СПИСОК ЛИТЕРАТУРЫ
1. Thareja R.K., Sharma A.K. Formation of AlN in laser ablated plasma of Al in nitrogen ambient // Phys. Stat. Sol. (c). - 2005. - V. 2.
- № 7. - P. 2079-2082.
2. Zeng X., Qian D., Li W, et al. Effects of additive on the microwave synthesis of AlN powder // J. Am. Ceram. Soc. - 2007. - V. 90. -№ 10. - P. 3289-3292.
3. Способ получения нитрида алюминия: пат. 2091300 Рос. Федерация. Опубл. 27.09.97.
4. Самсонов Г.В. Нитриды. - Киев: Наукова думка, 1969. - 380 с.
5. Sthapitanonda P., Margrave J. Kinetics of nitridation of magnesium and aluminum // J. Phys. Chem. - 1956. - V. 60. - P. 1628-1633.
6. Chang A., Rhee S., Baik S. Kinetics and mechanisms for nitridation of floating aluminum powder // J. Amer. Ceram. Soc. - 1995. -V. 78. - № 1. - P. 33-40.
7. Jiang G.J., Zhuang H.R., Li WL., et al. Mechanisms of the Combustion Synthesis of Aluminum Nitride in High Pressure Nitrogen Atmosphere // J. Mat. Synth. Proc. - 1999. - V. 7. - № 1. - P. 1-6.
8. Ильин А.П., Громов А.А. Горение алюминия и бора в сверхтонком состоянии. - Томск: Изд-во Том. ун-та, 2002. - 154 с.
9. Русаков А.А. Рентгенография металлов. - М.: Атомиздат, 1977.
- 480 с.
10. Коршунов А.В. Влияние размеров и структуры частиц порошков алюминия на закономерности их окисления при нагревании в воздухе // Известия Томского политехнического университета. - 2009. - Т. 315. - № 3. - С. 5-11.
11. Шилов А.Е. Фиксация азота в растворах в присутствии комплексов переходных металлов // Успехи химии. - 1974. - № 5.
- С. 863-902.
12. Диаграммы состояния двойных металлических систем. Т. 1 / под общ. ред. Н.П. Лякишева. - М.: Машиностроение, 1996. -992 с.
13. Mench M.M., Kuo K.K., Yeh C.L., Lu Y.C. Comparison of thermal behavior of regular and ultra-fine aluminum powders (Alex) made from plasma explosion process // Combust. Sci. and Tech. - 1998.
- V. 135. - P. 269-292.
14. Розовский А.Я. Кинетика топохимических реакций. - М.: Химия, 1974. - 224 с.
Поступила 17.03.2010 г.
УДК 544.774.2
ФОРМИРОВАНИЕ ТОНКИХ ПЛЕНОК В СИЛИКОФОСФАТНОЙ СИСТЕМЕ
Т.С. Петровская, В.В. Козик*, Л.П. Борило*
Национальный исследовательский Томский политехнический университет *Томский государственный университет E-mail: [email protected]
Золь-гель методом синтезированы тонкие пленки в системе SiO2 - P2O5. Изучены физико-химические процессы в растворах, а также при термической обработке пленок. Определены условия получения пленок разной толщины. Рассчитаны кинетические параметры, и проведен сравнительный анализ процессов синтеза SiO2 в тонкой пленке и дисперсной фазе.
Ключевые слова:
Золь-гель метод, тонкие пленки, силикофосфатная система.
Key words:
Sol-gelprocess, thin films, silicophosphate system.
Структурно-энергетические особенности нано-дисперсных систем, проявляющиеся в особенностях свойств получаемых наноматериалов, обусловили возникновение и бурное развитие новой отрасли - технологии нанодисперсных систем и материалов [1, 2]. На мировом рынке основная доля производства наноматериалов приходится на керамические оксиды, диапазон методов получения которых достаточно широк. Так, существует более десятка методов, обозначаемых единым термином «золь-гель технология», отличающихся в деталях, но обязательно включающих стадии образования золя, геля и дальнейшую обработку последнего в зависимости от цели и назначения получаемого материала. Особое внимание уделяется синтезу тонкопленочных материалов на основе оксидов элементов Ш-У группы Периодической системы [3].
Система 8Ю2 - Р205 заслуживает внимания тем, что ее компоненты и бинарные смеси образуют стекла и наноструктурированные материалы, которые используются при получении диэлектрических и оптических сред, а в последние десятилетия и других областях, включая биомедицину.
Целью настоящей работы являлось получение тонких пленок в системе 8Ю2 - Р205 с содержанием оксида фосфора от 0 до 30 мас. %, а также исследование физико-химических процессов при их формировании.
Синтез тонких пленок проводили золь-гель методом из пленкообразующих растворов (ПОР) на основе тетраэтоксисилана (ТЭОС) с добавлением орто-фосфорной кислоты на подложках кремния и стекла методами центрифугирования (скорость вращения центрифуги 4000 об/мин) и вытягивания (скорость 5 мм/с). Формирование пленок проводили в два этапа:
высушивая при температуре 60 °С (1ч) и обжигая в интервале температур 600...800 °С (30 мин).
Изучение физико-химических процессов при формировании оксидных систем проводили с использованием вискозиметрического (ВПЖ-2), термогравиметрического (Q-1500 MOM), ИК-спек-троскопического (Perkin Eimer «Spertrum One») и масс-спектрометрического методов анализа (NET-ZSCH STA 409 PC). Термический анализ тонкопленочных систем проводили на установке с использованием микровесов на основе пьезокварцевого резонатора с точностью взвешивания 10-8 г [4]. Показатель преломления и толщину пленок определяли на лазерном эллипсометре (ЛЭФ-3М) [5].
Получение пленок из растворов основано на способности исходных веществ вступать в реакцию гидролитической поликонденсации и образовывать коллоидные растворы [3, 6]. При этом происходит увеличение массы частиц и, следовательно, изменение вязкости растворов. Важным в технологическом плане является сохранение стабильности вязкости ПОР во времени. Экспериментально определенная взаимосвязь между вязкостью и временем хранения (созревания) растворов позволяет судить о возможности их использования для получения пленок. На рис. 1 приведена зависимость вязкости от времени для растворов на основе ТЭОС и ортофосфорной кислоты, концентрацию которой изменяли в диапазоне 0...0,224 моль/л.
Свежеприготовленный раствор ТЭОС в водноспиртовой смеси не проявляет пленкообразующих свойств и при нанесении его на подложку быстро испаряется. Образование пленки происходит после созревания раствора в течение 2-х суток [6]. Вязкость системы в это время значительно меняется в результате гидролиза и поликонденсации согласно реакциям: Si(OC2H5)4+H2O^Si(OC2H5)3OH+C2H5OH 2Si(OC2H5)3OH^(H5C2O)3Si-O-Si(OC2H5)3+H2O
По истечении 2-х суток процессы в ПОР замедляются, и вязкость меняется медленно. Реакции гидролиза и поликонденсации продолжаются, но протекают с малой скоростью в связи с пространственными затруднениями. После накопления в растворе тетра- и пентасилоксанов с концевыми гидроксильными группами OH вязкость увеличивается (рис. 1, кривая 1) вследствие процессов циклизации силок-санов, обусловленных подвижностью связи Si-O [7]. Раствор через некоторое время из золя превращается в гель. При этом пленки из таких растворов получаются неоднородными, часто отслаиваются, что делает их непригодными для использования.
При введении в систему фосфорной кислоты стабилизация реологических свойств ПОР происходит в течение одних суток, что объясняется ускорением процессов гидролиза и конденсации за счет увеличения кислотности среды. Проведение гидролиза ТЭОС в кислой среде (pH=2) обеспечивает получение соединений с большим содержанием силанольных групп, способных к образованию межмолекулярных связей с реакционноспособны-
ми группами полимеров дисперсии [8]. В то же время, период пригодности растворов для получения пленок увеличивается (рис. 1, кривая 2), так как пространственные затруднения, создаваемые объемными анионами Н2Р04-, НР042- (реже Р043 ), препятствуют циклизации силоксанов. Фосфорная кислота является сильной кислотой по первой ступени диссоциации (рК1=2,12):
OH HO \р/
OH^^O
OH O-
+ H+
OH
O
Образующийся анион нуклеофильно замещает этокси- или гидроксогруппу силоксана по S^-ме-ханизму:
HO OH
C2H5O OH
\ / \ /
Si + р
„ тт г/ \ / "X
C2H5O OC2H5 HO O
+ H+
+ H+ C2H5O OH
------► \ /
+ C2H5OH
81
С2Нз^ 4 о он \ / р
но хо
Взаимодействие силанолов с кислородными кислотами протекает через шестичленные циклические активные комплексы [7]:
Н
I
Л-
/к
ч
Si H
OH
:si-O—рч + h2o
O OH
^ P / \
HO OH
C2H5O OH C2H5O OH
Si + C2H5O-Si-^Si-OC2H5 У \ / I 25
f r
C2H5O O OH \ / р
HO O
C2H5O
C2H5O
O OH
4 /
Pv
ho' NO
OH
\
C2H5O— Si- O- Si— OC2H5 C2H5O O 4O OH
V/ \ /
-CHOA Л +№OH
C2H5O O OH HO N
\ / р
HO XO
O
В случае высокой концентрации фосфорной кислоты пространственные затруднения имеют малую значимость по сравнению с ее катализирующим действием и, как следствие этого, происходит резкое увеличение вязкости на относительно ранних этапах созревания ПОР и гелеобразование в растворе (рис. 1, кривые 3, 4).
Рис. 1. Зависимость вязкости г пленкообразующих растворов от времени т. Концентрация Н-3Р04: 1) 0; 2) 5,9610~2; 3) 13,41СГ2; 4) 22,40 моль/л
При нанесении ПОР на подложку при температуре 25 °С происходит уменьшение массы пленки на 20 % в течение 15...20 мин. Сначала с поверхности улетучивается растворитель, затем происходят процессы циклизации полиорганосилоксанов, что подтверждается отсутствием на ИК спектрах полос групп &-ОН (табл. 1). В системе, не содержащей Н3РО4, имеет место следующий процесс циклизации силоксанов:
ных связей. Об этом свидетельствует смещение полосы колебания связи Р=0, а также появление широкой размытой полосы в области 2703...2564 см-1, ответственной за колебания группы ОН фосфат-иона.
После предварительного гидролиза (25 °С) в объеме пленки остается часть непрореагировавших этоксигрупп. При термостатировании пленки при температуре 60 °С происходит уменьшение массы пленки на 50 % в течении 15...20 мин., затем изменение массы прекращается. ИК спектры пленок на этой стадии показывают наличие валентных и деформационных колебаний, связанных с ОН-груп-пами (табл. 1). В масс-спектрах (табл. 2) обнаружены массы 46, 60, 45, 43, что свидетельствует о выделении этилового спирта и уксусной кислоты. Это объясняется тем, что из материала подложки выделяется адсорбированная вода и инициирует реакцию гидролиза полисилоксанов, находящихся на поверхности, при этом происходит выделение спирта:
^-ОС2Н5+Н2О^^-ОН+С2Н5ОН
С другой стороны, на поверхности пленки возможно окисление этоксигрупп кислородом воздуха с образованием уксусной кислоты. Этот процесс происходит с образованием радикалов по механизму, приводящему к получению промежуточного продукта гидроксопероксида, а в качестве конечных продуктов - уксусной кислоты и органосилок-санов [6]:
2П5
о,
НАО- о— о— о- Бь- он
Е — о— СН— о— он
I
сн3-
о
о—
\
о + с2н5он
— о—
В присутствии Н3РО4 анионы Н2РО4 встраиваются в каркас образующегося цикла:
■Б1—он
ч о— Б1-
/ хо он
Лн
о он \ / р
но хо
На ИК спектрах пленок появляются дополнительные полосы, связанные с колебаниями связей Р-О, Р=О, Р-ОН, Р-О-Р, а также Р-О-С. Увеличение содержания фосфорной кислоты в растворе способствует все большему проявлению водород-
-► —он + Сн3Соон
Данные термического, ИК-спектроскопиче-ского и масс-спектрометрического анализов (табл. 1, 2), проведенных для пленок и высушенных порошков пленкообразующих растворов, показывают, что процесс образования оксидов происходит в три стадии (рис. 2).
Для системы, не содержащей фосфорную кислоту, согласно ДТА имеют место два эндотермических (110 и 380 °С) и один экзотермический (590 °С) эффекты. Эндотермический эффект при 110 °С обусловлен испарением воды с поверхности и из объема частиц кремнезема в результате образования конденсированных силанольных групп при возникновении силоксановых связей (конденсация по ОН группам). Эндотермический эффект во втором случае обусловлен отщеплением воды и выделением спирта в процессе окислительной термодеструкции. Экзотермический эффект обусловлен сгоранием спирта и продуктов термоокислительной деструкции этоксигрупп:
+
^-ОН+^-ОСД^^-О-ВЬ+СДОН ^-ОН+^-ОН^^-О-БЬ+НО Введение фосфорной кислоты в исходный раствор приводит к уменьшению эндотермических эффектов и смещению их в более высокотемпературную область. Одновременно при увеличении концентрации Н3РО4 происходит понижение температуры процессов в ряду растворов, содержащих фосфорную кислоту.
Таблица 1. Отнесение полос ИК-спектров пленок, полученных из ПОР, отожженных при различных температурах
Колебания(тип)
Н-0-Н 51-0-Н
Валентные СН?; СН
Деформационные СН2; СН:
51-0-51
51-0-51
Р-0Н
Р=0
Валентные Р-0
Валентные Р-0-С
Р0Л НР0Л, Н2Р04'
Р-0-Р
Наличие полос в ИК-спектрах, см"1, при температурах отжига, °С
25 60 100 200 500 600
- 3550 3660 3680 - -
2995 2870 2995 2865 2935 2935 2935 -
- 1640 1640 1640 1640 -
1455 1400 1455 1400 - - - -
1175 1090 1090 1095 1100 1100 1100
- 960 - - - -
800 600 800 600 800 600 800 800 800
465 460 460 460 460 460
2703 2600 2600 - - -
1250
1190 1190 1190 1190 1190 1190
1050 1050 1050 - - -
1100
1000 1000 1000 1000 1000 1000
Рис. 2. Результаты дифференциально-термического (ДТА) и термогравиметрического (ТГ) анализов пленок, высушенных при температуре 60 °С Содержание Р2О5: 1) 0; 2) 5; 3) 30 мол. %
Результаты расчета энергии активации методом Метцера-Горовица [9] показывают характер процесса дегидратации. Сравнительный анализ процессов образования 8Ю2 в объемной фазе и в тонком слое приведен в табл. 3. Как видно, процессы в тонком слое протекают при более низких температурах. Энергия активации стадий в тонкопленочном состоянии ниже, чем в дисперсном. Также изменяется и лимитирующая стадия образования оксидов в тонком слое. Это объясняется, во-первых, тем, что в тонком слое диффузионное торможение процессов незначительно, во-вторых, тем, что тонкая поверхностная пленка находится в особом состоянии и на кинетические параметры влияет поверхностная энергия подложки.
Для первой стадии процесса получения двухкомпонентного порошка (5 мол. % Р2Оз) также были рассчитаны кинетические параметры. Энергия активации составила 15,4 кДж/моль, что говорит об облегчении процессов удаления физически адсорбированных молекул воды по сравнению с чистым порошкообразным оксидом 8Ю2 вследствие ослабления межмолекулярных связей.
Таблица 2. Состав продуктов газовыделения при ступенчатой термообработке ПОР по данным масс-спектроме-трии (С - концентрация продукта)
Газообразный про-
С105, мас. % (при различных температурах обработки)
дукт 60 100 200 300 400 500
Н20 0 7532 1250 5600 140 0
С02 0 0 0 0 3 52
С2Н50Н 1400 180 58 620 110 0
СН3С00Н 63 0,8 0 39 14 0,8
СхНу 0 0 0 0 39 4
Таблица 3. Кинетические параметры получения 5/02 из ПОР (по данным термического анализа)
Стадии формиро- вания Температур. интервал, К Степень превращ., % Отн. скорость процесса, г/мин Энергия активации, кДж/моль
Порошок 5Ю2
25...200 33,0 6,3 41,4
2 200...550 29,5 7,9 51,8
3 550.700 37,7 6,2 68,5
Пленка 5Ю2
25.150 20,5 3,2 10,4
2 150.400 59,5 2,9 16,0
3 400.550 20,0 3,4 17,4
о
н
о
о
о
о
На начальной стадии созревания ПОР с увеличением содержания Н3РО4 получаются более тонкие пленки. С увеличением времени хранения ПОР и содержания Н3РО4 образуются более толстые пленки, что согласуется с данными реологических исследований. В свою очередь, повышение степени структурирования ПОР при увеличении времени его созревания приводит к уменьшению показателя преломления получаемых из них пленок (табл. 4).
Таблица 4. Зависимость толщины и показателя преломления пленок от времени созревания
Содержание Р205 в пленке, мас. % Характеристика пленок
Толщина, нм Показатель преломления
4 дня 21 день 4 дня 21 день
0 - 204 - 1,451
5 162 187 1,481 1,462
10 122 184 1,485 1,468
15 134 197 1,497 1,468
20 141 214 1,495 1,468
25 84 248 1,487 1,453
30 73 - 1,469 -
СПИСОК ЛИТЕРАТУРЫ
1. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. - М.: ИКЦ «Академия», 2006. -309 с.
2. Верещагин В.И., Козик В.В., Сырямкин В.И. и др. Полифунк-циональные неорганические материалы на основе природных и искусственных соединений. - Томск: Изд-во Том. ун-та, 2002. - 359 с.
3. Борило Л.П. Тонкопленочные неорганические наносистемы.
- Томск: Изд-во Том. ун-та, 2003. - 134 с.
4. Серебренников В.В., Якунина Г.М., Козик В.В., Сергеев А.Н. Редкоземельные элементы и их соединения в электронной технике. - Томск: Изд-во Томск. ун-та, 1980. - 156 с.
5. Комранов Б.М., Шапочных Б.А. Измерение параметров оптических покрытий. - М.: Машиностроение, 1986. - 130 с.
Выводы
1. Определены условия синтеза золь-гель методом тонких пленок и дисперсных продуктов в системе 8Ю2 - Р2О5 при содержании оксида фосфора от 0 до 30 мол. %.
2. Изучены закономерности изменения реологических свойств в последовательных состояниях системы раствор - золь - гель.
3. Установлено, что реологические свойства и способность к образованию тонких пленок растворов, приготовленных из тетраэтоксисилана и ортофосфорной кислоты, определяются химическим составом раствора и временем его созревания (хранения).
4. Показано, что повышение содержания орто-фосфорной кислоты способствует ускорению процессов гидролиза и конденсации, росту вязкости на ранних этапах созревания раствора, и повышает его пленкообразующую способность.
5. Варьируя содержание Р2О5 и время выдержки пленкообразующих растворов можно получать пленки толщиной от 160 до 250 нм.
6. Грязнов Р.В., Козик В.В., Борило Л.П. Тонкопленочные материалы на основе 8Ю2 и /гО2, полученные из растворов // Неорганические материалы. - 2001. - Т. 37. - № 7. - С. 828-831.
7. Силоксановая связь / под ред. М.Г. Воронкова. - Новосибирск: Наука, 1976. - 413 с.
8. Новоселова Н.А. и др. Особенности пленкообразования продуктов гидролиза тетраэтоксисилана // Журнал прикладной химии. - 1982. - Т. 55. - № 8. - С. 1867-1870.
9. Фиалко М.Б. Неизотермическая кинетика в термическом анализе. - Томск: Изд-во Том. ун-та, 1981. - 110 с.
Поступила 18.03.2010 г.