют соответственно 12,7 и 12,9%. Локус Mdh-3
имеет самые низкие значения гетерозиготности, в среднем около 2%.
Из данных, представленных в табл. 3, видно, что 7 из 9 аллелей, выявленных в полиморфных локусах, являются общими для исследованных популяций пихты сибирской. Аллель 8кёН-194 отсутствует лишь в одной популяции (евтрофное болото 2), а аллель МёН-378, относящийся к категории редких, - в двух популяциях (евтрофное болото 1, евтрофное болото 2). Кроме того, во всех популяциях в каждом локусе преобладает наиболее общий аллель 100, что свидетельствует о сходной генетической структуре изученных насаждений пихты.
Определение основных параметров генетической изменчивости по 20 проанализированным локусам (включая и мономорфные), показало, что произрастающая на территории Томской области в разных условиях увлажнения и минерального питания пихта сибирская имеет такой же низкий уровень генетического разнообразия (табл. 4), как и пихта из других районов ее естественного распространения в Сибири [6-8, 10,
11, 15]. Доля полиморфных локусов при 95%-ном критерии полиморфности колеблется в популяциях от 10 до 15%, при 100%-ном - от 10 до 20%. Среднее число аллелей на локус варьирует от 1,15 до 1,25, эффективное число аллелей - от 1,09 до 1,13, наблюдаемая и ожидаемая гетерозиготности - от 0,047 до 0,062 и от 0,048 до 0,066 соответственно. Наиболее низкие значе-
ния практически всех показателей генетической изменчивости наблюдаются в популяциях пихты, расположенных на типичных евтрофных болотах. В целом в совокупной выборке изученных популяций в полиморфном состоянии находится 20% проанализированных изоферментных локусов, а каждое дерево гетерозиготно по 5,5% генов.
Т а б л и ц а 3
Аллельные частоты и значения наблюдаемой (Но) и ожидаемой (Не) гетерозиготности полиморфных локусов
в исследованных популяциях пихты
Локус Аллель Популяции
Суходол Осушенное евтрофное болото Евтрофное болото 1 Заболоченный участок Евтрофное болото 2
Mdh-3100 0,983 0,983 1,0 0,983 1,0
Mdh-3 Mdh-378 0,017 0,017 - 0,017 -
Ho 0,033 0,033 0 0,033 0
He 0,033 0,033 0 0,033 0
Pgm-2114 0,233 0,217 0,167 0,200 0,117
Pgm-2100 0,583 0,533 0,683 0,567 0,583
Pgm-2 Pgm-295 0,184 0,250 0,150 0,233 0,300
Ho 0,533 0,633 0,467 0,667 0,600
He 0,581 0,616 0,491 0,594 0,565
Skdh-1100 0,917 0,933 0,917 0,883 1,0
Skdh-1 Skdh-194 0,083 0,067 0,083 0,117 -
Ho 0,167 0,133 0,167 0,167 0
He 0,155 0,127 0,155 0,210 0
6-Pgd-1 6-Pgd-1100 6-Pgd-192 Ho He 0,733 0,267 0,467 0,398 0,750 0,250 0,433 0,381 0,750 0,250 0,300 0,381 0,600 0,400 0,333 0,488 0,733 0,267 0,333 0,398
Т а б л и ц а 4
Значения основных показателей генетического разнообразия в исследованных популяциях пихты сибирской
Популяции О4 СМ P100, % A100 Гетерозиготность Пе F
Ho He
Суходол 15 20 1,25 0,060 0,058 1,11 -0,027
Осушенное евтрофное болото 15 20 1,25 0,062 0,058 1,12 -0,066
Евтрофное болото 1 15 15 1,20 0,047 0,051 1,09 0,091
Заболоченный участок 15 20 1,25 0,060 0,066 1,13 0,095
Евтрофное болото 2 10 10 1,15 0,047 0,048 1,09 0,031
В целом 15 20 1,25 ±0,12 0,055 ±0,034 0,056 ±0,034 1,11 ±0,07 0,026
Примечание. Р95, Р100 - полиморфность при 95% и 100%-ном критериях полиморфности; А100 - среднее число аллелей на локус; Но - наблюдаемая гетерозиготность; Не - ожидаемая гетерозиготность; Пе - эффективное число аллелей; Б - индекс фиксации Райта ± стандартная ошибка.
Сопоставление наблюдаемой и ожидаемой гетеро-зиготности в каждой из включенных в анализ популяций показало, что у пихты с типичных евтрофных болот (евтрофное болото 1, евтрофное болото 2), а также с заболоченного участка наблюдается дефицит гетерозиготных генотипов, варьирующий от 3,1 до 9,5%. Минимальное положительное значение индекса фиксации Райта Б [33], указывающего на недостаток гетерозигот, установлено в популяции пихты с евтрофного болота 2, максимальное - в популяциях с евтрофного болота 1 и заболоченного участка. У пихты с суходола и осушенного евтрофного болота, напротив, наблюдается небольшой эксцесс гетерозиготных генотипов. Значения Б для этих популяций отрицательные и составляют соответственно -0,027 и -0,066. Среднее для изученных в Томской области популяций пихты сибирской значение Б положительное и равно 0,026 (табл. 4).
Из приведенных в табл. 5 значений коэффициентов инбридинга особи относительно популяции (Fis) и коэффициентов инбридинга особи относительно вида (Fit) для каждого из полиморфных локусов и в среднем для 20 проанализированных локусов видно, что в совокупной выборке популяций отдельное дерево пихты обнаруживает 0,86%-ный дефицит гетерозигот относительно популяции и 2,32%-ный - относительно вида в целом.
Наиболее весомый вклад в дефицит гетерозигот вносит локус 6-Pgd-1. Низкие средние значения Fis и Fit свидетельствуют о том, что в целом исследованная в Томской области пихта сибирская не обнаруживает существенных отклонений наблюдаемых генотипических пропорций от ожидаемых в соответствии с законом Харди-Вайнберга, т.е. находится в состоянии, близком к равновесному.
Значения показателей F-статистик Райта
Локус Fis Fit Fst
Skdh-1 0,0044 0,0271 0,0229
Mdh-3 -0,0169 -0,0101 0,0067
Pgm-2 -0,0353 -0,0226 0,0123
6-Pgd-1 0,0723 0,0872 0,0160
Среднее 0,0086 0,0232 0,0147
Коэффициент инбридинга популяции относительно вида (Бб!), отражающий степень подразделенности популяций [28], равен в среднем 0,0147 (табл. 5). Это означает, что лишь 1,47% от общей генетической изменчивости распределяется между исследованными популяциями пихты. Остальная изменчивость реализуется внутри ценопопуляций. Среди полиморфных локусов наибольший вклад в межпопуляционную составляющую изменчивости вносит локус £кс1к-1 (Бб! = 0,0229), наименьший - слабополиморфный локус МСк-3 (Бб! = = 0,0067). Генетическое расстояние Б (N01, 1972) между популяциями пихты сибирской, рассчитанное по частотам аллелей 20 локусов, варьирует от 0,0002 до 0,0019, составляя в среднем 0,0011 (табл. 6).
Полученные для популяций пихты сибирской из Томской области значения Бб! и Б были значительно меньше средних значений этих показателей, установ-
ленных при анализе популяций пихты сибирской из разных по географическому положению и экологическим условиям районов Красноярского края (Бб! = = 0,0431; Б = 0,0040), изученных по идентичному набору изоферментных локусов [7, 11].
Слабые, но статистически значимые различия в генетической структуре (х2 = 12,672; ^ = 5; Р = 0,027) выявлены лишь между популяцией пихты с евтрофно-го болота 2, характеризующегося мощным торфяным горизонтом, и популяцией с заболоченного участка леса со слаборазвитым торфяным горизонтом (Б = 0,0019). Между остальными парами сравниваемых популяций пихты наблюдаемые различия в частотах аллелей оказались недостоверными. Низкий уровень генетической дифференциации изученных популяций пихты наглядно иллюстрирует дендрограмма, изображенная на рис. 1.
Т а б л и ц а 6
Генетические расстояния D [29] между исследованными популяциями пихты сибирской
Популяции Суходол Осушенное евтрофное болото Евтрофное болото 1 Евтрофное болото 2
Осушенное евтрофное болото 0,0002 -
Евтрофное болото 1 0,0004 0,0009 -
Евтрофное болото 2 0,0011 0,0006 0,0013 -
Заболоченный участок 0,0011 0,0014 0,0018 0,0019
Суходол
Осушенное евтрофное болото Евтрофное болото 1 Евтрофное болото 2 Заболоченный участок
Генетическое расстояние (Б)
Рис. 1. Дендрограмма сходства популяций пихты сибирской из Томской области
Анализ полученных данных показал, что произрастающая на суходоле и болотах Томской области пихта сибирская, как и пихта в других частях ареала этого вида, имеет невысокий в целом уровень генетического разнообразия (Р95 = 15; Р100 = 20; А100 = 1,25; Н0 = 0,055; Не = 0,056; Пе = 1,11). Обнаружено, что в популяциях пихты, расположенных на типичных евтрофных болотах, генетическое разнообразие ниже (Р95 = 12,5; Рі00 = = 12,5; А100 = 1,18; Н0 = 0,047; Не = 0,050; Пе = 1,09), чем в популяциях, представленных выборками с суходола, осушенного евтрофного болота и заболоченного участка со слаборазвитым торфяным горизонтом (Р95 = 15; Р100 = 20; А100 = 1,25; Н0 = 0,061; Не = 0,061; Пе = 1,12).
В двух исследованных популяциях (суходол, осушенное евтрофное болото) наблюдается небольшой избыток, а в остальных (евтрофное болото 1, евтрофное болото 2, заболоченный участок) - дефицит гетерозиготных генотипов. Однако в целом изученная в Томской области пихта не обнаруживает существенных отклонений наблюдаемых частот генотипов от ожидаемых в соответствии с законом Харди-Вайнберга (Fis = 0,0086; Fit = 0,0232), т.е. находится в состоянии, близком к равновесному. Установлено, что включенные в анализ популяции пихты сибирской не обнаруживают существенной подразделенности (Fst = 0,0147) и слабо дифференцированы (D = 0,0011). Уровень наблюдаемых между
ними различий сопоставим с уровнем различий, характерным для разных выборок из одной популяции. Статистически достоверные различия в частотах аллелей 20 изученных изоферментных локусов выявлены лишь у одной из десяти сравниваемых пар популяций (евтроф-ное болото 2 - заболоченный участок). По всей вероятности, это может быть связано с биологическими особенностями вида. Предъявляя повышенные требования к почвенному плодородию и режиму увлажнения, пихта сибирская избегает участков с особо неблагоприятны-
ми для нее условиями застойного водного режима и недостаточного минерального питания мезотрофных и олиготрофных болот [34, 35]. Все включенные в исследование болотные популяции пихты сибирской расположены на хорошо дренированных евтрофных болотах, обнаруживающих менее значительные отличия друг от друга и от суходола по условиям водно-минерального питания по сравнению с другими типами болот, что, несомненно, сказывается на степени их генетической дифференциации.
ЛИТЕРАТУРА
1. Бобров Е.Г. Лесообразующие хвойные СССР. Л. : Наука, 1978. 189 с.
2. Маценко А.Е. Пихты восточного полушария // Флора и систематика высших растений : тр. Ботан. ин-та им. В.Л. Комарова. М. : Наука, 1964. Сер. 1. Вып. 13. С. 3-103.
3. Крылов Г.В., Марадудин И.И., Михеев Н.И., Козакова Н.Ф. Пихта. М. : Агропромиздат, 1986. 239 с.
4. Семерикова С.А. Структура аллозимной изменчивости пихты сибирской (Abies sibirica Ledeb.) в пределах ареала // Горные экосистемы Южной Сибири: изучение, охрана и рациональное природопользование : материалы 1-й межрегион. науч.-практ. конф. Барнаул, 2005. С. 256259 (Труды ГПЗ «Тигирекский, вып.1).
5. Семериков В.Л., Семерикова С.А. Структура аллозимной изменчивости пихты сибирской отражает послеледниковую историю вида // Динамика генофондов растений, животных и человека : материалы отчетной конф. М. : ИОГен, 2005. С. 63-64.
6. Семерикова С.А., Семериков В.Л. Генетическая изменчивость и дифференциация популяций пихты сибирской (Abies sibirica Ledeb.) по аллозимным локусам // Генетика. 2006. Т. 42, № 6. С. 783-792.
7. Экарт А.К. Эколого-генетический анализ популяций пихты сибирской (Abies sibirica Ledeb.) : автореф. дис. ... канд. биол. наук. Красноярск, 2006. 17 с.
8. Экарт А.К., Ларионова А.Я. Генетическое разнообразие и структура равнинных и горных популяций пихты сибирской (Abies sibirica Ledeb.) // Вестник СВНЦ ДВО РАН. 2006. № 4 (8). С. 72-78.
9. Экарт А.К., Ларионова А.Я. Генетическое разнообразие и популяционная структура пихты сибирской (Abies sibirica Ledeb.) в Приени-сейской части ее ареала // Лесные экосистемы Северо-восточной Азии и их динамика : материалы Междунар. конф. Владивосток : Дальнаука, 2006. С. 259-263.
10. Ларионова А.Я., Кравченко А.Н., Экарт А.К., Орешкова Н.В. Генетическое разнообразие и дифференциация популяций лесообразующих видов хвойных в Средней Сибири // Хвойные бореальной зоны. 2007. Т. 24, № 2-3. С. 235-242.
11. Larionova Albina Ya., Ekart Alexander K., Kravchenko Anna N. Genetic diversity and population structure of Siberian fir (Abies sibirica Ledeb.) in Middle Siberia, Russia // Eurasian J. Forest Res. 2007. Vol. 10-2. P. 185-192.
12. Гончаренко Г.Г., Падутов В.Е. Генетическая структура, таксономические и филогенетические взаимоотношения у пихт СНГ // Доклады РАН. 1995. Т. 324, № 1. С. 122-126.
13. ГончаренкоГ.Г., Силин А.Е., Падутов В.Е., Падутов А.Е. Генетические ресурсы сосен, елей и пихт бывшего Советского Союза: анализ состояния генофондов, филогенетических взаимоотношений и организации генома // Программы сохранения и постоянного воспроизводства лесных генетических ресурсов в Новых Независимых Государствах бывшего СССР / под ред. Г.Г. Гончаренко, Й. Турок, Т. Гасс, Л. Пауле. Зволен ; Рим : Arbora Publishers и IPGRI, 1998. С. 89-106.
14. Экарт А.К., Ларионова А.Я., Белоконь М.М. и др. Генетическая дифференциация разновысотных популяций пихты сибирской в Западном Саяне // Вестник ТГУ. 2004. Прил. № 10. С. 145-148.
15. Ларионова А.Я., Экарт А.К. Генетическая структура и дифференциация разновысотных популяций пихты сибирской в Западном Саяне // Экологическая генетика. 2005. № 3, вып. 2. С. 22-28.
16. Седельникова Т.С., Пименов А.В. Хромосомные мутации в болотной и суходольной популяциях Abies sibirica Ledeb. // Цитология. 2003. Т. 45, № 5. С. 515-520.
17. Седельникова Т.С., Пименов А.В. Кариологическое изучение болотной и суходольной популяций пихты сибирской (Abies sibirica Ledeb.) // Известия РАН. Сер. биол. 2005. № 1. С. 23-29.
18. Седельникова Т.С. Дифференциация болотных и суходольных популяций видов семейства Pinaceae Lindl. (репродуктивные и кариоти-пические особенности) : автореф. дис. . д-ра биол. наук. Томск, 2008. 35 с.
19. Clayton J.W., Tretiak D.N. Amino-citrate buffer for pH control in starch gel electrophoresis // J. Fish. Res. Board Canada. 1972. Vol. 29. P. 1169-1172.
20. Ridgway G.J., Sherburne S.W., Lewis R.D. Polymorphism in the esterases of atlantic herring // Trans. Amer. Fish. Soc. 1970. Vol. 99. P. 147-151.
21. Markert C.L., Faulhaber I. Lactate dehydrogenase isozyme patterns in fish // J. Exp. Zool. 1965. Vol. 159, № 2. P. 319-332.
22. Brewer G.J. Introduction to isozyme techniques. N.Y. ; L.: Academ. Press, 1970. 186 p.
23. Vallejos C.E. Enzyme activity staining // Isozymes in plant genetics and breeding. Amsterdam: Elsevier Sci. Publ., 1983. P. 469-516.
24. Гончаренко Г.Г., Падутов В.Е. Руководство по исследованию древесных видов методом электрофоретического анализа изоферментов. Гомель : БелНИИЛХ, 1988. 66 с.
25. Manchenko G.P. Handbook of detection of enzymes on electrophoretic gels. CRC Press, 1994. 574 p.
26. Айала Ф. Введение в молекулярную и эволюционную генетику. М. : Мир, 1984. 232 с.
27. Айала Ф., Кайгер Дж. Современная генетика. М. : Мир, 1988. Т. 3. 335 с.
28. Guries R.P., Ledig F.T. Genetic diversity and population structure in pitch pine (Pinus rigida Mill.) // Evolution. 1982. Vol. 36. P. 387^02.
29. Nei M. Genetic distance between populations // Amer. Naturalist. 1972. Vol. 106. P. 283-292.
30. YehF.C., YangR., Boyle T. POPGENE Version 1.32: Microsoft Windows based Freeware for Population Genetic Analysis. 1999.
31. Swofford D.L. and Selander R.B. BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics // Heredity. 1981. Vol. 72. P. 281-283.
32. Sneath P.H.A., SokalR.R. Numerical taxonomy: the principles and practice of numerical classification. San Francisco : W.N. Freeman, 1973. 573 p.
33. Райт Д.В. Введение в лесную генетику. М. : Лесная промышленность, 1978. 470 с.
34. Толмачев А.И. К истории возникновения и развития темнохвойной тайги. М. ; Л. : Изд-во АН СССР, 1954. 155 с.
35. Фалалеев Э.Н. Пихта. М. : Лесная промышленность, 1982. 83 с.
Статья представлена научной редакцией «Биология» 15 июня 2011 г.