Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 3 (51)
UDC 629.463.027.2-028.77
S. V. MYAMLIN1, O. O. TEN2, L. O. NEDUZHA3*
1 Dep. «Cars and Car Facilities», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St. 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 793 19 03, e-mail sergeymyamlin@gmail.com, ORCID 0000-0002-7383-9304
2CJSC«Promtraktor-Vagon», Ilich St., 1 a, Kanash, Chuvash Republic, Russian Federation, 429332 3*Dep. «Striuctural Mechanics», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 793 19 03, e-mail nlorhen@i.ua, ORCID 0000-0002-7038-3006
EXPERIMENTAL RESEARCH OF DYNAMIC QUALITIES OF FREIGHT CARS WITH BOGIES OF DIFFERENT DESIGNS
Purpose. With the advent of new designs of freright cars the task of designing the more modern bogies, assessment of their dynamic properties depending on the type and structure of pecularities, accounting the axle loadings, providing the dynamic and running characteristics, meeting the conditions of impact on the track, stability, and frame forces intensity etc. becomes especially important. In order to launch the new production into manufacture and to assess the dynamic properties using different designs of bogies the running testes were conducted. They allowed one to compare the dynamic performance of the new bogie with the existing models. Methodology. The study was conducted using the method of numerical integration and mathematical modeling of dynamic loading of freight cars using the software package «Dynamics of Rail Vehicles» («DYNRAIL»). Findings. The results of studies of dynamic characteristics of open cars with new and worn wheels of bogie models 18-9771, 18-9770 and 18-578 in graphical and tabular form are presented. All figures are within the normative values and do not exceed the maximum admissible ones. Originality. When designing the bogie for loading 23.5 t/axle almost all available technical solutions to improve the characteristics of the freight car bogies (elastic bearers, cassette bearing in axle boxes, axle boxe adapter of original design, bilinear central spring suspension, etc.) were used. Practical value. As a result of the engineering works on projecting and manufacturing of the improved designs of freight car bogies a new design was received. It is highly competitive with the dynamic qualities of the best ones. Made choice of rational values of elastic-dissipative parameters of the bogie allows one to create standard series of running gears for freight cars for promising operating conditions. The results are of practical importance. They have found reflection in the number of author's publications in special and semi-popular editions.
Keywords: freight cars; bogie bearers; traffic speed; tangent and curved track sections; dynamic performance
Introduction
The main criteria for assessment of dynamic qualities of rail vehicles that determine the operation mode of rolling stock, as we know, are its dynamic indicators. They should take into account current trends of modern freight car building [13, 15, 17] and correspond to the regulatory documents [12, 8]. With the advent of new designs of freright cars the task of designing the more modern bogies, assessment of their dynamic properties depending on the type and structure of pecularities, accounting the axle loadings, providing the dynamic and running characteristics, meeting the conditions of impact on the track, stability, and frame forces intensity etc. becomes especially important [5, 6]. At the same time the bogie should be universal, interchangeable with the bogies existing in operation according to installation dimensions
and standardized to the maximum level according to the components. It should be not only simple in design, but also in manufacturing (to ensure minimum production costs and technical maintenance of such bogies). Their operation should be cost-effective.
Purpose
In order to launch the new product into manufacture and to assess the dynamic properties using different designs of bogies the running testes were conducted. They allowed one to compare the dynamic performance (coefficient of vertical dynamics of the body frame, coefficient of vertical dynamics of unsprung bogie, the ratio of side frame force to the static axial loading, derailment stability coefficient) of the new bogie with the existing models.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 3 (51)
Methodology
In order to verifícate the design decisions previously the theoretical studies for determination the dynamic loading of cars with bogies 18-100 (as a standard), Y25, 18-9771 were carried out [7, 9]. The mathematical model and DYNRAIL software developed in Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan were used during the theoretical studies [18, 19]. Simulation was carried out throughout the range of operating speeds of freight cars on tangent and curved track sections by varying the parameters of elastic elements of the bogie spring suspension, elasticity in bearers and axle box. Rail irregularities were set as the numerical implementations, which had the statistical characteristics similar to real track irregularities. Also, it was possible to set the track irregularities in accordance with current regulatory documentation.
Analysis of the results of theoretical studies made it possible to conclude that for all bogie models the dynamic values of quality indicators for open cars differed within the requirements of regulatory documents [2, 8] and did not exceed the maximum permissible values. These indicators are the coefficient of horizontal dynamics of unsprung part of the car Cdh and the coefficient of vertical dynamics of the unspung part of the car Cdv, the stability coefficient of the wheel climbing on the rail Cs. The values of Cdv and Cdh on the straight track section at the design speed of 120 km/h indicated that the bogie model 18-9771 as compared to the models 18-100 and Y25 according to dynamic performance turned out to be better, although it is designed for axle loading 23.5 tnf.
According to results of performed experimental studies the influence of different bogie designs on the basic dynamic indicators of traffic safety of freight cars in the empty and loaded modes. In this case of four-axle open cars coefficient dynamics these indicators are: the vertical dynamics coefficient of the body frame (Cd), the coefficient of vertical dynamics of unsprung bogie frame (Cdu), the ratio of the side frame force to the static axial loading (Hp/Po), the derailment stability coefficient (Cs).
Basic material.
In order to launch the new production into manufacture and to assess the dynamic qualities
using the different bogie designs on the speed test ground of OJSC «VNIIZhT» (Belorechenskaya Station, North Caucasian railway, Russian Federation) the running tests were carried out. They allowed comparing the dynamic performance of the new bogie model 18-9771 (Fig. 1, a) with bogie models 18-9770 (Fig. 1, b) and 18-578 (Fig. 1, c).
Both, the cars with new bogies and the cars with the maximum worn ones but allowed to operation were tested. The tests were carried out in the volumes necessary to launch new production into manufacture.
Description of the test objects.
Bogie model 18-9771 is a development of CJSC «Promtractor-Vagon» (Republic of Chuvashia, Canas, Russian Federation) with increased run life 500 thous. km [9, 10, 15, 11]. The bogie has three-element non-rigid frame, protection of friction pairs in pedestal jaw opening and spring opening. Static deflection of the springs of spring group increased to 68 mm reduces the dynamic impact of car on the track (Table 1).
Application of removable wear resistant elements in friction joints should enhance the stability of rolling stock motion and reduce the costs for maintenance and repair of the running gears. A new developed design for two-axle bogie of freight cars has some differences from other producers and lies in the following:
- side frames and bolsters of strengthened design are made in the form of cast steel using the vacuum-film technology;
- the springs of central spring suspension are made using the height determined by the value of calculated static deflection of central spring suspension under the weight of car and maximum permissible load of the car;
- constant contact bearers of elastic type are set clearance-free;
- wear resistant elements of friction wedges are made of polyurethane, in the friction joint are the wedge-plate, center pad, jaw opening.
The bogie model 18-9770 is designed for the cars of mainline railways with 1520 mm of rail gage, as well as for the cars of industrial transport [4, 15, 13, 16, 14]. The bogie is an analogue of the serial bogie model 18-100 (Table 1), but with more advanced technology of cast parts manufacturing -side frames, bolsters.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2014, № 3 (51)
Fig. 1. General view:
a - bogies of the model 18-9771; b - bogies of the model 18-9770; c - bogies of the model 18-578
The bogie 18-578 (Fig. 1, c) with the loading 23.5 tnf from the axis on the rails [14] is developed by FSUE «Uralvagonzavod». It has a three-element frame of cast structural parts, in the jaw openings of which there are removable wear resistant plates of polyurethane elastomer with mechanical fastening.
The central spring suspension of the bogie is made traditionally. It consists of the set of springs and friction wedge oscillation dampers [4, 13, 15]. The spring set has a linear vertical power characteristics providing the deflection under the weight of loaded car increased to 68 mm, minimum deflection under the weight of the empty car is 13 mm (Table 1). Elastic friction wedges replace the friction wedges of the bogie 18-100 and completely exclude adhesion of the wedges and bolster wear. The friction plate is the composite one: its main body is 10 mm thickness and its contact body is 6.5 mm thickness. New design of the elements in the oscillation damping system in spring suspension of the bogie 18-578 prolongs their service life. At this the wear protection of the inclined surfaces of bolster is ensured, and the main wear occurs on the surface of a replaceable contact plate. Elastic coupling of the wedges with the bolster eliminates the «metal to metal» contact. The elastic-roller bearers of the constant contact with the specified i.e. set rigidity are applied in the bogie.
Findings
The graphs below show the research results of the dynamic characteristics of cars with bogies of the designs under study:
- vertical dynamics coefficient of unsprung bogie frame Cdu and the ratio of the side frame force to the static axial loading (Hp/Po) in the straight track sections (Fig. 2, a-b) and the ratio of the side frame force to the static axial loading (Hp/Po) in the curve with radius 500 m (Fig. 2, c) in the empty mode;
- vertical dynamics coefficient of the body frame (Cd), vertical dynamics coefficient of unsprung bogie frame (Cdu), the ratio of the side frame force to the static axial loading (Hp/Po) in the straight (Fig. 3, a-c) and curved track sections with radius 500 m (Fig. 4, a-c) in the loaded mode.
The research results of the dynamic characteristics of open cars with new and worn wheels of the bogie models 18-9771, 18-9770 and 18-578 show that all the indicators are within the normative values and do not exceed the maximum permissible ones [12, 8].
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2014, № 3 (51)
Cl Values Cdu (straight)
О -
40 60 70 80 80 100 110 120
V. km/h
model 18-9771 -»- model 10-3770 model 18-578
/} Values Hp/Po (straight)
Hp/Po
0,4
0,3 0,2 0,1
0
40 60 70 00 90 100 110 120
V. km/h
-*- model 16-9771 -■- model 18-9770 -»-model 18-578 С Values Hp/Po (curve R=500 м)
Hp/Po
0.4 -г-I-
0,3
0,1
о -I-I-
40 60 70 80 90 100
V, km/h
model 18-9771 -»-model 18-9770 -»—(rioifel 18-578
Fig. 2. Dependecy graphs of dynamic performance on the vaues of motion speed in empty mode:
a -vertical dynamics coefficient of unsprung bogie frame Cdu (straight); b - ratio of the side frame force to the static axial loading Hp/Po (straight) c - ratio of the side frame force to the atatic axial loading Hp/Po (curve R = 500 m)
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 3 (51)
Fig. 3. Dependecy graphs of dynamic performance on the values of motion speed in the loaded mode
on the straight track sections: a - vertical dynamics coefficient of the body frame (Cd); b - vertical dynamics coefficient of unsprung bogie frame (Cdu); c - ratio of the side frame force to the atatic axial loading (Hp/Po)
Fig. 4. Graphs of dynamic values dependence on the traffic speed in loaded mode in curved track
sections (R = 500 m): a - vertical dynamics coefficient of the body frame (Cd); b - vertical dynamics coefficient of unsprung bogie frame (Cdu); c - ratio of the side frame force to the atatic axial loading (Hp/Po)
а
а
b
b
c
c
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 3 (51)
Table 1
Technical characteristics of the freight bogies
Indicator Models of freight bogies
18-9771 18-9770 18-578
Bogie weight, kg 4900 4900 4750
Base, m 1.85 1.85 1.85
Permisible speed, km/h 120 i 20 120
Flexibility of swing suspension, m/MN 0.130 0.125 0.130
Spring set deflection under the static loading, m 0.068 0.049 0.068
Distance from the rail head level to the bearing surface of the centrer plate, m 0.811 0.801 0.811
Type of swing suspesion one stage central
Table 2
Value of the stability coefficient
Value 18-9771 18-578 18-9770 Permissible values
Empty Loaded Empty Loaded Empty Loaded Empty Loaded
Kyc - is the derailment stability
coefficient p = 0.01 1.87 2.98 1.74 2.48 > 3 > 3 Minimum 1.6
Kycn - transverse stability coef-
ficient in curves:
- V = 100 km/h, R = 500 m 2.19 2.79 1.89 > 3 2.1 2.69 Minimum 1.8
- V = 10 km/h, R = 350 m > 3 > 3 > 3 > 3 > 3 > 3 Minimum 1.8
Table 3
Value of the stability coefficient with V = 120 km/h
Bogie Type
Model 18-9771 Model 18-9770 Model 18-578
P = 0.0001 2.3 2.15 2.25
P = 0.001 2.53 2.3 2.54
P = 0.01 2.98 2.48 more than 3
For example, the analysis of the values of the of vertical dynamics coefficient of unsprung bogie frame (Cdu) (Fig. 4, a), the ratio of the side frame force to the atatic axial loading (Hp/Po) on the straight track section at design speed of 120 km/h (Fig. 4, b) and in the curve R = 500 m (Fig. 4, c) shows that the dynamic performance of the open cars with the new bogie is better than on the bogie models 18-578 and 18-9770. This fact confirms that the constant contact bearers improve the running qualities of the freight cars, reducing the load-
ings transmitted from the rolling stock on the railway track.
For clarity the values of the stability coefficient (Cs) according to the results of dynamic tests are shown in Table 2 and 3.
Thus, the obtained results clearly demonstrate not only the opportunity to improve the structural scheme of the freight car bogies, but also the correctness of engineering solutions to improve the designs of freight car bogies.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2014, № 3 (51)
Originality and practical value
Severization of requirements to the technical specifications of the freight cars primarily concerns the running gears [1, 2, 5, 6]. Therefore, the efforts of designers and scientists are focused on improving the parameters of freight car bogies [3, 17, 18]. At this the advanced engineering solutions and innovative design developments are used [20, 21].
The development of freight car bogie on CJSC «Promtractor Vagon» can be an example for creation of innovative technology for railway transport.
When designing the bogie for loading 23.5 t/axle almost all available technical solutions to improve the characteristics of the freight car bogies: elastic bearers, cassette bearing in axle boxes, axle boxe adapter of original design, bilinear central spring suspension, etc. were used.
LIST OF REFERENCE LINKS
1. Вериго, М. Ф. Взаимодействие пути и подвижного состава / М. Ф. Вериго, А. Я. Коган. - М. : Транспорт, 1986. - 560 с.
2. Вершинский, С. В. Динамика вагона / С. В. Вершинский, В. Н. Данилов, В. Д. Хуси-дов. - М. : Транспорт, 1991. - 360 с.
3. Динамика грузовых вагонов с учетом поперечного смещения тележек / Н. И. Луханин, С. В. Мямлин, Л. А. Недужая, А. А. Швец // Зб. наук. праць Дон1ЗТ. - Донецьк, 2012. -Вип. 29. - С. 234-241.
4. Ефимов, В. П. Технический уровень тележки 18-578 в сравнении с тележкой 18-100 /
B. П. Ефимов // Ж.-д. трансп. - 2006. - № 7. -
C. 56-60.
5. Лазарян, В. А. Динамика вагонов / В. А. Лаза-рян. - М. : Транспорт, 1964. - 256 с.
6. Лазарян, В. А. Динамика транспортных средств / В. А. Лазарян. - К. : Наук. думка, 1985. - 528 с.
7. Мямлин, С. В. Теоретические исследования динамики полувагонов / С. В. Мямлин, Л. А. Недужая, А. А. Тен // Зб. наук. пр. Дон1ЗТ. - Донецьк, 2010. - Вип. 24. - С. 143-151.
8. Нормы для расчета и проектирования вагонов железных дорог МПС колеи 1520 мм (несамоходных) (с изменениями и дополнениями № 1 (с 01.02.2000 г.) и № 2 (с 01.03.2002 г.). - М. : ГосНИИВ. - ВНИИЖТ, 1996. - 352 с.
9. Оценка динамических качеств различных конструкций тележек грузовых вагонов / С. В. Мямлин, Л. А. Недужая, Е. А. Письменный, А. И. Яловой // Подвижной состав ХХ1
века: идеи, требования, проекты. - СПб : ПГУПС, 2005. - С. 229-235.
10. Пат. 88627 Российская Федерация, МПК В6№ 3/02. Тележка двухосная грузового вагона / Тен А. А. ; заявитель и патентообладатель ЗАО «Промтрактор-Вагон». - № 2009128488/22 ; за-явл. 22.07.2009 ; опубл. 20.11.2009, Бюл. № 32.
- 3 с: ил. 1.
11. Промтрактор-вагон [Electronic resource]. - Access mode: www.promtractor-vagon.ru. - Title from the screen.
12. РД 24.050.37.95. Вагоны грузовые и пассажирские. Методы испытаний на прочность и ходовые качества. - Введ. 1995-02-02. - М. : ГосНИИВ, 1995. - 102 с.
13. Ромен, Ю. С. Результаты комплексных испытаний новых типов тележек грузовых вагонов / Ю. С. Ромен, А. В. Заверталюк, М. С. Тихов // Подвижной состав ХХ1 века: идеи, требования, проекты. - СПб : ПГУПС, 2009. - С. 108-116.
14. УралВагонЗавод [Electronic resource]. - Access mode: www.uvz.ru. - Title from the screen.
15. Хабырин, И. А. Совершенствовать ходовую часть грузовых вагонов / И. А. Хабырин, А. М. Орлова, А. В. Додонов // Вагоны и вагон. хоз-во. - 2009. - № 2. - С. 26-29.
16. Шадур, Л. А. Вагоны. Конструкция, теория и расчет / Л. А. Шадур. - М. : Транспорт, 1980.
- 440 с.
17. Bubnov, V. M. Dynamic performance of freight cars on bogies model 18-1711 / V. M. Bubnov, S. V. Myamlin, N. V. Mankevych // Наука та прогрес трансп. Вюн. Дншропетр. нац. ун-ту залiзн. трансп. - 2013. - № 4 (46).- С. 118-126.
18. Determination of Dynamic Performance of Freight Cars Taking into Account Technical Condition of Side Bearers / S. Myamlin, L. Neduzha, O. Ten, A. Shvets // Наука та прогрес трансп. Вюн. Дншропетр. нац. ун-ту залiзн. трансп. - 2013. -№ 1 (43). - 2013. - С. 162-169.
19. Myamlin, S. Mathematical Modeling of a Cargo Locomotive / S. Myamlin, S. Dailidka, L. Neduzha // Proc. of 16th Intern. Conf. «Transport Means». - Kaunas, 2012. - Р. 310-312.
20. Research of Friction Indices Influence on the Freight Car Dynamics / S. Myamlin, L. Neduzha, O. Ten, A. Shvets // TEKA Commission of Motorization and Power Industry in Agriculture. -Vol. 13, № 4. - 2013. - P. 159-166.
21. Spatial Vibration of Cargo Cars in Computer Modelling with the Account of Their Inertia Properties / S. Myamlin, A. Ten, L. Neduzha, A. Shvets // Proc. of 15th Intern. Conf. «Mechanika». - Kaunas, 2010. - Р. 325-328.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 3 (51)
РУХОМИЙ СКЛАД ЗАЛВНИЦЬ I ТЯГА ПО1ЗДГВ
С. В. МЯМЛИН1, А. А. ТЕН2, Л. А. НЕДУЖАЯ3*
'Каф. «Вагоны и вагонное хозяйство», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 793 19 03, эл. почта sergeymyamlin@gmail.com, ORCID 0000-0002-7383-9304
2ЗАО «Промтрактор-Вагон», ул. Ильича, 1 а, Канаш, Чувашская Республика, Российская Федерация, 429332 3*Каф. «Строительная механика», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 793 19 03, эл. почта nlorhen@i.ua, ORCID 0000-0002-7038-3006
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ДИНАМИЧЕСКИХ КАЧЕСТВ ГРУЗОВЫХ ВАГОНОВ С ТЕЛЕЖКАМИ РАЗНЫХ КОНСТРУКЦИЙ
Цель. С появлением новых конструкций грузовых вагонов особую важность приобретает задача, связанная с созданием более современных тележек, оценкой их динамических качеств в зависимости от типа и особенностей конструкции, с учетом осевых нагрузок, обеспечения динамических и ходовых качеств, соответствующих условиям по воздействию на путь, устойчивости, величине рамных сил и др. С целью постановки новой продукции на производство и для оценки динамических качеств с использованием различных конструкций тележек в работе необходимо провести ходовые испытания, которые позволят сравнить динамические показатели новой тележки с существующими моделями. Методика. Исследование проводилось методом численного интегрирования и математического моделирования динамической нагруженности грузового вагона с использованием программного комплекса «Dynamics of Rail Vehicles» («DYNRAIL»). Результаты. Приведены результаты исследований динамических характеристик полувагонов на новых и изношенных колесах тележек моделей 18-9771, 18-9770 и 18-578 в графической и табличной формах. Все показатели находятся в пределах нормативных значений и не превосходят максимально допустимых. Научная новизна. При создании тележки для нагрузок 23,5 т/ось использовались практически все имеющиеся технические решения по совершенствованию характеристик тележек грузовых вагонов: упругие скользуны, кассетные подшипники в буксовых узлах, буксовый адаптер оригинальной конструкции, билинейное центральное рессорное подвешивание и т.д. Практическая значимость. В результате выполненных инженерных работ по проектированию и изготовлению усовершенствованных конструкций тележек грузовых вагонов получена новая конструкция, которая не уступает по своим динамическим качествам лучшим аналогам. Выполненный выбор рациональных значений упруго-диссипативных параметров тележки позволяет создать типоразмерный ряд ходовых частей грузовых вагонов для перспективных условий эксплуатации. Полученные результаты имеют практическое значение, что нашло отображение в ряде публикаций авторов в специальных и научно-популярных изданиях.
Ключевые слова: грузовые вагоны; скользуны тележек; скорость движения; прямые и кривые участки пути; динамические показатели
С. В. МЯМЛШ1, О. О. ТЕН2, Л. О. НЕДУЖА3*
*Каф. «Вагони та вагонне господарство», Дшпропетровський нащональний утверситет зал1зничного транспорту имен академжа В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Украша, 49010, тел./факс +38 (056) 793 19 03, ел. пошта sergeymyamlin@gmail.com, ORCID 0000-0002-7383-9304
2ЗАТ «Промтрактор-Вагон», вул. !лтча, 1 а, Чувашська Республжа, Канаш, Росшська Федеращя, 429332 3*Каф. «Будгвельна механжа», Дшпропетровський нащональний утверситет зал1зничного транспорту 1меш академжа В. Лазаряна, вул. Лазаряна, 2, Дтпропетровськ, Украша, 49010, тел./факс +38 (056) 793 19 03, ел. пошта nlorhen@i.ua, ORCID 0000-0002-7038-3006
ЕКСПЕРИМЕНТАЛЬН1 ДОСЛ1ДЖЕННЯ ДИНАМ1ЧНИХ ЯКОСТЕЙ ВАНТАЖНИХ ВАГОН1В 13 В1ЗКАМИ Р1ЗНИХ КОНСТРУКЦ1Й
Мета. З появою нових конструкцш вантажних вагошв особливо важливим е завдання, пов'язане зi ство-ренням бшьш сучасних вiзкiв, оцшкою гх динамiчних якостей у залежносл вщ типу та особливостей конструкций з урахуванням осьових навантажень, забезпечення динамiчних i ходових якостей, що вщповвдають
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2014, № 3 (51)
умовам iз впливу на колш, спйкосп, величин рамних сил та ш. З метою постановки ново! продукци на ви-робництво й для оцшки динамiчних якостей iз використанням рiзних конструкцiй вiзкiв у робот необхвдно провести ходовi випробування, якi дозволять порiвняти динамiчнi показники нового вiзка з iснуючими моделями. Методика. Дослщження проводилось методом чисельного штегрування та математичного моделю-вання динамiчноi завантаженостi вантажного вагону з використанням програмного комплексу «Dynamics of Rail Vehicles» («DYNRAIL»). Результати. Наведено результати дослiджень динамiчних характеристик тв-вагонiв на нових i зношених колесах вiзкiв моделей 18-9771, 18-9770 та 18-578 у графiчнiй i табличнiй формах. Ва показники знаходяться в межах нормативних значень i не перевищують максимально допустимих. Наукова новизна. При створенш вiзка для навантажень 23,5 тМсь використовувалися практично всi наявнi техшчш рiшення з удосконалення характеристик вiзкiв вантажних вагонiв: пружнi ковзуни, касетш пвдшип-ники в буксових вузлах, буксовий адаптер орипнально! конструкцii, бшншне центральне ресорне пiдвiшу-вання i т.д. Практична значимiсть. За результатами виконаних шженерних робiт iз проектування й вигото-влення удосконалених конструкцш вiзкiв вантажних вагонiв отримано нову конструкцш, яка не поступаеть-ся за сво!ми динамiчними якостями кращим аналогам. Виконаний вибiр рацiональних значень пружно-дисипативних параметрiв вiзкiв дозволяе створити типорозмiрний ряд ходових частин вантажних вагошв для перспективних умов експлуатаци. Отриманi результати мають практичну значимiсть, що знайшло вщо-браження в рядi публiкацiй авторiв у спещальних та науково-популярних виданнях.
Ключовi слова: вантажш вагони; ковзуни вiзкiв; швидкiсть руху; прямi та крит дiлянки колii; динамiчнi показники
REFERENCES
1. Verigo M.F., Kogan A.Ya. Vzaimodeystviye puti i podvizhnogo sostava [Railway track and rolling stock interaction]. Moscow, Transport Publ., 1986. 560 p.
2. Vershinskiy S.V., Danilov V.N., Khusidov V.D. Dinamika vagona [Car dynamics]. Moscow, Transport Publ., 1991. 360 p.
3. Lukhanin N.I., Myamlin S.V., Neduzhaya L.A., Shvets A.A. Dinamika gruzovykh vagonov s uchetom pop-erechnogo smeshcheniya telezhek [Freight cars dynamics taking into account transversal displacement of the bogies]. Zbirnyk naukovykh prats Donetskoho instytutu zaliznychnoho transportu [Proc. of the Donetsk Railway Transport Institute], 2012, issue 29, pp. 234-241.
4. Yefimov V.P. Tekhnicheskiy uroven telezhki 18-578 v sravnenii s telezhkoy 18-100 [The technical level of the bogie 18-578 compared to 18-100 bogie]. Zheleznodorozhnyy transport - Railway Transport, 2006, no. 7, pp. 56-60.
5. Lazaryan V.A. Dinamika vagonov [Dynamics of cars]. Moscow, Transport Publ., 1964. 256 p.
6. Lazaryan V.A. Dinamika transportnykh sredstv [Dynamics of vehicles]. Kyiv, Naukova dumka, 1985. 528 p.
7. Myamlin S.V., Neduzhaya L.A., Ten A.A. Teoreticheskiye issledovaniya dinamiki poluvagonov [Theoretical studies of the open car dynamics]. Zbirnyk naukovykh prats Donetskoho instytutu zaliznychnoho transportu [Proc. of the Donetsk Railway Transport Institute], 2010, issue 24, pp. 143-151.
8. Normy dlya rascheta i proyektirovaniya vagonov zheleznykh dorog MPS kolei 1520 mm (nesamokhodnykh) [Standards for calculation and construction of railroads with 1520 mm track cars (non-self-propelled)]. Moscow, GosNIIV-VNIIZhT Publ., 1996. 352 p.
9. Myamlin S.V., Neduzhaya L.A., Pismennyy Ye.A., Yalovoy A.I. Otsenka dinamicheskikh kachestv razlich-nykh konstruktsiy telezhek gruzovykh vagonov [Evaluation of dynamic qualities of different designs of freight car bogies]. Podvizhnoy sostavXXI veka: idei, trebovaniya, proyekty [Rolling stock of XXI century: ideas, requirements, projects], Saint Petersburg, 2005, pp. 229-235.
10. Ten A.A. Telezhka dvukhosnaya gruzovogo vagona [Two-axle bogie of a freight car]. Pat. RF, no. 2009128488/22. 3 p.
11. Promtraktorvagon (Promtractor-Vagon). Available at: www.promtractor-vagon.ru (Accessed 5 February, 2014).
12. RD 24.050.37.5. Vagony gruzovyye i passazhirskiye. Metody ispytaniy na prochnost i khodovyye kachestva [RD 24.050.37.95. Freight and passenger cars. Methods of testing for strength and running characteristics]. Moscow, GosNIIV Publ., 1995. 102 p.
13. Romen Yu.S., Zavertalyuk A.V, Tikhov M.S. Rezultaty kompleksnykh ispytaniy novykh tipov telezhek gruzovykh vagonov [Results of comprehensive tests of new types of freight car bogies]. Podvizhnoy sostav XXI veka: idei, trebovaniya, proyekty [Rolling stock of XXI century: ideas, requirements, projects], Saint Petersburg, PGUPS Publ., 2009, pp. 108-116.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2014, № 3 (51)
14. UralVagonZavod (Ural Vagon Plant). Available at: www.uvz.ru. (Accessed 5 February, 2014).
15. Khabyrin I.A., Orlova A.M., Dodonov A.V. Sovershenstvovat khodovuyu chast gruzovykh vagonov [To improve the running gears of freight cars]. Vagony i vagonnoye khozyaystvo - Cars and rolling stock, 2009, issue 2, pp. 26-29.
16. Shadur L.A. Vagony: Konstruktsiya, teoriya i raschet [Cars: Construction, theory and calculation]. Moscow, Transport Publ., 1980. 440 p.
17. Bubnov V.M., Myamlin S.V., Mankevych N.V. Dynamic performance of freight cars on bogies model 18-1711. Visnyk Dnipropetrovskoho natsionalnoho universitetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2013, issue 4 (46), pp. 118-126.
18. Myamlin S., Neduzha L., Ten O., Shvets A. Determination of Dynamic Performance of Freight Cars Taking Into Account Technical Condition of Side Bearers. Visnyk Dnipropetrovskoho natsionalnoho universitetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2013, issue 1 (43), pp. 162-169.
19. Myamlin, S., Dailidka S., Neduzha L. Mathematical Modeling of a Cargo Locomotive. Proc. of 16th Intern. Conf. «Transport Means»]. Kaunas, 2012, pp. 310-312.
20. Myamlin S., Neduzha L., Ten O., Shvets A. Research of Friction Indices Influence on the Freight Car Dynamics. TEKA Commission of Motorization and Power Industry in Agriculture, vol. 13, no. 4, 2013, pp. 159-166.
21. Myamlin S., Neduzha L., Ten O., Shvets A. Spatial Vibration of Cargo Cars in Computer Modelling with the Account of Their Inertia Properties. Proc. of 15th Intern. Conf. «Mechanika». Kaunas, 2010, pp. 325-328.
Prof. V. L. Horobets, D. Sc. (Tech.); Prof. M. O. Radchenko, D. Sc. (Tech.) recommended this article
to be published
Received: Feb. 20, 2014
Accepted: April 14, 2014