Научная статья на тему 'CHEMICAL COMPOSITION AND PHARMACOLOGICAL ACTIVITY OF PLANTS OF THE HYPERICUM L. GENUS'

CHEMICAL COMPOSITION AND PHARMACOLOGICAL ACTIVITY OF PLANTS OF THE HYPERICUM L. GENUS Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
141
42
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
SPECTROSCOPY / FLAVONOIDS / HYPERICUM

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Jahangirova I., Zulfugarova M., Hajiyeva E., Karimova Z.

The purpose of this work was to present the results of summarizing the literature data on the chemical composition and pharmacological activity of the Hypericum L. genus. The chemical composition of St. John’s wort (Hyperici herba) has been studied quite fully within the Eurasian area of the species; more than 80 components have been identified. The main biologically active compounds of raw materials are anthracene derivatives (hypericin), flavonoids (rutin, quercetin, hyperozoid), phenylpropanoids (chlorogenic acid) and hyperforin. The review article presents physical constants and spectroscopic ((-NMR) proton magnetic resonance, (13C NMR) 13C nuclear magnetic resonance, (-UV) ultraviolet, (-IR) infrared) interpretations of biologically active substances obtained from secondary metabolites from species belonging to genus. The results of pharmacognostic and pharmacological studies determine the feasibility of clinical trials of St. John’s wort raw materials drugs and their use in a wide therapeutic range in the complex treatment of diseases. Herba St. John’s wort is a promising source of raw materials for obtaining antibacterial, antiviral, anti-inflammatory, astringent, diuretic, antidepressant, antioxidant, anticarcinogenic, immunotropic and adaptogenic agents.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CHEMICAL COMPOSITION AND PHARMACOLOGICAL ACTIVITY OF PLANTS OF THE HYPERICUM L. GENUS»

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

UDC 581.9 (470.61) https://doi.org/10.33619/2414-2948/86/08

AGRIS F60

CHEMICAL COMPOSITION AND PHARMACOLOGICAL ACTIVITY OF PLANTS

OF THE Hypericum L. GENUS

©Jahangirova I., Azerbaijan Medical University, Baku, Azerbaijan ©Zulfugarova M., Azerbaijan Medical University, Baku, Azerbaijan ©Hajiyeva E., Azerbaijan Medical University, Baku, Azerbaijan ©Karimova Z., Azerbaijan Medical University, Baku, Azerbaijan

ХИМИЧЕСКИЙ СОСТАВ И ФАРМАКОЛОГИЧЕСКАЯ АКТИВНОСТЬ РАСТЕНИЙ

РОДА Hypericum L.

©Джахангирова И. Р., Азербайджанский медицинский университет,

г. Баку, Азербайджан ©Зульфугарова М. Б., Азербайджанский медицинский университет,

г. Баку, Азербайджан ©Гаджиева Э. М., Азербайджанский медицинский университет,

г. Баку, Азербайджан ©Каримова З. К., Азербайджанский медицинский университет,

г. Баку, Азербайджан

Abstract. The purpose of this work was to present the results of summarizing the literature data on the chemical composition and pharmacological activity of the Hypericum L. genus. The chemical composition of St. John's wort (Hyperici herba) has been studied quite fully within the Eurasian area of the species; more than 80 components have been identified. The main biologically active compounds of raw materials are anthracene derivatives (hypericin), flavonoids (rutin, quercetin, hyperozoid), phenylpropanoids (chlorogenic acid) and hyperforin. The review article presents physical constants and spectroscopic ((-NMR) proton magnetic resonance, (13C NMR) 13C nuclear magnetic resonance, (-UV) ultraviolet, (-IR) infrared) interpretations of biologically active substances obtained from secondary metabolites from species belonging to genus. The results of pharmacognostic and pharmacological studies determine the feasibility of clinical trials of St. John's wort raw materials drugs and their use in a wide therapeutic range in the complex treatment of diseases. Herba St. John's wort is a promising source of raw materials for obtaining antibacterial, antiviral, anti-inflammatory, astringent, diuretic, antidepressant, antioxidant, anticarcinogenic, immunotropic and adaptogenic agents.

Аннотация. Целью настоящей работы явилось изложение результатов обобщения литературных сведений о химическом составе и фармакологической активности представителей рода Hypericum L. Химический состав зверобоя травы (Hyperici herba) изучен достаточно полно в пределах евроазиатского ареала видов, выделено более 80 компонентов. Основными биологически активными соединениями сырья являются антраценпроизводные (гиперицин), флавоноиды (рутин, кверцетин, гиперозоид), фенилпропаноиды (хлорогеновая кислота) и гиперфорин. Приведены физические константы и спектроскопические ((-ПМР) протон магнитный резонанс, (13С ЯМР) 13С ядерный магнитный резонанс, (-УФ) ультрафиолетовый, (-ИК) инфракрасный) интерпретации биологически активных веществ, полученных из вторичных метаболитов, от видов, принадлежащих к роду. Результаты

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

фармакогностических и фармакологических исследований обусловливают целесообразность клинических испытаний препаратов зверобоя и их использования в большом терапевтическом диапазоне при комплексном лечении заболеваний. Трава зверобоя является перспективным источником сырья для получения антибактериальных, антивирусных, противовоспалительных, вяжущих, диуретических, антидепрессивных, антиоксидантных, антиканцерогенных, иммунотропных и адаптогенных средств.

Keywords: spectroscopy, flavonoids, Hypericum.

Ключевые слова: спектроскопия, активные вещества, флавоноиды, зверобой.

Of the 200 species distributed in the temperate subtropical and mountainous regions of tropical countries, especially in the Mediterranean, there are 27 species in the Caucasus, 13-15 species in Azerbaijan.

The following species are distributed in Azerbaijan: 1. Hypericum androsaemum L. 2. H. asperuloides Czern. & Turcz. 3. H. atropatanum Rzazade. 4. H. formosissimum Takht. 5. H. scabrum L. 6. H. hirsutum L. 7. H. antasiaticum Grossh. 8. H. lydium Boiss. 9. H. karjaginii Rzazade. 10. H. polygonifolium Rupr. 11. H. theodorii Woronow 12. H. acutum Moench. 13. H. elegans Steph. 14. H. venustum Fenzl.

Sepals and petals 5, petals twisted into inflorescences. Stamens numerous in 3 or 5 bundles, fused at the base of the filaments. The ovary is usually not completely 3-5-locular, with numerous ovules, rarely the ovary is unilocular; columns 3-5, free or fused at the base; stigmas are capitate. The flowers are yellow, numerous, in semi-umbels, paniculate or corymbose inflorescences, sometimes the flowers are solitary at the end of the stem. The fruit is a leathery capsule that cracks on the nest when ripe, rarely a single-celled or berry-like capsule. Seeds numerous, small, varied. Herbs, less often shrubs or semi-shrubs, usually with opposite sessile or short petioles with entire leaves, often with black dotted glands. [30].

The purpose of the study is to summarize information about the chemical composition, pharmacotherapeutic effect of biologically active compounds of the herb St. John's wort, genus Hypericum L. [30].

The composition of the species belonging to the genus is chemically rich. Species belonging to the genus contain flavonoids, anthracene derivatives, essential oils, polyphenolic compounds, etc. from secondary metabolites [4, 13, 40]. Species composition of Hypericum coadunatum, H. perforatum, H. maculatum, H. hirsutum, H. tetrapterum by high performance liquid chromatography, NMR nuclear magnetic resonance, (-UV) ultraviolet, (IR) infrared and mass spectroscopic analysis of a number of biologically active compounds: obtained mangiferin, avicularin, kaempferol glycoside, kaempferol rutinoside, hypercin, pseudohypercin, catechin, epicatechin, cinnamon, chlorogen, neochlorogen, vanillic acid, quercetin, rutin, bisapigenin, diquercetin, hyperoside, as well as hyperforin, P-sitosterol, estrogen, etc. [28, 36, 49]. From the species of St. John's wort H. empetrifolium, H. sinaicum, identified: dianthrone anthracene derivatives were hypercin, protohypercin, pseudohypercin, protopseudohypercin, cyclopseudohypercin, as well as hyperforin, adhyperforin [18, 27, 40].

The following shows some of these compounds physicochemical constants, structures, spectroscopic (UV) ultraviolet, IR-infrared, 1H-NMR proton magnetic resonance, mass spectroscopic interpretations.

1. 3,8"-bisapigenin

C30H18O10, m.p = 233-235°C

M+ 302 (100%) (UV-spectrum: (ethanol) W =270, 330 nm) 1H NMR spectrum: deuteriumacetone (acetone-d6 (5 ppm.): 13.15 (s, 5-OH), (12.99 s, 5''-OH), 7,71 (d, J=9 Hz, 2H, H-2', 6'), 7,51 (d, J=9 Hz, 2H, H-2''', 6'''), 6,90 (d, J=9 Hz, 2H, H-3', 5') 7,79 (d, J=9 Hz, 2H, H-3''', 5'''), 6,61 ( s, H-3''), 6,60 (d, 2, 5 Hz, 3,8" -H-6), 6,34 (s. H-6'') [4, 13, 28, 49].

6

2. quercetin

C15H10O7, m.p= 312-314 °C, UV-spectrum: (ethanol) Xmax =257, 268, 372 nm) PMR deuteriumacetone (acetone-d6 (5 ppm.): 12,20 (s, 5-OH), 7,83 (d, J= 9 Hz, H-2'), 7,70 (dd, J1=2, J2=9 Hz), 6,99 (d, J= 9 Hz, H-5'), 6,53 (d, J=25 Hz, H-6) [4, 13, 28, 49].

3. Hyperozide

C27H30H16, m.p. = 233-235 °C, (aque:acetone), UV-spectrum: ((ethanol) W =258, 266, 362 nm), PMR deuteriumacetone va deuteriumwater) mixture (2:1), (5 ppm.): 2.30 (s, 5-OH), 7,92 (d, J=2,5 Hz, H-2'), 7,55 (d.d, Ji=2,5, J= 9 Hz, H-6'), 6,88 ( d, J= 9 Hz, H-5'), 6,45 (d, J= 2,5 Hz, H-8), 6,21 (d, J= 2,5 Hz, H-6), 5,20 (d, J= 7,5 Hs, H-1'' galactosa), 3,5-3,6 m, 6 H, galactosa) [4, 13, 28, 49].

4. Rutin

C27H30O16, m.p. = 192-194 °C, (water -alcohol), UV-spectrum: (ethanol)) W =258, 266, 362 nm), 1H NMR-spectrum: deuterium acetone and deuterium water mixture (2:1), (5 ppm.): 7,74 (d, J=9 Hz, H-2'), 7,68 (dd, J1=2,5 J2= 9 Hz, H-6'), 6,94 (d, J=9 Hz, H-5', 6,50 (d, J= 2,5 Hz, H-8), 6,27 (d, J=2,5 Hz, H-6), 5,13 ( d, J= 7 Hz, H-1'' -glucose), 4,55 ( d, J= 2Hz, H-1''' - rhamnose), 3.70-3,25 m, 6H glucose + rutin+4H rhamnose ), 1,08 (d, J= 6 Hz, 3H, CH3 rhamnose [4, 13, 28, 49].

13C NMR (100 MHz, DMSO-d6, 5, ppm): 157.0 (C-2), 133.8 (C-3), 177.8 (C-4), 161.7 (C-5), 99.2 (C-6), 164.6 (C-7), 94.0 (C-8), 156.9 (C-9), 104.4 (C-10), 122.0 (C-1'), 115.7 (C-2'), 145.2 (C-3'), 148.9 (C-4'), 116.7 (C-5'), 121.6 (C-6'), 101.7 (C-1'''), 74.5 (C-2''), 76.9 (C-3''), 71.0 (C-4''), 76.4 (C-5''), 67.4 (C-6''), 101.2 (C-1'''), 70.8 (C-2'''), 70.5 (C-3'''), 72.3 (C-4'''), 68.7 (C-5'''), 18.2 (C-6''') [59]

® I

5. chlorogenic acid

C16H18O9, m.p.=203-205°C, (water), UV-spectrum: ((ethanol) W =243, 300, 330 nm), 1H NMR- spectrum: DMSO-d6. 100 MHz, 5 ppm.), (7,45 (d, J=7,45Hz, H-7), 7,06 (d, J=2Hz, H-2'), 7,01(dd, Ji=2, J2=8Hz H-6'), 6,80 (d, J=8Hz, H-5'), 6,18 (d, J=16 Hz H-8), 5,10 (dt, Ji=5, J2=J3=9Hz H-5), 4,00 (q, J=3 Hz, H-3), 3,62 (dd, J1=3, J2=9 Hz, H-4), 13CNMR spectrum: (100 MHs, CDC13, chlorogenic acid DEPT, 5: 180.2 (C-7), 168.8 (C-9'), 147.9 (C-3'), 145.6 (C-7'), 144.9 (C-4'), 126.3 (C-1'), 122.8 (C-6'), 116.6 (C-5'), 115 2(C-8'), 114.0 (C-2'),76.5 (C-1), 71.6 (C-5), 70.5 (C-3), 69.4 (C-4), 38.5 (C-2), 37.9 (C-6). [28, 49].

6. hyperforin

C35H54O4, m.p..= 79-80°C, UV-spectrum: ((ethanol) W =275 nm), 1H NMR- spectrum: deuteriumchloroform CDCI3 (5 ppm.): 4,8-5,3 (m, 4H, H-15, H-22, H-27, H-32), 4,2-4,3 (m 2H, H-14), 3,20 (m, 1H, H-11), 1,8-2,5 (10H, H-6, H-7, 2H-19, 2H-21, 2H-26, 2H-31), 1,5-1,8 (m, 28H, CH3-17, 18, 24, 25, 29, 30, 34, 35), 1,20 (s, 6H, CH3-12, CH3-13), 1,00 (3H, CH3-20) [4. 44. 49, 59].

7. fi-sitosterin

C29H50O, m.p.= 132-133°C, 1H NMR- spectrum: deuteriumchloroform CDC13 (5 ppm.): 5,32 (m, 1H, H-6, 3,73 (m, 1H, H-3), 0,8-2,2 (m, 47H, also 6 CH3 -da including) Massspectrum: (70 eV, 200°C, m/z, %), 414 (M+ 32), 255 (32), 231 (19), 213 (27), 145 (34), 135 (37), 119 (60), 145 (34), 135 (37), 119 (60), 105(43), 97(58), 71(63), 69(65), 43(50). IR-spectrum: (vmax cm- 1) OH group (3450-3345), 1500, 1450 (C=C) [49].

8. Ergosterin

C28H44O, a.t.=163-165°C, (UV-

spectrum: (ethanol) Xmax =271 nm)), [a]D-

129°, ^ NMR-spectrum:

deuteriumchloroform CDC13 200 MHs (5 m.h.): 5,35 (m, 2H, H-6, H-7), 4,37 (d, 2H, H-22, H-23), (m, 1H, H-3), 3,1-3,4 (m, 2H, H-9, H-24), 0,65-2,4 (m, 47H, also 6 CH3), mass

spectrum: (70 eV, 200°C, m/z, %), 396 (M+, 100), 255 (7), 213 (13), 147 (28), 80 (34), 57 (52), 43 (68) [49].

9. Avicularin (guajavarin), (quercetin-3-O-a-L-arabinofuranoside)

C20H18O11, MALDI-TOF-MS m/z: 457 [M+Na]+, 435 [M+H]+.PMR (600 MHz, CD3OD, (5 m.h.),(J Hz): 3.49-4.33 (5H, m, Ara-H-2-5), 5.48 (1H, s, Ara-H-1), 6,24 (1H, d, J=1.5, H-6), 6.42 (1H, d, J=1.5 H-8), 6.93 (1H, d, J=7.9, H-5'), 7.52 (1H, dd, J=2.1, 7.9, H-6'), 7,56 (1H, d, J=2.1, H-2'). 13C NMR (125 MHz, CDOD3, 5, ppm): 62.55 (Ara-C-5), 78.66 (Ara-C-3), 83.38 (Ara-C-2), 88.04 (Ara-C-4) 93.36 (C-8), 98.48 (C-6), 104.22 (C-10), 109.67 (Ara-C-1), 115.04 (C-2'), 115.43 (C-5'), 121.57 (C-1'), 121.88 (C-6'), 133.51 (C-3), 144.96 (C-3'), 148.45 (C-4'), 157.17 (C-9), 157.96 (C-2), 161.64 (C-7), 178.60 (C-4) [13, 15].

10. apigenin

C15H10O5 (5,7,4') trihydroksyflavone) m.p.=343-346°C, UV-spectrum: (ethanol) W =272, 343 nm) + CftCOONa 275, 365;+ CHsCOONa+HsBOs 272, 345, (iQ-) spectrum (KBr, vmax, cm-1): 3520-3100 (OH), 1665-1635) (C=O y-pyrone), 1625-1440 cm-1 (aromatic cycle double bonds) [1, 13]

11. Luteolin (5,7,3',4'-tetrahydroksyflavone)

C15H10O6 m.p..= 328-330°C, UV-spectrum: (etanol, Xmax , nm:) = 260, 272, 356) + CftCOONa 272, 368; + CHsCOONa+HsBOs 272, 376. IR-spectrum: (KBr, Vmax , cm-1): 3450-3300 (OH), 1665-1635 (C=O y-pyrone, 1612-1580 aromatic cycle double bonds), PMR (100 MHz, C5D5N, (5 m.h.),(J Hz): 6.61 (1H, d, J=2.0 H-6), 6.73 (1H, d, J=2.0, H-8), 6.78 (1H, s, H-3), 7,09 (1H, d, J=8.0, H-5'), 7.53 (1H, br. s, H-2'), 7.60 (1H, dd, J=2.0 va J=8.0, H-6) [13, 35].

12. Vanilic acid

C8H8O4 m.p.=204-206°C, PMR spectrum (600 MHz DMSO-d6, (5 ppm.),(J Hz): 7.42 (1H, s, H-2), 7.43 (1H, d, J=7.6, H-6), 6.82 (1H, d, J=7.8, H-5), 3.8 (3H, s, 3-OCH3). 13C NMR spectrum: DMSO-d6, (5 ppm.): 122.6 (C-1), 112.6 (C-2), 147.1 (C-3), 151.0 (C-4), 114.9 (C-5), 123.4 (C-6), 55.5 (3-OCH3), 166.8 (C-1') [4, 13. 16].

13. Isoquercetin

C21H21O12 465.1003, 303[M-162]+. PMR (500MHz, CD3OD, 5, ppm, J/Hz): 7.70 (d, J=2.0, H-2'), 7.57 (dd, J=2.0, 8.3, H-6'), 6.86 (d, J=8.3, H-5'), 6.38 (d, J=2.0, H-8), 6.19 (d, J=2.0, H-6), 5.23 (d, J=7.8, H-1''), 3.70 (dd, J=2.4, 11.7, H-6'), 3.57 (dd, J=5.4, 11.7, H-6''), 3.47 (dd, J=7.8, 8.8, H-2'') 3.42 (t, J=8.8, H-3''), 3.34 (dd, J=8.8, 9.3, H-4''), 3.21

Ф I

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

(ddd, J=2.4, 5.4, 9.3, H-5''). 13C NMR (125 MHz,5): 179.5 (C-4), 166.1 (C-7), 163.0 (C-5), 159.0 (C-2), 158.4 (C-9),

149.8 (C-4'), 145.9 (C-3'), 135.6 (C-3), 123.2 (C-12), 123.1 (C-6'), 117.6 (C-5'), 116.0 (C-2'), 105.6 (C-10), 104.4 (C-1''), 99.9 (C-6), 94.8 (C-8), 78.3 (C-5''), 78.1 (C-3''), 75.7 (C-2''), 71.2 (C-4''), 62.6 (C-6'') [1, 4, 9].

14. Quercetrin 3-O-a-rhamnoside (quercitrin)

HR-ESI-TOF-MS m/z 449.1061 [M+H]+ C21H21O12 449.1084, 303[M-162]+, PMR (500 MHz, CD3OD, 5, ppm, J/Hz): 7.33 (d, J= 1.5, H-2'), 7.30 (dd, J=8.3, H-5, 8.3, H-6'), 6.90 (d, J=8.3, H-5'), 6.36 (br.s, H-8), 6.20 (br.s, H-6), 5.35 (br. s, H-1''), 4.21 (br.s, H-2''), 3.74 (dd, J=2.9, 9.3 H-3''), 3.41 (m, H-5''), 3.30 (m, H-4''), 0.93 (3H, d, J=5.9, H-6''). 13C NMR(125 MHz): 179.7 (C-4), 165.8 (C-7), 163.2 (C-5), 159.3 (C-2), 158.5 (C-9), 149.8 (C-4'), 146.4 (C-3'), 136.2 (C-3), 123.0 (C-1'), 122.9 (C-6'), 117.0 (C-2'), 116.4 (C-5'),

105.9 (C-10), 103.6 (C-1''), 99.8 (C-6), 94.7 (C-8), 73.3 (C-4''), 72.1 (C-3''). 72.0 (C-2''), 71.9 (C-5''), 17.6 (C-6'') [4; 12].

15. Apigenin-8-C-fi-D-glucopyranoside (vitexin)

Yellow amorphous powder, m. p. 265-66, MeOH: EtOAc (Lit. [9] m.p. 269-270°, HRESI-MS, m/z 431.0984, (calcd for C21H19O10, 431.0978) [M-1]+ IR (KBr, Vmax, cm-1), 3378, 3251, 1661, 1508. DMSO-d6, 5, ppm, J/Hz): 6.71 (1H, s, H-3), 6.21 (1H, s, H-6), 7.98 (2H, d, J=8.8, H-2, H-6'), 6.68 (2H, d, J=8.8, H-3, H-5'), 4.73 (1H, d, J=9.8, H-1''), 3.79 (1H, d, H-2), 3.28 (1H, dd, H-3''), 3.46 (1H, t, H-4''), 3.25 (1H, d, H-5''), 3.74 (1H, dd, J=11.9, 5.8, H-6'' a), 3.53 (1H, dd, J= 11.9, 2.4, H-6''b)13C NMR (400 MHs, DMSO-d6, 5): 163.85 (C-2), 102.44 (C-3), 182.01 (C-4), 156.01 (C-5), 98.35 (C-6), 163.29 (C-7), 104.62 (C-8), 161.23 (C-9), 104.64 (C-10), 121.62 (C-1'), 128.93 (C-6'), 73.46 (C-1''), 79.91 (C-2''), 78.71 (C-3''), 70.55 (C-4''), 81.82 (C-5''), 61.30 (C-6'') [29, 56].

16. Luteolin-8-C-fi-D-glucopyranoside (orientin)

Yellow powder, m.p. MeOH: EtOAc, m.p. 265-267°C, HRESI-MS, m/z 471.0904, (calcd for C21H2flOnNa, 471.0903) [M+Na]+ (100%). Optical Rotation [a]20 d +18.4 (c, 1.4 in Py), IR (KBr, Vmax, cm-1), 3246 (vo-h), 1655 ( vc=o), 1614, 1508, 1428 (5c-h); PMR (200 MHs, DMSO-d6, ppm,5, J/Hz): 13.17 (s.OH-5), 7.50 (1H,dd, J1=8.0, J2=2.1, H-6) 7.44 (1H, d, J=2.1, H-2), 6.90 (1H, d, J=8.2, H-5'), 6.65 (1H, s, H-3), 6.25 (1H, s, H-6), 4.72 (1H, d, J=9.4, H-1''), 3.82 (1H, t, J=9.4, H-2''), 3.24 (1H, m, H-3''), 3.37 (1H, t, J=9.4, H-4''), 3.21 (1H, m, H-5''), 3.75 (2H, m, H-6''). 13C NMR (50.3 MHz, DMSO-d6, 5): 164.2 (C-2), 102.4 (C-3), 182.0

OH

ОН О

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

(C-4), 160.5 (C-5), 98.3 (C-6), 162.8 (C-7), 104.6 (C-8), 156.0 (C-9), 103.9 (C-10), 121.9 (C-1), 114.1 (C-2'), 145.9 (C-3'), 149.9 (C-4'), 115.8 (C-5'), 119.4 (C-6'), 73.5 (C-1''), 70.9 (C-2''), 78.9 (C-3''), 70.8 (C-4''), 82.0 (C-5''), 61.8 (C-6'') [29, 56].

Pharmachologic effect

Due to the uncontrolled and widespread use of antimicrobial drugs, the problem of microbial resistance to them has arisen. In this regard, it is important to use low-toxic and well-tolerated herbal preparations of St. John's wort from benign raw materials with established active substances that, in addition to antimicrobial action, also exhibit immunotropic, antioxidant and adaptogenic activity in the complex therapy of various diseases. The herb H. perforatum andH. maculatum has been widely used in folk medicine for the treatment of "ninety-nine diseases" since ancient times in Russia and Eurasia [22, 41].

The chemical composition of St. John's wort is currently studied quite fully. In different parts of the aerial parts of plants, more than 80 components [17] from the groups of biologically active compounds (BAS) with different pharmacotherapeutic effects have been isolated.

In general, phenolic compounds with a wide spectrum of action, including antioxidant and anticarcinogenic activity, are of pharmacological interest in St. John's wort. Preparations based on them are used in clinical practice as antimicrobial, anti-inflammatory, choleretic, diuretic, hypotensive, astringent, laxative, tonic and adaptogenic agents in complex therapy [8, 19, 32, 39, 44, 54, 57, 59, 63].

A wide range of phenolic compounds has been isolated in St. John's wort. The main BAS of St. John's wort are photoactive condensed anthracene derivatives of the quinoid structure and their glycosides (anthraquinones): hypericin, a red fluorescent pigment, protohypericin, pseudohypericin [10, 11, 37].

Use in the treatment of diseases of the skin and mucous membranes

1% spirit solution of "Novoimanin" drug is used as an inhalation for infected wounds, burns, pyodermatitis, pharyngitis and sinusitis, diseases of the oral cavity: periodontitis, gum diseases, as well as tuberculosis, laryngitis [3, 20, 61].

Total phenolic content, antioxidant activity, and the main constituents of three Hypericum species (H. perforatum, H. scabrum, andH. origanifolium) from Turkey had been investigated in this study. The quantification of main constituents (hypericin, and pseudohypericin) was performed by HPLC. The aerial parts of the plant extracts were screened in terms of their total phenolic content (TPC) and antioxidant activity tests including DPPH (2,2 diphenyl 1- picrylhdrazyl) radical scavenging activity, trolox equivalent antioxidant capacity (TEAC), ferric cyanide reducing (FRAP) antioxidant power assay, and total antioxidant activity by ferricthiocyanate (FTC).

The highest TPC value (148.31 ± 4.57 mg GAE/g DW) was obtained for H. scabrum (HS) while H. perforatum (HP) extract had the highest hypericin (9.57 ± 0.07 |ig/mL), and pseudohypericin (7.82 ± 0.05 |ig/mL) amount.

All Hypericum species demonstrated stronger DPPH activities than the standard compounds butylated hydroxytoluene (BHT) and ascorbic acid (AA) with the values of IC50 < 3.8 |ig/mL. The highest trolox equivalent antioxidant capacity (TEAC) value (11.28 ± 0.28) was achieved with HO. Considerable values were obtained for HS (90.25 ± 0.05), HP (90.20 ± 0.07), and HO (88.42 ± 0.02) by total antioxidant determination using ferricthiocyanate (FTC) method with 2 days incubation. This study reveals that all Hypericum species are good sources of natural antioxidants with high TPC and major constituent contents [52].

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

Use in diseases of the gastrointestinal tract and liver

In clinical trials, the preparations gave a positive result: microclyzes - for post-dysenteric colitis, dysbacteriosis [48, 60], tinctures - for chronic gastritis; they increase bile outflow, restore normal peristalsis, and improve venous outflow [53. 62]. The infusion has hepatoprotective properties [21, 47]. Dry extract "Sibektan" is used as a choleretic and hepatoprotective agent [7, 33].

The tincture is used in the clinic as an additional remedy for the treatment of diabetes mellitus [24, 50]. The herb is a part of antidiabetic preparations (Arfazetin, Brusniver, Lydia 1, 2, 3 [50], Mirfazin [38]), which have diuretic, antimicrobial and anti-inflammatory effects. The tincture is used in clinical practice for the treatment of urological diseases: nephritis, cystourethritis; after urological operations as an anti-inflammatory agent; drugs have a diuretic effect [2, 5, 34, 55].

On the basis of the Bashkir State Medical University, an experimental batch of foaming vaginal tablets with dry St. John's wort polyextract was produced for use in gynecological practice [17].

St. John's wort preparations in Russia have long been used as a sedative [41], at present, interest in them as antidepressants is being updated. They have sedative and antidepressant properties due to hypericin and hyperforin [58], increase the adaptation of the psycho-emotional sphere, and have a calming effect on the cardiovascular system, which is confirmed by meta-analyzes. The drugs are used as an auxiliary antidepressant for behavior correction, treatment of mild depressive conditions and insomnia, they are more safe and tolerable [11, 23, 31, 37, 57, 63]. Herbal extracts used in complex therapy: Gelarium Hypericum [14], Deprim, St. John's wort, Negrustin, Trioson, Yarsin 300, etc. [6, 7, 49]. Preparations based on St. John's wort, including essential oil, are active against penicillin-resistant staphylococcus, streptococcus, salmonella, and shigella [25. 42, 45]. Volatile fractions and juice have protistocidal and bacteriostatic properties [24, 34]. The active substances of St. John's wort are active against influenza, herpes, hepatitis B viruses [43, 46, 51], hypericins — against HIV [39].

In the experiment (rats, mice), the aqueous extract had radioprophylactic and radiotherapeutic properties, protected the bone marrow and small intestine from radiation damage [8, 32, 54]. The mechanisms of the antitumor effects of Hypericum perforatum L. (St. John's wort, SJW) and its main active component hyperforin (HPF). SJW extract is commonly employed as antidepressant due to its ability to inhibit monoamine neurotransmitters re-uptake. Moreover, further biological properties make this vegetal extract very suitable for both prevention and treatment of several diseases, including cancer. Regular use of SJW reduces colorectal cancer risk in humans and prevents genotoxic effects of carcinogens in animal models. In established cancer, SJW and HPF can still exert therapeutic effects by their ability to downregulate inflammatory mediators and inhibit pro-survival kinases, angiogenic factors and extracellular matrix proteases, thereby counteracting tumor growth and spread. Remarkably, the mechanisms of action of SJW and HPF include their ability to decrease ROS production and restore pH imbalance in tumor cells. The SJW component HPF, due to its high lipophilicity and mild acidity, accumulates in membranes and acts as a protonophore that hinders inner mitochondrial membrane hyperpolarization, inhibiting mitochondrial ROS generation and consequently tumor cell proliferation. At the plasma membrane level, HPF prevents cytosol alkalization and extracellular acidification by allowing protons to re-enter the cells. These effects can revert or at least attenuate cancer cell phenotype, contributing to hamper proliferation, neo-angiogenesis and metastatic dissemination. Furthermore, several studies report that in tumor cells SJW and HPF, mainly at high concentrations, induce the mitochondrial apoptosis pathway, likely by collapsing the mitochondrial membrane potential. Based on these mechanisms, we highlight the SJW/HPF remarkable potentiality in cancer prevention and treatment [44]. Glioblastoma is the most common primary brain tumor with poor survival rate and without effective treatment strategy. Notably, amplification and active mutation of epidermal growth factor receptor (EGFR) occur

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

frequently in glioblastoma patient that may be a potential treatment target. Several studies indicated that various type of herbal compounds not only regulate anti-depressant effect but also shown capacity to suppress glioblastoma growth via inducing apoptosis and inhibiting oncogene signaling transduction. Hyperforin, an herb compound derived from St. John's wort was used to treat depressive disorder by inhibiting neuronal reuptake of several neurotransmitters. Although hyperforin can reduce matrix metallopeptidases-2 (MMPs) and -9-mediated metastasis of glioblastoma, the detail mechanism of hyperforin on glioblastoma is remaining unclear. Here, we suggested that hyperforin may induce extrinsic/intrinsic apoptosis and suppress anti-apoptotic related proteins expression of glioblastoma. We also indicated that hyperforin-mediated anti-apoptotic potential of glioblastoma was correlated to inactivation of EGFR/extracellular signal-regulated kinases (ERK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling [19, 44].

The review article presents information on the chemical composition, spectroscopic interpretation and pharmacological action of plants belonging to the genus St. John's wort. The main biologically active compounds of raw materials are plant pigments: anthracene derivatives of anthraquinones (hypericin, pseudohypericin) and flavonoids (rutin, bisapigenin, quercetin, apigenin, luteolin), phenylpropanoids (vanilla acid-chlorogenic acid) and phloroglucinum hyperforin, which have a wide range of pharmacological action. Of these, the active substances hypericin, hyperforin and hyperozoid (hyperin, or quercetin galactoside) are identified with the name of the plant Hypericum in which they are produced, which characterizes the genus specificity of the popular medicinal plant St. John's wort.

The results of modern pharmacognostic and pharmacological studies of Hyperici herba determine the feasibility of clinical trials of preparations based on St. John's wort and their use in a wide therapeutic range in complex treatment. St. John's wort is a promising source of raw materials for obtaining antibacterial, clinical and preventive medicine 29 antiviral, anti-inflammatory, astringent, diuretic, antidepressant, antioxidant, anticarcinogenic, immunotropic and adaptogenic agents.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

References:

1. Alaniya, M. D., Kemertelidze, E. P., & Komissarenko, N. F. (2002). Flavonoidy nekotorykh vidov Astragalus L. flory Gruzii. Tbilisi. (in Russian).

2. Azarova, O. V., & Galaktionova, L. P. (2012). Flavonoidy: mekhanizm protivovospalitel'nogo deistviya. Khimiya rastitel'nogo syr'ya, (4), 61-78. (in Russian).

3. Aizeman, B. E., & Derbentsova N. A. (1976). Antimicrobial preparations from Hypericum. Kiev. (in Russian).

4. Alahmad, A., Alghoraibi, I., Zein, R., Kraft, S., Drager, G., Walter, J. G., & Scheper, T. (2022). Identification of Major Constituents of Hypericum perforatum L. Extracts in Syria by Development of a Rapid, Simple, and Reproducible HPLC-ESI-Q-TOF MS Analysis and Their Antioxidant Activities. ACS omega, 7(16), 13475-13493. https://doi.org/10.1021/acsomega.1c06335

5. Budantsev. A. L. (1996) Rastitel'nye resursy Rossii i sopredel'nykh gosudarstv: Ch. 1. Semeistva Lycopodiaceae-Ephedraceae, Ch. 2. Dopolneniya k 1-7 t. St. Petersburg. (in Russian).

6. Sartorius, N., Barrett, B., Baumana, P., Bolduin, D., & Brand, U. (2008). Antidepressantnaya terapiya i drugie metody lecheniya depressivnykh rasstroistv: Dokazatel'nyi otchet rabochei gruppy CINP. izd. V.N. Krasnov. Moscow. (in Russian).

7. Belodubrovskaya, G. A., Blinova, K. F., & Vandyshev, V. V. (2004). Lekarstvennoe rastitel'noe syr'e. Farmakognoziya. St. Petersburg. (in Russian).

8. Belitskii, G. A., Kirsanov, K. I., Lesovaya, E. A., & Yakubovskaya, M. G. (2014). Mekhanizmy antikantserogennogo deistviya flavonoidov. Uspekhi molekulyarnoi onkologii, (1), 5668. (in Russian).

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

9. Betty, R. C., & Trikojus, V. M. (1943). Hypericin and a non-fluorescent photosensitive pigment from st. john's wort (Hypericum perforatum). Australian Journal of Experimental Biology & Medical Science, 21(3).

10. Brockmann, H., & Pampus, G. (1954). Die Isolierung des Pseudohypericins. Naturwissenschaften, 41(4), 86-87. https://doi.org/10.1007/BF00633872

11. Biber, A., Fischer, H., Römer, A., & Chatterjee, S. S. (1998). Oral bioavailability of hyperforin from hypericum extracts in rats and human volunteers. Pharmacopsychiatry, 31 (S 1), 3643. https://doi .org/10.1055/s-2007-979344

12. Park, B. J., Matsuta, T., Kanazawa, T., Park, C. H., Chang, K. J., & Onjo, M. (2012). Phenolic compounds from the leaves of Psidium guajava II. Quercetin and its glycosides. Chemistry of natural compounds, 48(3), 477-479. https://doi.org/10.1007/s10600-012-0280-7

13. Cirak, C., Radusiene, J., Jakstas, V., Ivanauskas, L., Yayla, F., Seyis, F., & Camas, N. (2016). Secondary metabolites of Hypericum species from the Drosanthe and Olympia sections. South African Journal of Botany, 104, 82-90. https://doi.org/10.1016Zj.sajb.2015.09.022

14. D Drobizhev, M. Y., Syrkin, A. L., & Poltavskaya, M. G. (2002). Pecherskaya MB Gelarium Giperikum pri lechenii depressii v obshchesomaticheskoi seti [Gelarium Hypericum in the treatment of depression in the somatic network]. Psikhiatriya i psikhofarmakoterapiya [Psychiatry and Clinical Psychopharmacolo-gy], 4(5), 198-199.

15. Dong-Joo, K., & Young-Soo, B. (2013). Flavonols from steam bark of Acer komarovii. KhimiyaPrirodnyy Soyedineniy, (1), 114-115.

16. Tatsis, E. C., Boeren, S., Exarchou, V., Troganis, A. N., Vervoort, J., & Gerothanassis, I. P. (2007). Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS. Phytochemistry, 68(3), 383-393. https://doi.org/10.1016/j.phytochem.2006.11.026

17. Faizullina, R. R. (2005). Fitokhimicheskoe izuchenie zveroboya prodyryavlennogo (Hypericum perforatum L.) flory Bashkortostana i perspektivy sozdaniya novykh lekarstvennykh sredstv na ego osnove: Avtoref. ... kand. farm. nauk. Ufa. (in Russian).

18. Alali, F. Q., Tawaha, K., & Gharaibeh, M. (2009). LC-MS and LC-PDA analysis of Hypericum empetrifolium and Hypericum sinaicum. Zeitschrift für Naturforschung C, 64(7-8), 476482. https://doi.org/10.1515/znc-2009-7-802

19. Hsu, F. T., Chen, W. T., Wu, C. T., & Chung, J. G. (2020). Hyperforin induces apoptosis through extrinsic/intrinsic pathways and inhibits EGFR/ERK/NF-KB-mediated anti-apoptotic potential in glioblastoma. Environmental toxicology, 35(10), 1058-1069. https://doi.org/10.1002/tox.22942

20. Gerasimov, A. I. (1972). Ob effektivnosti primeneniya novoimanina pri ingalyatsii v kompleksnom lechenii tuberkuleza legkikh i tuberkuleznogo laringita. In Fitontsidy, Kiev, 225-226. (in Russian).

21. Okmen, G., & Balpinar, N. (2017). The biological activities of Hypericum perforatum L. African Journal of Traditional, Complementary and Alternative Medicines, 14(1), 213-218. https://doi.org/10.21010/ajtcam.v14i1.23

22. Gubanov, I. A., Krylova, I. L., & Tikhonova, V. L. (1976). Dikorastushchie poleznye rasteniya SSSR. Moscow. (in Russian).

23. Gritsai, A. V., & Tomakh, N. V. (2012). Primenenie ekstrakta zveroboya v kompleksnoi terapii psikhoemotsional'nykh rasstroistv u patsientov s gipertonicheskoi bolezn'yu. Mezhdunarodnyi nevrologicheskii zhurnal, (2 (48)), 202-204. (in Russian).

24. Gromova, N. M. (1952). Farmakognosticheskoe znachenie evropeiskikh vidov zveroboya Hypericum perforatum L. i H. quadrangulum L.: Avtor. ... kand. farmatsevt. nauk. Moscow. (in Russian).

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

25. Gheorgia, A., Jonescu-Matiu, E., & Boteanu, S. (1969). Contributii la studiul uleirilor esentiale isolate din Hypericum prforatum L. si H. acutum L. Comun. bot.(RSR), 8, 119-124.

26. Haobin, H., Xudong, Z., & Yan, L. (2012). Chemical constituents of the stem bark of Acanthopanax brachypus from China. Chemistry of Natural Compounds, 48(5), 870-872. https://doi.org/10.1007/s 10600-012-0405-z

27. Huck, C. W., Abel, G., Popp, M., & Bonn, G. K. (2006). Comparative analysis of naphthodianthrone and phloroglucine derivatives in St. John's Wort extracts by near infrared spectroscopy, high-performance liquid chromatography and capillary electrophoresis. Analytica ChimicaActa, 580(2), 223-230. https://doi.org/10.1016Zj.aca.2006.07.062

28. Ion, V., Ielciu, I., Carje, A. G., Muntean, D. L., Cri§an, G., & Pältinean, R. (2022). Hypericum spp.—An Overview of the Extraction Methods and Analysis of Compounds. Separations, 9(1), 17. https://doi.org/10.3390/separations9010017

29. Diaz, J. G. (2022). Chemical Composition of Hypericum Coadunatum Chr. from the Canary Islands. Journal of Molecular Structure, 1248, 131447.

30. Karyagin, I. I. (1954). Flora Azerbaidzhana (Geraniaceae-Cornaceae). Baku. 249-258. (in Russian).

31. Kirilyuk, Zh. I. (1978). Eksperimental'noe obosnovanie primeneniya preparatov zveroboya i kalankhoe pri lechenii infitsirovannykh ran. Vestnik khirurgii, (4), 126. (in Russian).

32. Kabiev, O. K., & Balmukhanov, S. B. (1975). Prirodnye fenoly predstavlyayut soboi perspektivnyi klass protivoopukholevykh i radiopotentsiiruyushchikh soedinenii. Moscow. (in Russian).

33. Pravdivtseva, O. E., & Kurkin, V. A. (2011). Steriny nadzemnoi chasti zveroboya prodyryavlennogo. Khimiya rastitel'nogo syr'ya, (4), 333-334. (in Russian).

34. Khalmatov, Kh. Kh. (1979). Rasteniya Uzbekistana mochegonnogo deistviya. Tashkent.

35. Kislichenko, V. S., Burlaka, I. S., & Karpyuk, Yu. V. (2013). Flavonoidy nadzemnoi chasti Calamagrostis epigeios. Khimiya prirodnykh soedinenii, (1), 116-117. (in Russian).

36. Khusnetdinova, L. Z., Akulov, A. N., & Dubrovnaya, S. A. (2017). Izuchenie spektra biologicheski aktivnykh flavonoidov travy Hypericum perforatum L. flory Respubliki Tatarstan metodom vysokoeffektivnoi zhidkostnoi khromatografii. Khimiya rastitel'nogo syr'ya, (4), 175-179. https://doi.org/10.14258/jcprm.2017041841

37. Lomachenko, N. V., & Bashirova, R. M. (1999). Farmakologicheskie svoistva giperitsina (obzor). Itogi biologicheskikh issledovanii Bashkirskogo universiteta za 1998 god, 105-108. (in Russian).

38. Lobanova, I. V. (2001). Issledovanie i standartizatsiya sbora, nastoya i sukhogo ekstrakta «Mirfazin»: avtoref. ... kand. farm. nauk. Moscow. (in Russian).

39. Samylina, I. A., & Severtsev, V. A. (2001). Lekarstvennye rasteniya gosudarstvennoi farmakopei. Moscow. (in Russian).

40. Rusalepp, L., Raal, A., Puessa, T., & Maeeorg, U. (2017). Comparison of chemical composition of Hypericum perforatum and H. maculatum in Estonia. Biochemical Systematics and Ecology, 73, 41-46. https://doi.org/10.10167j.bse.2017.06.004

41. Makhlayuk, V. P. (1993). Lekarstvennye rasteniya v narodnoi meditsine. Saratov. (in Russian).

42. Makeev, B. A., & Leont'ev, A. I. (1994). Biologicheski aktivnoe veshchestvo s antimikrobnoi, fagotsitarnoi, mitoticheskoi i antioksidantnoi aktivnost'yu. Patent RF, №. 2008913. (in Russian).

43. Manolova, N., & Maksimova, V. (1988). Lechebni rasteniya inkhibitory na virusy.

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

44. Menegazzi, M., Masiello, P., & Novelli, M. (2020). Anti-tumor activity of Hypericum perforatum L. and hyperforin through modulation of inflammatory signaling, ROS generation and proton dynamics. Antioxidants, 10(1), 18. https://doi.org/10.3390/antioxl0010018

45. Müller, W. E., Singer, A., & Wonnemann, M. (2001). Гиперфорин - антидепрессант с новым механизмом действия. Фармакопсихиатрия, 34 (Суп. 1), 98-102. https://doi.org/10.1055/ s-2001-15512

46. Middleton, E. (1998). Effect of plant flavonoids on immune and inflammatory cell function. Flavonoids in the living system, 175-182. https://doi.org/10.1007/978-1-4615-5335-9_13

47. Nikolaeva, V. G. (1977). Rasteniya, primenyaemye narodami SSSR pri zabolevaniyakh pecheni i zhelchevyvodyashchikh putei. Rastitel'nye resursy, 13(2), 396. (in Russian).

48. Plakhova, N. B. (1954). Sravnitel'noe deistvie dubil'nykh rastenii, proizrastayushchikh v Sibiri, na dizenteriinuyu gruppu bakterii. Farmakologiya i toksikologiya, 17(4), 39. (in Russian).

49. Pravdivtseva, O. E., & Kurkin, V. A. (2012). Issledovanie khimicheskogo sostava nadzemnoi chasti Hypericum Perforatum L. Meditsinskii al'manakh, (5), 204-206. (in Russian).

50. Ponomareva, A. G., & Poverin, D. I. (1993). Sbor lekarstvennykh trav dlya lecheniya sakharnogo diabeta "Lidiya 1, 2, 3". Patent RF, №2000802. (in Russian).

51. Parvez, M. K., Rehman, M. T., Alam, P., Al-Dosari, M. S., Alqasoumi, S. I., & Alajmi, M. F. (2019). Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharmaceutical Journal, 27(3), 389-400. https://doi.org/10.1016/jjsps.2018.12.008

52. Seyrekoglu, F., Temiz, H., Eser, F., & Yildirim, C. (2022). Comparison of the antioxidant activities and major constituents of three Hypericum species (H. perforatum, H. scabrum and H. origanifolium) from Turkey. South African Journal of Botany, 146, 723-727. https://doi.org/10.1016/j.sajb.2021.12.012

53. Sofi, S. H., Nuraddin, S. M., Amin, Z. A., Al-Bustany, H. A., & Nadir, M. Q. (2020). Gastroprotective activity of Hypericum perforatum extract in ethanol-induced gastric mucosal injury in Wistar rats: A possible involvement of H+/K+ ATPase a inhibition. Heliyon, 6(10), e05249. https://doi.org/10.10167j.heliyon.2020.e05249

54. Nalimova, N., & Efeykina, N. The Content of Biologically Active Substances in Hypericum Perforatum L. and the Pharmacotherapeutic Effect of Drugs Based on it.

55. Talanov, V. V., Trusov, V. V., & Filimonov, M. A. (1992). Lekarstvennye rasteniya - dlya bol'nykh sakharnym diabetom. Kazan'. (in Russian).

56. Khademian, A., Tabefam, M., Mazarei, Z., Kanani, M. R., Sepehri, H., Delphi, L., ... & Farimani, M. M. (2021). Chemical constituents and cytotoxic activity of Stachys pilifera Benth. South African Journal of Botany, 139, 226-229. (in Russian).

57. Ushkalova, A. V., & Illarionova, T. S. (2007). Effektivnost' i bezopasnost' antidepressivnykh i sedativnykh sredstv rastitel'nogo proiskhozhdeniya. Farmateka, (20), 10-14. (in Russian).

58. Vasil'eva, N. F. Vasil'chenko, E. A., & Komissarenko, L. N. (1986). Anal'geticheskii effekt flavonoidov Rhododendron luteum Sweet, Hypericum perforatum L., Lespedeza bicolor Turcz. i L. hedysaroides (Pall.) Kitag. Rastitel'nye resursy, 22(1), 12-21. (in Russian).

59. Kang, Y. X., Zhang, H. C., Wang, P., Liu, J. J., & Ma, Y. M. (2012). Chemical constituents of the leaves from Xanthoceras sorbifolia. Chemistry of Natural Compounds, 48(5), 875-876. https://doi.org/10.1007/s10600-012-0407-x

60. Zemtsova, G. N., & Shvarts, V. Ya. (1988). Effektivnost' fitoterapii v kompleksnom lechenii bol'nykh postdizenteriinym kolitom. In Konferentsiyapo meditsinskoi botanike, Kiev, 353-354. (in Russian).

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

61. Zhokhova, E. V., Goncharov, M. Yu., & Povydysh, M. N. (2016). Farmakognoziya. Moscow. (in Russian).

62. Zaitseva, M. M. (1966). Vliyanie zveroboya na zheludochno-kishechnyi trakt. Zdravookhranenie Belarusi, (5), 23-25. (in Russian).

63. Zimina, L. N. (2011). Farmakognosticheskoe issledovanie dlya obosnovaniya sozdaniya antidepressantov na osnove zveroboya prodyryavlennogo: Avtoref. ... kand. farm. nauk. Samara. (in Russian).

Список литературы

1. Алания М. Д., Кемертелидзе Э. П., Комиссаренко Н. Ф. Флавоноиды некоторых видов Astragalus L. флоры Грузии. Тбилиси: Мецниереба. 2002. Т. 151.

2. Азарова О. В., Галактионова Л. П. Флавоноиды: механизм противовоспалительного действия // Химия растительного сырья. 2012. №4. С. 61-78.

3. Айземан Б. Е., Дербенцова Н. А. Противомикробные препараты из зверобоя. Киев: Наукова думка, 1976. 156 с.

4. Alahmad A., Alghoraibi I., Zein R., Kraft S., Dräger G., Walter J. G., Scheper T. Identification of Major Constituents of Hypericum perforatum L. Extracts in Syria by Development of a Rapid, Simple, and Reproducible HPLC-ESI-Q-TOF MS Analysis and Their Antioxidant Activities // ACS omega. 2022. V. 7. №16. P. 13475-13493. https://doi.org/10.1021/acsomega.1c06335

5. Буданцев А. Л. Растительные ресурсы России и сопредельных государств: Ч. 1. Семейства Lycopodiaceae-Ephedraceae, Ч. 2. СПб.: Мир и семья-95, 1996. 571 с

6. Сарториус Н., Барретт Б., Баумана П., Болдуин Д., Бранд У. Антидепрессантная терапия и другие методы лечения депрессивных расстройств: Доказательный отчет рабочей группы CINP. изд. В.Н. Краснов. М.: Моск. НИИ психиатрии Росздрава, 2008. 216 с.

7. Белодубровская Г. А., Блинова К. Ф., Вандышев В. В. Лекарственное растительное сырье. Фармакогнозия. СПб.: СпецЛит, 2004. 765 с.

8. Белицкий Г. А., Кирсанов К. И., Лесовая Е. А., Якубовская М. Г. Механизмы антиканцерогенного действия флавоноидов // Успехи молекулярной онкологии. 2014. №1. С. 56-68.

9. Betty R. C., Trikojus V. M. Hypericin and a non-fluorescent photosensitive pigment from st. john's wort (Hypericum perforatum) // Australian Journal of Experimental Biology & Medical Science. 1943. V. 21. №3.

10. Brockmann H., Pampus G. Die Isolierung des Pseudohypericins // Naturwissenschaften. 1954. V. 41. №4. P. 86-87. https://doi.org/10.1007/BF00633872

11. Biber A., Fischer H., Römer A., Chatterjee S. S. Oral bioavailability of hyperforin from hypericum extracts in rats and human volunteers // Pharmacopsychiatry. 1998. V. 31. №S 1. P. 3643. https://doi.org/10.1055/s-2007-979344

12. Park B. J., Matsuta T., Kanazawa T., Park C. H., Chang K. J., Onjo M. Phenolic compounds from the leaves of Psidium guajava II. Quercetin and its glycosides // Chemistry of natural compounds. 2012. V. 48. №3. P. 477-479. https://doi.org/10.1007/s10600-012-0280-7

13. Cirak C., Radusiene J., Jakstas V., Ivanauskas L., Yayla F., Seyis F., Camas N. Secondary metabolites of Hypericum species from the Drosanthe and Olympia sections // South African Journal of Botany. 2016. V. 104. P. 82-90. https://doi.org/10.1016/j.sajb.2015.09.022

14. Drobizhev M. Y., Syrkin A. L., Poltavskaya M. G. Pecherskaya MB Gelarium Giperikum pri lechenii depressii v obshchesomaticheskoi seti [Gelarium Hypericum in the treatment of depression in the somatic network] // Psikhiatriya i psikhofarmakoterapiya [Psychiatry and Clinical Psychopharmacolo-gy]. 2002. V. 4. №5. P. 198-199.

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

15. Dong-Joo K., Young-Soo B. Flavonols from steam bark of Acer komarovii // Khimiya Prirodnyy Soyedineniy. 2013. №1. P. 114-115.

16. Tatsis E. C., Boeren S., Exarchou V., Troganis A. N., Vervoort J., Gerothanassis I. P. Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS // Phytochemistry. 2007. V. 68. №3. P. 383-393. https://doi.org/10.1016/j.phytochem.2006.11.026

17. Файзуллина Р. Р. Фитохимическое изучение зверобоя продырявленного (Hypericum perforatum L.) флоры Башкортостана и перспективы создания новых лекарственных средств на его основе: Автореф. ... канд. фарм. наук. Уфа, 2005. 21 с.

18. Alali F. Q., Tawaha K., Gharaibeh M. LC-MS and LC-PDA analysis of Hypericum empetrifolium and Hypericum sinaicum // Zeitschrift für Naturforschung C. 2009. V. 64. №7-8. P. 476-482. https://doi.org/10.1515/znc-2009-7-802

19. Hsu F. T., Chen W. T., Wu C. T., Chung J. G. Hyperforin induces apoptosis through extrinsic/intrinsic pathways and inhibits EGFR/ERK/NF-KB-mediated anti-apoptotic potential in glioblastoma // Environmental toxicology. 2020. V. 35. №10. P. 1058-1069. https://doi.org/10.1002/tox.22942

20. Герасимов А. И. Об эффективности применения новоиманина при ингаляции в комплексном лечении туберкулеза легких и туберкулезного ларингита // Фитонциды. Киев, 1972. С. 225-226.

21. Okmen G., Balpinar N. The biological activities of Hypericum perforatum L // African Journal of Traditional, Complementary and Alternative Medicines. 2017. V. 14. №1. P. 213-218. https://doi.org/10.21010/ajtcam.v14i1.23

22. Губанов И. А., Крылова И. Л., Тихонова В. Л. Дикорастущие полезные растения СССР. М.: Мысль, 1976. 360 с.

23. Грицай А. В., Томах Н. В. Применение экстракта зверобоя в комплексной терапии психоэмоциональных расстройств у пациентов с гипертонической болезнью // Международный неврологический журнал. 2012. №2 (48). С. 202-204.

24. Громова Н. М. Фармакогностическое значение европейских видов зверобоя Hypericum perforatum L. и H. quadrangulum L.: Автор. ... канд. фармацевт. наук. М., 1952. 12 с.

25. Gheorgia A., Jonescu-Matiu E., Boteanu S. Contributii la studiul uleirilor esentiale isolate din Hypericum prforatum L. si H. acutum L // Comun. bot.(RSR). 1969. V. 8. P. 119-124.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

26. Haobin H., Xudong Z., Yan L. Chemical constituents of the stem bark of Acanthopanax brachypus from China // Chemistry of Natural Compounds. 2012. V. 48. №5. P. 870-872. https://doi.org/10.1007/s10600-012-0405-z

27. Huck C. W., Abel G., Popp M., Bonn G. K. Comparative analysis of naphthodianthrone and phloroglucine derivatives in St. John's Wort extracts by near infrared spectroscopy, highperformance liquid chromatography and capillary electrophoresis // Analytica Chimica Acta. 2006. V. 580. №2. P. 223-230. https://doi.org/10.1016/j.aca.2006.07.062

28. Ion V., Ielciu I., Carje A. G., Muntean D. L., Cri§an G., Pältinean R. Hypericum spp.—An Overview of the Extraction Methods and Analysis of Compounds // Separations. 2022. V. 9. №1. P. 17. https://doi .org/10.3390/separati ons9010017

29. Diaz J. G. Chemical Composition of Hypericum Coadunatum Chr. from the Canary Islands // Journal of Molecular Structure. 2022. V. 1248. P. 131447.

30. Карягин И. И. Флора Азербайджана (Geraniaceae-Cornaceae). Баку: Изд-во АН Азербайджанской ССР, 1954. C. 249-258.

31. Кирилюк Ж. И. Экспериментальное обоснование применения препаратов зверобоя и каланхое при лечении инфицированных ран // Вестник хирургии. 1978. №4. С. 126.

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

32. Кабиев О. К., Балмуханов С. Б. Природные фенолы представляют собой перспективный класс противоопухолевых и радиопотенциирующих соединений. М.: Медицина, 1975. 189 с.

33. Правдивцева О. Е., Куркин В. А. Стерины надземной части зверобоя продырявленного // Химия растительного сырья. 2011. №4. С. 333-334.

34. Халматов Х. Х. Растения Узбекистана мочегонного действия. Ташкент: Медицина. Узбекская ССР, 1979. 180 с.

35. Кисличенко В. С., Бурлака И. С., Карпюк Ю. В. Флавоноиды надземной части Calamagrostis epigeios // Химия природных соединений. 2013. №1. С. 116-117.

36. Хуснетдинова Л. З., Акулов А. Н., Дубровная С. А. Изучение спектра биологически активных флавоноидов травы Hypericum perforatum L. флоры Республики Татарстан методом высокоэффективной жидкостной хроматографии // Химия растительного сырья. 2017. №4. С. 175-179. https://doi.org/10.14258/jcprm.2017041841

37. Ломаченко Н. В., Баширова Р. М. Фармакологические свойства гиперицина (обзор) // Итоги биологических исследований Башкирского университета за 1998 год. 1999. С. 105-108.

38. Лобанова И. В. Исследование и стандартизация сбора, настоя и сухого экстракта «Мирфазин»: автореф. ... канд. фарм. наук. 2001. М., 21 с.

39. Самылина И. А., Северцев В. А. Лекарственные растения государственной фармакопеи. М. АНМИ, 2001. 488 с.

40. Rusalepp L., Raal A., Puessa T., Maeeorg U. Comparison of chemical composition of Hypericum perforatum and H. maculatum in Estonia // Biochemical Systematics and Ecology. 2017. V. 73. P. 41-46. https://doi.org/10.1016/j.bse.2017.06.004

41. Махлаюк В. П. Лекарственные растения в народной медицине. Саратов, 1993. 542 с.

42. Макеев Б. А., Леонтьев А. И. Биологически активное вещество с антимикробной, фагоцитарной, митотической и антиоксидантной активностью. Патент РФ, №. 2008913, 1994.

43. Манолова Н., Максимова В. Лечебни растения инхибиторы на вирусы. 1988.

44. Menegazzi M., Masiello P., Novelli M. Anti-tumor activity of Hypericum perforatum L. and hyperforin through modulation of inflammatory signaling, ROS generation and proton dynamics // Antioxidants. 2020. V. 10. №1. P. 18. https://doi.org/10.3390/antiox10010018

45. Müller W. E., Singer A., Wonnemann M. Hyperforin-antidepressant activity by a novel mechanism of action // Pharmacopsychiatry. 2001. V. 34. №Sup. 1. P. 98-102. https://doi.org/10.1055/ s-2001-15512

46. Middleton E. Effect of plant flavonoids on immune and inflammatory cell function // Flavonoids in the living system. 1998. P. 175-182. https://doi.org/10.1007/978-1-4615-5335-9_13

47. Николаева В. Г. Растения, применяемые народами СССР при заболеваниях печени и желчевыводящих путей // Растительные ресурсы. 1977. Т. 13. №2. С. 396.

48. Плахова Н. Б. Сравнительное действие дубильных растений, произрастающих в Сибири, на дизентерийную группу бактерий // Фармакология и токсикология. 1954. Т. 17. №4. С. 39.

49. Правдивцева О. Е., Куркин В. А. Исследование химического состава надземной части Hypericum Perforatum L // Медицинский альманах. 2012. №5. С. 204-206.

50. Пономарева А. Г., Поверин Д. И. Сбор лекарственных трав для лечения сахарного диабета «Лидия 1, 2, 3». Патент РФ, №2000802. 1993.

51. Parvez M. K., Rehman M. T., Alam P., Al-Dosari M. S., Alqasoumi S. I., Alajmi M. F. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study // Saudi Pharmaceutical Journal. 2019. V. 27. №3. P. 389-400. https://doi.org/10.1016/jjsps.2018.12.008

Бюллетень науки и практики / Bulletin of Science and Practice Т. 9. №1. 2023

https://www.bulletennauki.ru https://doi.org/10.33619/2414-2948/86

52. Seyrekoglu F., Temiz H., Eser F., Yildirim C. Comparison of the antioxidant activities and major constituents of three Hypericum species (H. perforatum, H. scabrum andH. origanifolium) from Turkey // South African Journal of Botany. 2022. V. 146. P. 723-727. https://doi.org/10.1016/j.sajb.2021.12.012

53. Sofi S. H., Nuraddin S. M., Amin Z. A., Al-Bustany H. A., Nadir M. Q. Gastroprotective activity of Hypericum perforatum extract in ethanol-induced gastric mucosal injury in Wistar rats: A possible involvement of H+/K+ ATPase a inhibition // Heliyon. 2020. V. 6. №10. P. e05249. https://doi.org/10.1016/j.heliyon.2020.e05249

54. Nalimova N., Efeykina N. The Content of Biologically Active Substances in Hypericum Perforatum L. and the Pharmacotherapeutic Effect of Drugs Based on it.

55. Таланов В. В., Трусов В. В., Филимонов М. А. Лекарственные растения - для больных сахарным диабетом. Казань, 1992. 48 c.

56. Khademian A. et al. Chemical constituents and cytotoxic activity of Stachys pilifera Benth // South African Journal of Botany. 2021. V. 139. P. 226-229.

57. Ушкалова А. В., Илларионова Т. С. Эффективность и безопасность антидепрессивных и седативных средств растительного происхождения // Фарматека. 2007. №20. С. 10-14.

58. Васильева Н. Ф. Васильченко Е. А., Комиссаренко Л. Н. Анальгетический эффект флавоноидов Rhododendron luteum Sweet, Hypericum perforatum L., Lespedeza bicolor Turcz. и L. hedysaroides (Pall.) Kitag // Растительные ресурсы.1986. V. 22. №1. C. 12-21.

59. Kang Y. X., Zhang H. C., Wang P., Liu J. J., Ma Y. M. Chemical constituents of the leaves from Xanthoceras sorbifolia // Chemistry of Natural Compounds. 2012. V. 48. №5. P. 875-876. https://doi.org/10.1007/s10600-012-0407-x

60. Земцова Г. Н., Шварц В. Я. Эффективность фитотерапии в комплексном лечении больных постдизентерийным колитом // Конференция по медицинской ботанике. Киев, 1988. С. 353-354.

61. Жохова Е. В., Гончаров М. Ю., Повыдыш М. Н. Фармакогнозия. М., 2016. 544 с.

62. Зайцева М. М. Влияние зверобоя на желудочно-кишечный тракт // Здравоохранение Беларуси. 1966. №5. С. 23-25.

63. Зимина Л. Н. Фармакогностическое исследование для обоснования создания антидепрессантов на основе зверобоя продырявленного: Автореф. ... канд. фарм. наук. Самара, 2011. 24 с.

Работа поступила Принята к публикации

в редакцию 24.11.2022 г. 04.12.2022 г.

Ссылка для цитирования:

Jahangirova I., Zulfugarova M., Hajiyeva E., Karimova Z. Chemical Composition and Pharmacological Activity of Plants of the Hypericum L. Genus // Бюллетень науки и практики. 2023. Т. 9. №1. С. 60-75. https://doi.org/10.33619/2414-2948/86/08

Cite as (APA):

Jahangirova, I., Zulfugarova, M., Hajiyeva, E., & Karimova, Z. (2023). Chemical Composition and Pharmacological Activity of Plants of the Hypericum L. Genus. Bulletin of Science and Practice, 9(1), 60-75. https://doi.org/10.33619/2414-2948/86/08

i Надоели баннеры? Вы всегда можете отключить рекламу.