Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2015, № 6 (60)
UDC 629.45 - 048.24
S. V. MYAMLIN1, O. H. REIDEMEISTER2, A. L. PULARIIA3, V. O. KALASHNYK4*
'Dep. «Cars and Cars Facilities», Dnipropetrovsk National University of Railway Transport named after Academician V. Lasaryan, Lasaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 776 84 98, e-mail [email protected], ORCID 0000-0002-7383-9304
2Dep. «Cars and Cars Facilities», Dnipropetrovsk National University of Railway Transport named
after Academician V. Lasaryan, Lasaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 793 19 16,
e-mail [email protected], ORCID 0000-0001-7490-7180
3Dep. «Cars and Cars Facilities», Dnipropetrovsk National University of Railway Transport named
after Academician V. Lasaryan, Lasaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 793 19 16,
e-mail [email protected], ORCID 0000-0003-1144-4179
4*Dep. «Cars and Cars Facilities», Dnipropetrovsk National University of Railway Transport named
after Academician V. Lasaryan, Lasaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 793 19 16,
e-mail [email protected], ORCID 0000-0002-8073-4631
DEVELOPMENT OF RECOMMENDATIONS FOR EXTENDING THE USEFUL LIFE OF PASSENGER CARS
Purpose. The vast majority of passenger car fleet of «Ukrzaliznytsia» have cars with outlasted service life. In this regard there is a need to find methods to justify the extending useful life of passenger cars and to assess the car body frame residual life conformity to the operating load for the next life time. Methodology. The selection of cars enforced technical diagnostics of cars to detect the level of corrosion and mechanical damage. The following steps provided the car body frame strength analysis on the basis of experimental static and impact strength tests, the longitudinal force effect endurance tests as well as assessment and forecasting of conformity of car body operating life for the next period. Findings The car survey before testing showed that the technical condition of sleeper cars (SSC) is better than that of open-type cars (SOC). So, in SSC cars the thinning of the main load-bearing elements due to corrosion does not exceed 10%, there are no cracks, deformations, rack breakages, etc. At the same time in SOC cars the thinning due to local corrosion reached 35%. There are deformations and corrosion damage of side sill Z-shape of both cars, single corner post breakages, damage to the joints of longitudinal tie rod and span bolsters. The conducted static and impact strength tests with following strength assessment of the car structural members showed that the strength of the latter is provided according to the normative documents, and these cars pose no threat to traffic safety. The impact endurance tests showed that all the cars passed the endurance tests without damage, which would prevent from testing and could not be removed during the next depot repair or overhaul, and had life length that allows them to extend the useful life for the next period. Originality. The results of experimental studies show that passenger cars after 28 ... 30 and 33... 35 years of operation meet the requirements of strength and safety in accordance with regulatory documents and allow, provided the impact endurance, reasonable extending of the car service life. Practical value. The part of the car fleet, which was to be written off based on the service life, may extend lifespan without additional measures.
Keywords: passenger car; service life; structural strength; conformity; static test; impact test; life length.
Introduction
Total passenger car fleet of «Ukrzaliznytsia» consists mainly of cars built in the eighties with the designed: normative service life - 28 years and maximum service life - 41 years. The research of passenger car fleet is considered in [1], [5].
The car fleet has about 86% of passenger cars with outlasted service life (over 28 years), about 500 cars with normative service life of 20 years, only 343 of which have the service life of 10 years. During the
period 1991 - end 2013 3 298 passen-ger cars were scraped (written off at the end of service life), 421 cars were to be written off in 2014. Thus, the intensity of passenger car fleet aging is increasing every year.
While the new cars are purchased in small amounts - «Ukrzaliznytsia» in the period 1991 - end 2013 at their own expense purchased 561 passenger cars, as well as 10 nine-car trains and 2 double-decker six-car trains. So every year the deficit of passenger cars is becoming tangible and may reach 2,364 cars in 2017, which is detrimental to the industry.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2015, № 6 (60)
Because of the above objective reasons it became necessary to extend the service life of cars that have exhausted their primary resource. This makes it possible to slow down the growing deficit of passenger cars due to reasonable extension of their service life. The prerequisites of the above said extension are as follows:
- Designed service life was set at substantially excessive strength coefficients;
- Detailed analysis of technical condition of the cars to be written off shows that some cars are scrapped because of the malfunction incompatible with their further safe operation, but many of cars are written off from the inventory park when they reach the normative service life. However, a certain number of the latter still remain in good condition.
The possibility of extending the life of car supporting structures should be grounded by experimental and calculation-theoretical methods that include: inspection of their technical condition; experimental determination of load level and stress state of structural members; numerical calculations based on modern software systems to determine the stress-strain state by simulating the most adverse operating modes; residual life assessment (determination of the extended service life) with the numerical calculations of fatigue damage or by experimental life length testing. In addition, it should be noted that cars require an individual approach to the definition of the next service life (life length). This range of activities must be supported by repair technologies, which go beyond the scope of this study.
Problems of need statement for adjustment of cars useful service life extension in a particular way was considered both in Ukraine [3, 7, 8, 9, 12], and in near [17] and far abroad [18, 19]. The works [7, 9, 12] studied the problems and peculiarities of passenger car technical diagnosis. And the works [3, 8, 17, 18, 19] performed numerical calculations based on the finite-element model with strength assessment by I and III design modes. Further, considering the preliminary results, the calculations of structural memberss fatigue damage were performed to assess the remaining service life. In addition, the work [3] provides calculations for new cars and cars with minimum thickness of members (due to corrosion), as well as calculated significant impact of mechanical or
doi: 10.15802/stp2015/57096
welded damage (undercuts), depending on the size of the latter, on the car service life.
However, only theoretical studies cannot fully take into account all the factors affecting the car during operation and possible deficiencies incorporated in the construction at the stages of design and production. It implies permissible size tolerances, replacement of materials during the manufacture, specific possible mechanical damage during repairs and corrosive damage in operation. Thus, the car physical condition for each batch of individual manufacturer will differ.
Therefore there is a need for implementing relevant tests conducted once every five years according to TSL-0070 [6]. Effectiveness of field tests and their impact on rolling stock traffic safety is proved in [10].
Purpose
In order to determine the feasibility of extending the useful life of passenger cars the car testing laboratory of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan by order of «Ukrzaliznytsia» conducted a set of field tests in 2013. The tests included static strength, impact strength (determining) and impact life length testing of cars.
Methodology
The cars for testing were randomly selected from the operating park, which exhausted the set service life or underwent the required scheduled types of repair. Some cars had damages allowed under [6]. As the sample cars there were selected two SOC cars (steel open-type sleeping cars) after 29 and 33 years of service, and two SSC cars (steel close-type sleeping cars) after 30 and 33 years of service.
Before testing the condition of cars underwent technical diagnosis to detect the level of corrosion and mechanical damage while metering the member thickness. All tests were performed according to the «Standards...» [11] and «Programme and methods ...» [15].
Static strength tests were performed to determine the stresses in car parts caused by structure and passenger weight. Vertical static load on the car body members caused by passenger weight was carried out by the car shed employees,
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2015, № 6 (60)
who were evenly distributed along the train, and that caused by own structure weight was determined as the total stress with the help of the factor that takes into account body weight, water and coal weight, etc. While carrying out the static tests the equipment readings were registered and the loading-unloading cycle repeated provided the sensor indication stability.
The impact strength tests were carried out to assess the stress state of the car structural members affected by the determined longitudinal forces in the range of 0,.5 MN...2.5 MN [11,15]. Herewith the car structural member stress values and impact force values were recorded.
The impact life length tests were performed to calculate the life length of bearing members of car body for impact endurance affected by longitudinal force. Car impact was performed by run-up of a hammer car with the help of locomotive onto a test car, which was located in the head of a retaining wall. The tests were carried out at speeds of 3 km/h to 13 km/h [11,15] with a gradual impact velocity increase by 1.2 km/h. The impacts were carried out by series, corresponding to one year of operation. The condition for the test completion was to obtain the full amount of experimental data or the car bearing structure integrity damage, which would threaten the safety of further testing. The tests determined the impact force and selectively tensions in some structural members (at impact force over 2 MN).
All kinds of tests were carried out on the territory of a car shed. To do this, after the removal of technically diagnosed car body damages, the strain-gage sensors were attached to the cars to determine the stresses, and the serial couplers were replaced with the strain-gage ones to determine the impact force.
According to obtained results of mathematical processing of the recorded processes (structural members tension and impact force) each type of the test determined the following:
- The results of static tests defined the tension in the structural members caused by passenger weight and own body weight;
- The impact strength tests allowed to build the dependency diagrams of impact force - speed (Fig. 1), of car part stresses - impact force (Fig. 2), to define tensions in some body members and to assess the structure stress state by design mode I [11].
doi: 10.15802/stp2015/57096
Findings
State of SSC car bodywork after 30 and 33 years of service differed little and is typical for vehicles operating for 30 ... 33 years. Local thinning of main bearing members (span bolster, cross-bearer and underframe end, except diagonals) due to corrosion did not exceed 10%, there were no cracks, deformations, post breakages and other damages. The largest local corrosion damages were recorded in underframe sill diagonals (about 20%).
State of SOC car bodywork after 29 and 33 years of service is even worse in general, but is typical for this class of vehicles operating for 29.33 years. The span bolster thinning due to local corrosion reached 30% for 29-year service car and 35% for 33-year service car. The largest local corrosion damages in the side sill are recorded in the car after 29 years of service - 33%, the longitudinal tie rod thinning is about the same for both cars - up to 24%. There are deformations and corrosion damage of side sill Z-shape of both cars, single corner post breakages, damage to the joints of longitudinal tie rod and span bolsters.
The above damages can be removed during the scheduled repair in accordance with the instructions of TSL-0026 [4], TSL-0036 [14], TSL-0041 [2] - so all the cars listed above have been taken for testing.
Static and impact strength tests showed:
- Total static stress caused by passenger weight with luggage is insignificant. Herewith the stress in the sleeping car body members did not exceed 10.4 MPa. In the open-type cars the maximum stress was recorded in span bolster (20 MPa), cross-bearer (23.8 MPa) and side sill (30.3 MPa);
- The obtained mathematically processed results of car impact strength tests provided the stress value and dependence in the structural members and the hammer car run-up velocity caused by impact force (Fig. 2).
The diagrams show the strict linear relationship of parameters. This dependency of stress on impact force is peculiar for the structural members of all tested cars:
- The sleeping cars constructed in 1980 and 1983 take the impact load with the draft sill (105 MPa) and the span bolster (118 MPa), as well as the side wall panel bottom (230 MPa). Other
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2015, № 6 (60)
members of the body have much lower impact stress. The largest total stress in the structural members is marked in the draft sill (130 MPa), span bolster (152 MPa), side sill (208 MPa) and cross-bearer (158 MPa). In general, the total stress does not exceed the allowable value that for 09G2-grade steel of 295 strength class is 305 MPa. The sstressed state of the sleeping car bodies after 30 and 33 years of service has no significant differences;
Fig. 1. Dependency diagram of impact
force (vertical, in MPa) on hammer car run-up velocity (horizontal, in km/h).
(156 MPa). It should be noted that the stress level in some parts of the car built in 1984 is by 20% lower than that of the car built in 1980. In general, total stress of both cars does not exceed the allowable values.
As a result of impact endurance tests the entire range of longitudinal forces was distributed at intervals followed by calculation of impact endurance intervals, and then by total life length for each car. Fig. 3 shows an example of impact distribution in each force range (MN) for sleeping cars.
The figure shows the lighter tone for the number of efforts received by the car in the wall, the dark one - as a hammer. The largest impact number, 202, is recorded in the operating load range (0.5 ... 1.5 MN). In total each car received 257 impacts from 0.5 to 2.94 MN.
Fig. 2. Dependency of span bolster stress (MPa) on impact force (MN)
- The open-type cars constructed in 1980 and 1984 take the impact load with longitudinal tie rod (187 MPa), span bolster (164 MPa) and side wall sill (228 MPa). Other structural members have much lower impact stress. The largest total stress in the structural members is marked in the longitudinal tie rod (127 MPa), span bolster (164 MPa), cross-bearer (214 MPa) and side sill
Fig. 3. Number of impacts (vertical) in the force range (horizontal, MN)
The impact endurance tests showed:
- Sleeping cars were not damaged during the
test
- Open-type cars constructed in 1980 and 1984 after the tests had damages common to both cars: deformation of side sill Z-shape (Fig. 4), cracks and breakages of the corner posts from side sill, cracks in span bolster bottom sheet welds. Besides the car built in 1980 got a crack in the joint of longitudinal tie rod and span bolster (Fig. 5);
- All cars passed the endurance tests without damage which would prevent from testing and could not be removed during the next depot repair or overhaul;
- All cars have life length that allows them to extend the useful life for the next 5 years.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2015, № 6 (60)
Fig. 4. Deformation of side sill at 2500 mm length of non-boiler side, bend 20 mm
Fig. 5. The crack on the welding seam at the joint of the lower sheet of span bolster with the longitudinal tie rod
The results of experimental tests are correlated well with the results of theoretical studies [3]. In both cases, the sleeping car design has a larger strength margin than that of the open-type car.
Originality and practical value
The results of experimental static and impact endurance tests prove that passenger cars after 28 ... 30 and 33. 35 years of operation meet the requirements of regulatory documents relating to strength and safety of operation. The conducted life length tests have shown that provided the impact endurance the car service life can be extended for the next 5 years. The results can be used to extend the service life of above mentioned cars. The conducted research allowed justifying the possibility to continue the operation of passenger cars without additional measures after 28.30 and 33.35 years of service in the amount of 1,766 units.
Conclusions
The conducted studies determined that the passenger sleeping cars and open-type cars constructed before the year 1989 with specific corrosion damage level have the life length sufficient for their subsequent operation over the next 5 years. After the term exhaustion it is recommended to carry out the life length tests for assessment of the remaining life, which will depend on general and operation conditions of the cars.
In relation to open-type cars after 28 years of operation, when conducting the scheduled repairs, special attention should be paid to the state of side sill and corner posts. In case of suspected breakage in corner posts and side sill (visual subsidence of side wall) it is necessary to conduct a survey with removed outer skin and appropriate repairs. And in case of OR-1 these measures are mandatory.
LIST OF REFERENCE LINKS
1. Божок, Н. О. Дослвдження сучасного стану паса-жирських вагошв / Н. О. Божок, Ю. В. Булгакова,
A. Л. Пуларш // Проблеми економжи транспорту : зб. наук. пр. Дншропетр. нац. ун-ту затзн. трансп. iM. акад. В. Лазаряна. - Дтпропетровськ, 2014. - Вип. 8. - С. 78-87.
2. Вагони пасажирсьш сушльнометалевг Правила капитального ремонту (КР-1) : ЦЛ-0041. - Кшв : Пол^афсервю, 2004. - 24 с.
3. Дослвдження граничного стану пасажирських вагошв / О. А. Шикунов, О. Г. Рейдемейстер,
B. Г. Анофрieв [та т.] // Вагонный парк. -2012. - № 12. - С. 4-6
4. 1нструкщя по зварюванню та наплавленню при ремонт пасажирських вагошв : ЦЛ-0026. -Кшв : Полирафсервю, 2001. - 411 с.
5. Лобойко, Л. М. Стан вагонного парку та ва-гоноремонтно! бази в Укрш'ш / Л. М. Лобойко, Ю. С. Бараш // Вюн. Дншропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. -Дтпропетровськ, 2007. - Вип. 18. - С. 126-132.
6. Методика техшчного дiагностування пасажирських вагошв, що вислужили призначений термш, з метою його продовження : ЦЛ-0070. - Кшв : Несшнчене джерело, 2008. - 60 с.
7. Мямлин, С. В. Диагностирование подвижного состава с целью продления срока службы /
C. В. Мямлин, В. Г. Анофриев, А. Л. Пулария // Проблемы и перспективы развития ж.-д. трансп. : тез. LXYI Междунар. науч.-практ. конф. (11.05-12.05 2006) / Днепропетр. нац.
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету зашзничного транспорту, 2015, № 6 (60)
ун-т ж.-д. трансп. им. акад. В. Лазаряна. -Днепропетровск, 2006. - С. 108-109.
8. Мямлин, С. В. Научные методы оценки ресурса несущих конструкций подвижного состава / С. В. Мямлин, В. Л. Горобец // Вюн. серти-фжацп залiзн. трансп. - Дшпропетровськ, 2011. - № 8. - С. 12-17.
9. Мямлин, С. В. Проблемы технического диагностирования пассажирских вагонов / С. В. Мямлин, А. Л. Пулария // Розвиток науково! школи трансп. мехашки : тези доп. М1жнар. наук.-техн. конф. / Дншропетр. нац. ун-т залзн. трансп. iм. акад. В. Лазаряна. - Дншропетровск, 2013. -С. 65-67.
10. Натурные испытания подвижного состава -гарантия безопасности движения поездов / Е. П. Блохин, А. Н. Пшинько, М. Л. Коротенко, С. В. Мямлин // Безопасность движения поездов : тр. 11й науч.-практ. конф. (21.10.22.10.2010). - Москва, 2010. - С. 1-2.
11. Нормы для расчета и проектирования вагонов железных дорог МПС колеи 1 520 мм (несамоходных). - Москва : ГосНИИВ ; ВНИИЖТ, 1996. - 354 с.
12. Особенности технического диагностирования подвижного состава / С. В. Мямлин, В. Г. Анофриев, А. Л. Пулария [и др.] // Сучасш про-блеми та ефективш шляхи ремонту i ввд-новлення залiзн. рухомого складу : пр. 1 М1ж-нар. наук. конф. / ДП «ПВ1ТБ «Кшвдшпро-транс». - Ки!в, 2006. - С. 16-17.
13. Правила виключення пасажирських вагонiв iз швентарного парку : ЦЛ-0069. - Ки!в : Неск1н-чене джерело, 2008. - 40 с.
14. Правила деповського ремонту (ДР). Вагони пасажирськi суцiльнометалевi : ЦЛ-0036. -Ки1в : Полпрафсервк, 2003 - 20 с.
15. Программа i методика проведення ударних ре-сурсних випробувань пасажирських вагошв, що вислужили призначений термт служби : узгодж. ЦЛ, ЦРБ, ЦТех Укрзалiзницi та УкрНДГВ : ПМ 01-13/ВЛВ. - Днiпропетровськ, 2013. - 16 с.
16. РД 24.050.37-95. Вагоны грузовые и пассажирские. Методы испытаний на прочность и ходовые качества. - Москва : ВНИИЖТ, 1995. -101 с.
17. Третьяков, А. В. Техническое диагностирование и установление ресурса срока службы пассажирских вагонов / А. В. Третьяков, Д. А. Характеров // Подв. состав XXI веках: идеи, треб-я, проекты : тез. конф. / Петерб. гос. ун-т путей сообщения. - Санкт-Петербург, 1997. - С. 1-2.
18. Numerical static and dynamic stress analysis on railway passenger and freight car models / C. Baykasoglu, E. Sunbuloglu , S. E. Bozdag [et al.] // Intern. Iron & Steel Symposium (02.0404.04.2012) / Karabuk University. - Istanbul, 2012. - P. 579-586.
19. Railway passenger car collision analysis and modifications for improved crashworthiness / C. Baykasoglu, E. Sunbuloglu, E. Bozdag [et al.] // Intern. J. of Crashworthiness. - London, 2011. -Vol. 16. - Iss. 3. - P. 319-329. doi: 10.1080/13588265.2011.566475.
С. В. МЯМЛИН1, А. Г. РЕЙДЕМЕЙСТЕР2, А. Л. ПУЛАРИЯ3, В. А. КАЛАШНИК4*
'Каф. «Вагоны и вагонное хозяйство», Днепропетровский национальний университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел. +38 (056) 776 84 98, эл. почта [email protected], ОЯСГО 0000-0002-7383-9304
2Каф. «Вагоны и вагонное хозяйство», Днепропетровский национальний университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 793 19 16, эл. почта [email protected], ОЯСГО 0000-0001-7490-7180 3Каф. «Вагоны и вагонное хозяйство», Днепропетровский национальний университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 793 19 16, эл. почта [email protected], ОЯСГО 0000-0003-1144-4179 4*Каф. «Вагоны и вагонное хозяйство», Днепропетровский национальний университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 793 19 16, эл. почта ку47@гш, ОЯСГО 0000-0002-8073-4631
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету зашзничного транспорту, 2015, № 6 (60)
РАЗРАБОТКА РЕКОМЕНДАЦИЙ ПО ПРОДЛЕНИЮ СРОКА ПОЛЕЗНОЙ ЭКСПЛУАТАЦИИ ПАССАЖИРСКИХ ВАГОНОВ
Цель. Пассажирский вагонный парк Укрзализницы в подавляющем большинстве имеет вагоны со сверхнормированным сроком службы. В связи с этим возникает необходимость поиска методов обоснования продолжения полезной эксплуатации пассажирских вагонов и оценки соответствия остаточного ресурса конструкции кузовов вагонов эксплуатационным нагрузкам в течение следующего срока использования. Методика. При отборе вагонов выполнялось техническое диагностирование их состояния с целью выявления уровня коррозионных и механических повреждений. На следующих этапах выполнялось исследование прочности несущих конструкций кузовов вагонов на основе экспериментальных статических и ударных испытаний на прочность, ресурсных испытаний на действие продольных сил. Выполнялась оценка и прогнозирование соответствия ресурса кузовов вагонов на следующий период. Результаты. Обследования вагонов до испытаний показало, что техническое состояние купейных вагонов ЦМК лучше, чем вагонов открытого типа ЦМО. Так, в вагонах ЦМК уменьшение толщины основных несущих элементов вследствие коррозии не превышало 10 %, отсутствовали трещины, деформации, обрывы стоек и прочее. В то же время в вагонах ЦМО уменьшение толщины вследствие локальной коррозии достигало 35 %. Имеются деформации и коррозионные повреждения Ъ и нижней обвязки обоих вагонов, единичные обрывы стоек, повреждения мест соединения хребтовой и шкворневой балок. Проведенные статические и ударные испытания с последующей оценкой прочности элементов конструкции вагонов показали, что прочность последних обеспечивается согласно нормативных документов и такие вагоны не несут угрозы безопасности движения. Ударные ресурсные испытания показали, что все вагоны прошли их без повреждений. Данные повреждения могли бы препятствовать проведению испытаний и не могли быть устранены при проведении очередного деповского или капитального ремонта и имели наработки на ресурс, которые позволяют продлить срок их полезной эксплуатации на следующий период. Научная новизна. Результаты проведенных экспериментальных исследований доказывают, что пассажирские вагоны после 28.30 и 33.35 лет эксплуатации отвечают условиям прочности и безопасности движения в соответствии с нормативной документацией и позволяют при условиях ударной выносливости обоснованно продлевать срок службы вагонов. Практическая значимость. Часть вагонного парка, которая должна списываться по сроку эксплуатации, без дополнительных мероприятий может продолжить свой срок службы благодаря разработанным рекомендациям.
Ключевые слова: пассажирский вагон; срок эксплуатации; прочность конструкции; соответствие; статические испытания; ударные испытания; наработка на ресурс
С. В. МЯМЛИ1, О. Г. РЕЙДЕМЕЙСТЕР2, А. Л. ПУЛАР1Я3, В. О. КАЛАШНИК4*
1Каф. «Вагони i вагонне господарство», Днтропетровський нацюнальний ушверситет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Днтропетровськ, Украша, 49010, тел. +38 (056) 776 84 98, ел. пошта 8е^еу [email protected], ОЯСГО 0000-0002-7383-9304
2Каф. «Вагони i вагонне господарство», Днтропетровський нацюнальний утверситет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Днтропетровськ, Украша, 49010, тел./факс +38 (056) 793 19 16, ел. пошта [email protected], ОЯСГО 0000-0001-7490-7180
3Каф. «Вагони i вагонне господарство», Днтропетровський нацюнальний ун^рснтет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Днтропетровськ, Украша, 49010, тел./факс +38 (056) ) 793 19 16, ел. пошта [email protected], ОЯСГО 0000-0003-1144-4179
4*Каф. «Вагони i вагонне господарство», Днтропетровський нацюнальний унiверситет затзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Днтропетровськ, Украша, 49010, тел./факс +38 (056) 793 19 16, ел. пошта ку47@гш, ОЯСГО 0000-0002-8073-4631
РОЗРОБКА РЕКОМЕНДАЦ1Й 13 ПРОДОВЖЕННЯ ТЕРМ1НУ КОРИСНО1 ЕКСПЛУАТАЦП ПАСАЖИРСЬКИХ ВАГОН1В
Мета. Пасажирський вагонний парк Укрзалiзницi в переважнш бшьшосл мае вагони з понаднормова-ним термшом служби. У зв'язку з цим виникае необхвдшсть пошуку методiв обгрунтування продовження корисно! експлуатацп пасажирських вагошв та оцшки вщповвдносп залишкового ресурсу конструкци кузовiв вагошв експлуатацшним навантаженням протягом наступного термiну використання. Методика.
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету зашзничного транспорту, 2015, № 6 (60)
При вiдборi вагошв виконувалось техшчне дiагностування !х стану з метою виявлення рiвня корозiйних та механiчних пошкоджень. На наступних етапах виконувалось дослвдження мiцностi несучих конструкцiй кузовiв вагошв на шдстаы експериментальних статичних та ударних на мщшсть випробувань, ресурсних випробувань на дш поздовжнiх сил. Виконувалась оцiнка та прогнозування вщповвдносп ресурсу кузовiв вагонiв на наступний перюд. Результати. Обстеження вагонiв до випробувань показало, що технiчний стан купейних вагонiв ЦМК кращий, шж вагонiв вiдкритого типу ЦМО. Так, у вагонах ЦМК зменшення товщини основних несучих елементiв внаслiдок корози не перевищувало 10 %, були ввдсутш трiщини, деформацп, обриви стшок та iнше. В той же час у вагонах ЦМО зменшення товщини внаслщок локально! корози досягало 35 %. Наявш деформацп та корозшш пошкодження Z нижньо! обв'язки обох вагонiв, поодинок1 обриви стшок, пошкодження мюць з'еднання хребтово! i шкворнево! балок. Проведенi статичнi та ударш на мiцнiсть випробування iз подальшою оцiнкою мiцностi елементiв конструкцп вагонiв показали, що мiцнiсть останшх забезпечуеться згiдно нормативних документiв та таю вагони не несуть загрози безпецi руху. Ударнi ресурснi випробування показали, що ва вагони пройшли !х без ушкоджень. Цi ушкодження могли б перешкоджати проведенню випробувань i не могли бути усунеш при проведеннi чергового деповського або капитального ремонту та мали напрацювання на ресурс, яке дозволяе продовжити термiн !х корисно! експлуатацп на наступний перюд. Наукова новизна. Результати проведених експериментальних дослiджень доводять, що пасажирсьш вагони пiсля 28...30 та 33...35 рошв експлуатацп вiдповiдають умо-вам мiцностi та безпеки руху зпдно з нормативною документацiею та дозволяють за умов ударно! витривалосл обгрунтовано продовжувати термiн служби вагошв. Практична значимкть. Частина вагонного парку, яка повинна списуватися за термшом експлуатацп, без додаткових заходiв може продовжити термiн служби завдяки розробленим рекомендацiям.
Ключовi слова: пасажирський вагон; термiн експлуатацi!; мiцнiсть конструкцп; ввдповщшсть; статичнi випробування; ударнi випробування; напрацювання на ресурс
REFERENCES
1. Bozhok N.O., Bulhakova Yu.V., Pulariia A.L. Doslidzhennia suchasnoho stanu pasazhyrskykh vahony. [Research of contemporary state of passenger cars]. Zbirnyk naukovykh prats Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu im. akademika Lazariana. Problemy ekonomiky transportu [Proc. of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. Problems of transport economy], 2014, issue 8, pp. 78-87.
2. Vahony pasazhyrski sutsilnometalevi. Pravyla kapitalnoho remontu (KR-: TsL-0041 [The all-metal passenger cars. The rules of overhaul (KR-1): TsL-0041]. Kyiv, Polihrafservis Publ., 2004. 24 p.
3. Shykunov O.A., Reidemeister O.H., Anofriiev V.H. Doslidzhennia hranychnoho stanu pasazhyrskykh vahoniv [Study of ultimate limit state passenger cars]. Vagonnyy park - Car Fleet, 2012, no. 12, pp. 4-6
4. Instruktsiia po zvariuvanniu ta naplavlenniu pry remonti pasazhyrskykh vahoniv: TsL-0026 [Instructions for welding and weld repair of passenger cars: TsL-0026]. Kyiv, Polihrafservis Publ., 2001. 411 p.
5. Loboiko L.M., Barash Yu.S. Stan vahonnoho parku ta vahonoremontnoi bazy v Ukraini [The condition of rolling stock and repair base in Ukraine]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2007, issue 18, pp. 126-132.
6. Metodyka tekhnichnoho diahnostuvannia pasazhyrskykh vahoniv, shcho vysluzhyly pryznachenyi termin, z metoiu yoho prodovzhennia: TsL-0070 [The procedure of technical diagnostics of passenger cars, that had expired the appointed time, with a view to its continuation: TsL-0070.]. Kyiv, Neskinchenne dzherelo Publ., 2008. 60 p.
7. Myamlin S.V., Anofriev V.G., Pulariya A.L. Diagnostirovaniye podvizhnogo sostava s tselyu prodleniya sroka sluzhby [Diagnosing of rolling stock for the purpose of extending the services time]. Tezisy LXYI Mezhdunarodnoy nauchno-prakticheskoy konferentsii. «Problemy i perspektivy razvitiya zheleznodorozhnogo transporta (11.05-12.05 2006)» [Proc. of the LXYI Intern. Sci. and Practical Conf. «Problems and prospects of railway transport development (11.05-12.05 2006)»], 2006, pp. 108-109.
8. Myamlin S.V., Gorobets V.L. Nauchnyye metody otsenki resursa nesushchikh konstruktsiy podvizhnogo sostava [Scientific methods of resource assessment of load-bearing structures of the rolling stock]. Visnyk ser-tyfikatsii zaliznychnoho transport [Bulletin of the Certification of Railway Transport], 2011, no. 8, pp. 12-17.
9. Myamlin S.V., Pulariya A.L. Problemy tekhnicheskogo diagnostirovaniya passazhirskikh vagonov [Problems of technical diagnostics of passenger cars]. Tezy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii.
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету зашзничного транспорту, 2015, № 6 (60)
«Rozvytok naukovoi shkoly transportnoi mekhaniky» [Proc. of the Intern. Sci. and Technical Conf. «The development of the scientific school of transport mechanics»], 2013, pp. 65-67.
10. Blokhin Ye.P., Pshinko A.N., Korotenko M.L., Myamlin S.V. Naturnyye ispytaniya podvizhnogo sostava -garantiya bezopasnosti dvizheniya poyezdov [Full-scale tests of rolling stock - the safe movement of trains]. Trudy 11y nauchno-prakticheskoy konferentsii «Bezopasnost dvizheniya poyezdov (21.10.-22.10.2010)» [Proc. of the 11th Sci. and Practical Conf. «The safety of train movement (21.10.-22.10.2010)»]. Moscow, 2010, pp. 1-2.
11. Normy dlya rascheta i proyektirovaniya vagonov zheleznykh dorog MPS kolei 1520 mm (nesamokhodnykh) [Norms for calculation and design of cars of Ministry of Railways of 1520 mm track (dumb)]. Moscow, Gos-NIIV, VNIIZhT Publ., 1996. 354 p.
12. Myamlin S.V., Anofriev V.G., Pulariya A.L. Osobennosti tekhnicheskogo diagnostirovaniya podvizhnogo sostava [Features of technical diagnostics of rolling stock]. Pratsi 1 Mizhnarodnoi naukovoi konferentsii. «Suchasni problemy ta efektyvni shliakhy remontu i vidnovlennia zaliznychnoho rukhomoho skladu « [Proc. of the 1st Intern. Sci. Conf. «Contemporary issues and effective ways of repair and restoration of railway rolling stock»]. Kyiv, 2006, pp. 16-17.
13. Pravyla vykliuchennia pasazhyrskykh vahoniv iz inventarnoho parku : TsL-0069 [The rules of exclude the passenger cars from the inventory Park : TsL-0069]. Kyiv, Neskinchenne dzherelo Publ., 2008. 40 p.
14. Pravyla depovskoho remontu (DR). Vahonypasazhyrski sutsilnometalevi: TsL-0036 [Rules depot repair (DR). The all-metal passenger cars: TsL-0036]. Kyiv, Poligrafservis Publ., 2003. 20 p.
15. Prohrama i metodyka provedennia udarnykh resursnykh vyprobuvan pasazhyrskykh vahoniv, shcho vysluzhyly pryznachenyi termin sluzhby [Program and methodology for impact endurance testing of passenger cars, which had expired specified lifetime]. Dnipropetrovsk, 2013. 16 p.
16. RD 24.050.37-95. Vagony gruzovyye i passazhirskiye. Metody ispytaniy na prochnost i khodovyye kachestva [RD 24.050.37-95. Freight and passenger cars. Test methods for durability and performance]. Moscow, VNIIZhT Publ., 1995. 101 p.
17. Tretyakov A. V., Kharakterov D. A. Tekhnicheskoye diagnostirovaniye i ustanovleniye resursa sroka sluzhby passazhirskikh vagonov [Technical diagnostics and the establishment of resource of passenger cars life]. Tezisy konferentsii: «Podvizhnoy sostav XXI veka: idei, trebovaniya, proekty» [Proc. of the Conf. «Rolling stock of XXIst century: ideas, requirements, projects»]. Saint-Petersburg, 1997, pp. 1-2.
18. Baykasoglu C., Sunbuloglu E., Bozdag S.E. Numerical static and dynamic stress analysis on railway passenger and freight car models. Intern. Iron & Steel Symposium (02.04-04.04.2012). Istanbul, 2012, pp. 579-586.
19. Baykasoglu C., Sunbuloglu E., Bozdag E., Aruk F., Toprak T., Mugan A. Railway passenger car collision analysis and modifications for improved crashworthiness. Intern. Journal of Crashworthiness. London, 2011. vol. 16, issue 3, pp. 319-329. doi: 10.1080/13588265.2011.566475.
Prof. V. L. Horobets, Senior Scientific Researcher (Ukraine); F. V. Mamedov, Deputy Director of Passenger
Transportations (Ukraine) recommended this article to be published
Accessed: Sept. 14, 2015
Received: Nov. 13, 2015