Научная статья на тему 'Автоморфизмы нильтреугольных подколец алгебр Шевалле ортогональных типов'

Автоморфизмы нильтреугольных подколец алгебр Шевалле ортогональных типов Текст научной статьи по специальности «Математика»

CC BY
181
23
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АЛГЕБРА ШЕВАЛЛЕ / НИЛЬТРЕУГОЛЬНАЯ ПОДАЛГЕБРА / АВТОМОРФИЗМ КОЛЬЦА ЛИ / ВЫСОТА ГИПЕРЦЕНТРАЛЬНОГО АВТОМОРФИЗМА / CHEVALLEY ALGEBRA / NIL-TRIANGULAR SUBALGEBRA / AUTOMORPHISM OF LIE RING / HEIGHT OF HYPERCENTRAL AUTOMORPHISM

Аннотация научной статьи по математике, автор научной работы — Левчук В. М., Литаврин А. В.

Алгебра Шевалле над ассоциативно коммутативным кольцом K с единицей характеризуется базисом Шевалле, который сопоставляют каждой неразложимой системе корней Ф. Все элементы er (r Ф+ ) базиса Шевалле дают базис подалгебры NФ(K), называемой нильтреугольной. Автоморфизмы алгебры NФ(K) описали Y. Сao, D. Jiang и D. Wang (J. Algebra, 2007) при K = 2K для лиевых типов Bn, Cn или F4 и при близких ограничениях для других типов. Их описание использует только нестандартный автоморфизм Гиббса; в нашей терминологии это гиперцентральный автоморфизм высоты 2 или 3 (для типа Cn). Наша главная цель состоит в описании группы автоморфизмов А кольца Ли NФ(K). Алгебра NФ(K) лиева типа An-1 представляется алгеброй Ли, ассоциированной с алгеброй NT(n, K) всех нильтреугольных матриц над K. Группы автоморфизмов кольца NT(n, K) и ассоциированного с ним кольца Ли (т. е. A типа An) описал ранее В. М. Левчук (1983). Группу автоморфизмов A для типа Cn недавно описал А. В. Литаврин. В настоящей работе мы находим нестандартные автоморфизмы алгебр NФ(K) ортогональных типов, когда условие K = 2K нарушается. Оказывается, когда аннулятор элемента 2 в K ненулевой, наибольшая высота гиперцентральных автоморфизмов зависит от лиева ранга. Кроме того, мы находим автоморфизмы алгебры NФ(K) типа Dn, которые нестандартны по модулю второго члена нижнего центрального ряда и порождают подгруппу в A, изоморфную определенной подгруппе S в SL(2, K), в частности, S = SL(2, K) при 2K = 0. Стандартные автоморфизмы вместе с построенными нестандартными автоморфизмами порождают всякий автоморфизм алгебры NФ(K). Для всех классических типов лиева ранга > 4 наши результаты показывают, что группа автоморфизмов A является произведением подгрупп центральных и индуцированных кольцевых автоморфизмов и группы автоморфизмов алгебры NФ(K). Используются разработанные ранее методы, в частности, специальное представление алгебр NФ(K) классических типов. Результаты могут быть использованы при разработке криптографических методов.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Левчук В. М., Литаврин А. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

AUTOMORPHISMS OF NIL-TRIANGULAR SUBRINGS IN CHEVALLEY ALGEBRA OF ORTHOGONAL TYPE

Any Chevalley algebra over an associative commutative ring K with the identity is characterized by Chevalley base that correspondents to each indecomposable root system Ф. All elements er (r Ф+ ) of Chevalley base give a base of subalgebra NФ(K) which is said to be nil-triangular. Automorphisms of algebras NФ(K) were described by Y. Cao, D. Jiang and D. Wang (J. Algebra, 2007) at K = 2K for Lie type Bn, Cn or F4 and under similar restrictions for other types. Their description uses only non-standard Gibbs’s automorphisms; in our terminology it is a hypercentral automorphisms of height 2 or 3 (for type Cn). Our main purpose is to describe the automorphism group A of the Lie ring NФ(K). The algebra NФ(K) of Lie type An-1 can be represented as Lie algebra which associated to the algebra NT(n, K) of all nil-triangular matrices over K. The automorphism group of the ring NT(n, K) and of its associated Lie ring (i. e., A for the type An) described earlier V. M. Levchuk (1983). A. V. Litavrin has described the automorphism group A for Lie type Cn recently. In the present paper we find non-standard automorphisms of the algebra NФ(K) for orthogonal types, when the condition K = 2K isn’t satisfied. It seems that if annihilator of element 2 in K is non-zero, then the largest height of hypercentral automorphisms grows together with the Lie rank. Also, we find automorphisms of the algebra NФ(K) of type Dn which are non-standard module second member of lower central series and generate the subgroup of A that isomorphic to certain subgroup S in SL(2, K); in particularly, S = SL(2, K) at 2K = 0. The standard automorphisms together with constructed non-standard automorphisms generate every automorphisms of the algebra NФ(K). For all classical types of rank > 4 our results show that the automorphism group A is the product of subgroups of the central and induced ring automorphisms and the automorphism group of the algebra NФ(K). We use developed earlier methods, in particularly, a special representation of the algebras NФ(K) of classical types. The results can be used in development of cryptographic methods.

Текст научной работы на тему «Автоморфизмы нильтреугольных подколец алгебр Шевалле ортогональных типов»

УДК 512.554

Вестник СибГАУ Том 17, № 2. С. 324-327

АВТОМОРФИЗМЫ НИЛЬТРЕУГОЛЬНЫХ ПОДКОЛЕЦ АЛГЕБР ШЕВАЛЛЕ ОРТОГОНАЛЬНЫХ ТИПОВ

В. М. Левчук*, А. В. Литаврии

Сибирский федеральный университет Российская Федерация, 660041, г. Красноярск, просп. Свободный, 79 E-mail: [email protected]

Алгебра Шевалле над ассоциативно коммутативным кольцом К с единицей характеризуется базисом Ше-валле, который сопоставляют каждой неразложимой системе корней Ф. Все элементы er (r е Ф+) базиса Шевалле дают базис подалгебры МФ(К), называемой нильтреугольной. Автоморфизмы алгебры МФ(К) описали Y. Cao, D. Jiang и D. Wang (J. Algebra, 2007) при К = 2К для лиевых типов Bn, Cn или F4 и при близких ограничениях для других типов. Их описание использует только нестандартный автоморфизм Гиббса; в нашей терминологии это гиперцентральный автоморфизм высоты 2 или 3 (для типа Су). Наша главная цель состоит в описании группы автоморфизмов А кольца Ли МФ(К).

Алгебра МФ(К) лиева типа An-1 представляется алгеброй Ли, ассоциированной с алгеброй NT(n, К) всех нильтреугольных n х n матриц над К. Группы автоморфизмов кольца NT(n, К) и ассоциированного с ним кольца Ли (т. е. A типа An) описал ранее В. М. Левчук (1983). Группу автоморфизмов A для типа Cn недавно описал А. В. Литаврин.

В настоящей работе мы находим нестандартные автоморфизмы алгебр NФ(K) ортогональных типов, когда условие К = 2К нарушается. Оказывается, когда аннулятор элемента 2 в К ненулевой, наибольшая высота гиперцентральных автоморфизмов зависит от лиева ранга. Кроме того, мы находим автоморфизмы алгебры NФ(K) типа Dm которые нестандартны по модулю второго члена нижнего центрального ряда и порождают подгруппу в A, изоморфную определенной подгруппе S в SL(2, К), в частности, S = SL(2, К) при 2К = 0. Стандартные автоморфизмы вместе с построенными нестандартными автоморфизмами порождают всякий автоморфизм алгебры NФ(K). Для всех классических типов лиева ранга > 4 наши результаты показывают, что группа автоморфизмов A является произведением подгрупп центральных и индуцированных кольцевых автоморфизмов и группы автоморфизмов алгебры NФ(K). Используются разработанные ранее методы, в частности, специальное представление алгебр NФ(K) классических типов. Результаты могут быть использованы при разработке криптографических методов.

Ключевые слова: алгебра Шевалле, нильтреугольная подалгебра, автоморфизм кольца Ли, высота гиперцентрального автоморфизма.

Sibirskii Gosudarstvennyi Aerokosmicheskii Universitet imeni Akademika M. F. Reshetneva. Vestnik Vol. 17, No. 2, P. 324-327

AUTOMORPHISMS OF NIL-TRIANGULAR SUBRINGS IN CHEVALLEY ALGEBRA OF ORTHOGONAL TYPE

V. M. Levchuk*, A. V. Litavrin

Siberian Federal University 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation E-mail: [email protected]

Any Chevalley algebra over an associative commutative ring К with the identity is characterized by Chevalley base that correspondents to each indecomposable root system Ф. All elements er (r e Ф+) of Chevalley base give a base of subalgebra NФ(K) which is said to be nil-triangular. Automorphisms of algebras NФ(K) were described by Y. Cao, D. Jiang and D. Wang (J. Algebra, 2007) at К = 2K for Lie type Bw Cn or F4 and under similar restrictions for other types. Their description uses only non-standard Gibbs's automorphisms; in our terminology it is a hypercentral automorphisms of height 2 or 3 (for type Cy). Our main purpose is to describe the automorphism group A of the Lie ring NO(K).

The algebra N0(K) of Lie type An-1 can be represented as Lie algebra which associated to the algebra NT(n, K) of all nil-triangular n x n matrices over K. The automorphism group of the ring NT(n, K) and of its associated Lie ring (i. e., A for the type A,) described earlier V. M. Levchuk (1983). A. V. Litavrin has described the automorphism group A for Lie type Cn recently.

In the present paper we find non-standard automorphisms of the algebra N0(K) for orthogonal types, when the condition K = 2K isn't satisfied. It seems that if annihilator of element 2 in K is non-zero, then the largest height of hy-percentral automorphisms grows together with the Lie rank. Also, we find automorphisms of the algebra N0(K) of type Dn which are non-standard module second member of lower central series and generate the subgroup ofA that isomorphic to certain subgroup S in SL(2, K); in particularly, S = SL(2, K) at 2K = 0. The standard automorphisms together with constructed non-standard automorphisms generate every automorphisms of the algebra N0(K). For all classical types of rank > 4 our results show that the automorphism group A is the product of subgroups of the central and induced ring automorphisms and the automorphism group of the algebra N0(K). We use developed earlier methods, in particularly, a special representation of the algebras N0(K) of classical types. The results can be used in development of cryptographic methods.

Keywords: Chevalley algebra; nil-triangular subalgebra; automorphism of Lie ring; height of hypercentral automorphism.

Введение. Алгебру Шевалле ЬК над ассоциативно-коммутативным кольцом К с единицей характеризуют базисом Шевалле [1-3]. Ее ассоциируют с каждой из 9 неразложимых (приведенных) систем корней Ф, из которых 4 - классических типов Ап, Вп, Сп, Бп и 5 -исключительных типов Еп (п = 6, 7, 8), ¥4 и 02. Подалгебру в Ьк с базисом из элементов ег (г е Ф+) базиса Шевалле называем нильтреугольной и обозначаем через ^Ф(К); для типа Ап-1 она представляется алгеброй Ли, ассоциированной с алгеброй ЛТ(п, К) нильт-реугольных п х п матриц над К. Авторы исследуют следующие две проблемы, изученные ранее [4; 5] в различных частных ситуациях:

(А). Описать автоморфизмы алгебр Ли ЫФ(К).

(Б). Описать автоморфизмы нильтреугольных подколец ЫФ(К) алгебр Шевалле АК.

Автоморфизмы унипотентного радикала V в подгруппе Бореля групп лиева типа над полем ¥ описал в 1970 году Дж. Гиббс [6] при ¥ = 2¥ = 3¥, см. также [7, проблема (1.5)]. В 1990 году их описание завершил В. М. Левчук [8] (см. также [9]; задача Б отмечается там же вместе с полученным решением для типа Д4).

В обзоре [10] задачи (А) и (Б) отмечались в связи с вопросами элементарной эквивалентности и другими теоретико-модельными исследованиями алгебр и колец Ли Л"Ф(К), наряду с аналогичными вопросами для групп V, восходящими к А. И. Мальцеву [11].

Автоморфизмы кольца ЛТ(п, К), его ассоциированного кольца Ли (т. е. ЫФ(К) типа Ап-1) и присоединенной группы, изоморфной унитреугольной группе иТ(п, К), взаимосвязанно описаны в [4], а кольца Ли ЫСп(К) (п > 4) - в [12; 13].

Вопрос (А) описания автоморфизмов алгебры Ли ЫФ(К) исследовался в [5], как и вопрос об АШ V -Гиббсом [6], при К = 2К = 3К, а для некоторых типов при более слабых ограничениях, например, К = 2К для типов Вп, Сп и ¥4.

При переходе от алгебр к кольцам Ли, в частности, добавляются кольцевые автоморфизмы, индуцированные автоморфизмами основного кольца (для алгебр это, очевидно, только единичный автоморфизм), расширяется подгруппа центральных автоморфизмов, т. е. действующих тождественно по модулю центра.

Наша цель - решить задачи (А) и (Б) для ортогональных типов Вп и Юп и завершить их решение для классических типов (см. теоремы 1, 2 и заключение). В решении задач мы используем методы описания АШ V в [8].

Представления, стандартные автоморфизмы и центральные ряды. Известно, что (элементарную) группу Шевалле типа Ф над К порождают корневые автоморфизмы хг(() (г е Ф, t е К) алгебры Шевалле ЬК [1, пункт 4.4]. В этом случае

V = ЦФ(К):=(хг (0 | г е Ф+, t е К^ .

Для типа Ап-1 группа V изоморфна VT(n, К). Ограничения корневых автоморфизмов хг(1) при г е Ф+ дают автоморфизмы алгебры Л"Ф(К), порождающие подгруппу внутренних автоморфизмов, изоморфную фактор-группе унипотентной подгруппы UФ(K) по центру.

К основным стандартным автоморфизмам алгебр и групп Шевалле относят также диагональные и графовые автоморфизмы [14; 1; 15], а для алгебр ЫФ(К) см. также [5; 8; 12]. Автоморфизмы, порождаемые основными стандартными автоморфизмами, называют стандартными.

В [8] понятие центрального автоморфизма обобщается: автоморфизм группы или алгебры Ли Я, являющийся единичным по модулю т-го гиперцентра и внешним автоморфизмом по модулю (т—1)-го гиперцентра, называем гиперцентральным высоты т или, кратко, гиперцентральным автоморфизмом, когда Я не совпадает с т-м гиперцентром.

Аналогично группам в произвольном кольце Ли Я вводят нижний центральный ряд

Я = Г! 3Г2 3-Гп 3..., Гп+1:= [Гп,Я] (п> 1)

и верхний центральный, или гиперцентральный, ряд

0 = го £ 7 £ 72 £..., е Я | [я,Я] £ 2,-}

(, > 0).

Как в [1; 16], используем функцию высоты Ы(г) на корнях г системы Ф, максимальный корень р и число Кокстера h: = М(р) + 1. Полагаем £>(Ф): = = т&х[(г,г)1^^)\ г,5 е Ф}.

В алгебре Ли МФ(К) стандартным центральным называют ряд

А 3123 • • •3 А-13 А =0;

I,- =(Кег | г е Ф+, Ы(г) > ,), (1 < , < h -1).

По аналогии с [8, лемма 1] справедлива лемма 1.

Лемма 1. Верхний и нижний центральные ряды кольца Ли ЫФ(К) при р(Ф)!К = К совпадают с её стандартным центральным рядом: Г, = = 2к, (0 < , < к + 1).

В описаниях в [5] автоморфизмов алгебр Ли ЫФ(К) типа Вп при К = 2К и типа Оп, когда аннулятор А2 элемента 2 в К нулевой, основные нестандартные автоморфизмы, по существу, исчерпывают следующие гиперцентральные автоморфизмы высоты 2, построенные по аналогии с Гиббсом [6]. В системе корней Ф типа Вп и Оп всегда существует и единствен простой корень д такой, что я = р-д е Ф+. Автоморфизм Гиббса алгебры Ли ЫФ(К) получаем для любого / е К как линейное продолжение отображения

^ ед + А

е ^ е

(а Ф д).

Оказывается, при А2 Ф 0 как раз и появляются разнообразные исключительные автоморфизмы, что и потребовало для их систематизации ввести в [8] гиперцентральные автоморфизмы. Далее мы построим даже гиперцентральные автоморфизмы высоты, зависящей от лиева ранга.

Легко проверить, что при / е К линейное отображение алгебры МФ(К) типа Вп, оставляющее на месте ег, когда г - длинный корень или максимальный короткий корень с, и переводящее ег в ег+ /ег+с для любого короткого корня г Ф с, является автоморфизмом, который называем полувнутренним (при / /2 е К это корневой автоморфизм хс(//2)).

Выявим автоморфизмы алгебры Ли ЛОп(К) (п > 4) с нестандартным действием по модулю централа Г2. Как и в [4], в группе 5Ь(2, К) выделяем подгруппу

5 :=■

12

22 У

\БЬ(2, К) | 2а11а12 = 2а,

21 22

= 0

В системах корней Ф типа Оп (п > 4) выбирают однозначно симметрию порядка 2 и простые симметричные корни г и г . Аналогично [4] для типа А3 = = О3, любой матрице А е 5 соответствует автоморфизм А алгебры Ли ЛЮп(К), характеризуемый действием

А : ег ^ а11ег + а12<%, ег ^ а21ег + а22ег,

е. ^ е„

(я е П\{г,г}).

Центральные ряды кольца Ли ЛВп(К) при 2К Ф К строятся сложнее. Мы используем представление из [8] алгебр ЫФ(К) классических типов специальными матрицами. Алгебра ЫФ(К) типа Вп выбирается с базисом {е,„ | 0 < V < , < п}, а типа Оп - как подалгебра с базисом {е,„ | 0 < V < , < п}. Произвольный элемент а е ^Ф(К) в них представляем суммой а = ^Ауе^, = = ||а„||, называя, соответственно, Вп+-матрицей и Оп+-матрицей. Тогда умножение определяется по правилу:

Ф = Вп, Оп: [еу,ер] = е,п [ер,е-] = е- (, >у > V > 0), (1)

Ф = Вп: [еу,ер] = еда, [е^] = 2еич (, >у).

Подмодуль в с базой {е„, | 0 < V < и < п, и - V > ,}

п

обозначим через Ь}°. Пусть также ^Ке,0, 1 <у < п.

'=1

С помощью соотношений (1) несложно вытекает лемма 2.

Лемма 2. Центральные ряды кольца Ли ЛВп(К) записываются в виде:

Г, = Ьг[0 + Ь++2 + 2Ь, (1 < , < п), Г, = Ь+2 + 2Ь, (п < , < 2п - 3), Г, = 2Ь, (, > 2п - 2);

2, = Ь2п-, + А2Яп+1-г (1 < , < п - 2),

2п-1 = Ьп+1 + А2^2 + A2en1,

2п+, = Ьп-, + А2^1 + А2Ьп-,-21° (0 < , < п - 3),

22п-2 = Ь2 + А2Ь1.

Автоморфизмы колец Ли NФ(K) ортогональных типов. Ступень нильпотентности кольца Ли ЫФ(К), а поэтому и функция % = % (Ф, К) наивысшей высоты его гиперцентральных автоморфизмов ограничена числом Кокстера к = к(Ф) системы корней Ф. Естественно, возникает вопрос о наилучшей оценке функции х (Ф, К).

Близка к ступени нильпотентности высота следующих гиперцентральных автоморфизмов алгебры Ли НВп(К) (п > 3):

я-1

X ,4 : а а + Е ак,-1 (,ек 0 + 4еп,-к ) № е A2),

к=2

п

: а = ||аuv11 ^ а +1 Е ак1екч,

к=1+1

, = 1, ..., п - 2 (, е А2).

Когда 2К Ф К, к порождающим множествам Кец-1 (0 < , < п + 1) кольца Ли НВп(К) следует добавить Ке2 -1. При обратимом 1 + с е 1 + А2 выделяем полудиагональный автоморфизм

Ь[-1): е,к, ^ (1 + с)еь (0 <-V < к < п), е^ ^ еь (0 < V < к < п).

При А2 Ф 0 мы выделяем, кроме указанных, также другие гиперцентральные автоморфизмы высоты 3, 4 и 5, индуцирующие автоморфизмы и подалгебры НОп(К). Вместе с полувнутренними автоморфизмами, автоморфизмами Гиббса, (, > 1) и они порождают подгруппу автоморфизмов алгебры ЛВп(К), обозначаемую через У(Вп).

Теорема 1. Всякий автоморфизм кольца Ли ЫВп(К), п > 4, есть произведение автоморфизма из У(Вп), стандартного и вида 5с(ч), автоморфизмов.

Нильтреугольная алгебра Ли НОп(К) представляется в алгебре НВп(К) подалгеброй всех Вп+-матриц, у которых 0-й столбец состоит из нулей. Она инвариантна относительно автоморфизмов (1 < , < п - 2, , е А2) и автоморфизмов из У(Вп) высоты < 5. Их ограничения индуцируют автоморфизмы алгебры Л©п(К) (обозначения сохраняем), порождающие подгруппу автоморфизмов алгебры НОп(К), обозначаемую через У(Оп).

Изоморфизм группы (А2, +) на пересечение У(Оп) П 5, очевидно, дает отображение , ^ (, е А2). Автоморфизмы кольца Ли Л©п(К) описывает теорема 2.

Теорема 2. Всякий автоморфизм кольца Ли НОп(К), п > 4, есть произведение стандартного автоморфизма на автоморфизм из 5 -У(Оп).

В доказательствах теорем существенно используется характеристичность централов Г; и гиперцентров Zj, а также их централизаторов. Вначале удается провести редукцию произвольного автоморфизма к гиперцентральным автоморфизмам; используются умножения на диагональный и индуцированный кольцевой автоморфизмы и, кроме того, автоморфизм из S для типа Dn, полудиагональный и вида автоморфизмы для типа Bn. Далее автоморфизм удается редуцировать к центральному автоморфизму умножениями на внутренние и построенные гиперцентральные автоморфизмы.

Заключение. Полученные теоремы решают также вопрос (А) об автоморфизмах алгебр N<^(K). Вместе с основными теоремами из [4; 12] они показывают также, что группа автоморфизмов кольца Ли NO(K) классического типа ранга n >4 есть произведение группы автоморфизмов алгебры Ли N<X>(K) на произведение подгрупп центральных автоморфизмов и автоморфизмов, индуцированных автоморфизмами основного кольца K.

Благодарности. Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант 16-01-00707.

Acknowledgments. This work was supported by the Russian Foundation for Basic Research, grant 16-01-00707.

Библиографические ссылки

1. Carter R. Simple groups of Lie type. New York : Wiley and Sons, 1972. 346 p.

2. Stein M. R. Generators, relations and coverings of Chevalley groups over commutative rings // Amer. J. Math. 1971. Vol. 93, No. 4. P. 965-1004.

3. Hurley J. F. Ideals in Chevalley algebras // Trans. Amer. Math. Soc. 1969. Vol. 137, No. 3. P. 245-258.

4. Левчук В. M. Связи унитреугольной группы с некоторыми кольцами. Ч. 2. Группы автоморфизмов // Сибирский матем. журнал. 1983. Т. 24, № 4. С. 543-557.

5. Cao Y., Jiang D., Wang D. Automorphisms of certain nilpotent algebras over commutative rings // J. Algebra. 2007. Vol. 17, No. 3. P. 527-555.

6. Gibbs J. Automorphisms of certain unipotent groups // J. Algebra. 1970. Vol. 14, No. 2. P. 203-228.

7. Кондратьев А. С. Подгруппы конечных групп Шевалле // Успехи математических наук. 1986. Т. 41, № 1. С. 57-96.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

8. Левчук В. М. Автоморфизмы унипотентных подгрупп групп Шевалле // Алгебра и логика. 1990. Т. 29, № 3. С. 316-338.

9. Levchuk V. M. Chevalley groups and their unipotent subgroups // Contemp. Math., AMS. 1992. Vol. 131, p. 1. P. 227-242.

10. Левчук В. M. Теоретико-модельные и структурные вопросы алгебр и групп Шевалле // Математический форум, группы и графы. Владикавказ : ЮМИ ВНЦ РАН и РСО-А, 2011. Т. 6. C. 71-80.

11. Мальцев А. И. Об одном соответствии между кольцами и группами // Мат. сб. 1960. Т. 50. С. 257-266.

12. Литаврин А. В. Автоморфизмы нильпотентной подалгебры NO(K) алгебры Шевалле симплектиче-ского типа // Известия ИркГУ, сер. математическая. 2015. Т. 13, № 3. С. 41-55.

13. Нильтреугольные подалгебры алгебр Шевалле и их обобщения / В. М. Левчук [и др.] // Владикавказский матем. журнал. 2015. Т. 17, № 2. С. 37-46.

14. Seligman G. B. On automorphisms of Lie algebras of classical type III // Trans. Amer. Math. Soc. 1960. Vol. 97. P. 286-316.

15. Steinberg R. Lections on Chevalley groups. Yale University, 1967. 151 p.

16. Бурбаки H. Группы и алгебры Ли. М. : Мир, 1972. 334 c.

References

1. Carter R. Simple groups of Lie type. New York: Wiley and Sons. 1972, 346 p.

2. Stein M. R. Generators, relations and coverings of Chevalley groups over commutative rings. Amer. J. Math. 1971, Vol. 93, No. 4, P. 965-1004.

3. Hurley J. F. Ideals in Chevalley algebras. Trans. Amer. Math. Soc. 1969, Vol. 137, No. 3, P. 245-258.

4. Levchuk V. M. [Communication unitriangular group with some rings. Part 2. Groups of automorphisms]. Sibirskiy matematicheskiy zhurnal. 1983, Vol. 24, No. 4, P. 543-557 (In Russ.).

5. Cao Y., Jiang D., Wang D. Automorphisms of certain nilpotent algebras over commutative rings. J. Algebra. 2007, Vol. 17, No. 3, P. 527-555.

6. Gibbs J. Automorphisms of certain unipotent groups. J. Algebra. 1970, Vol. 14, No. 2, P. 203-228.

7. Kondrat'ev A. S. [Subgroups of finite Chevalley groups]. Uspekhi matematicheskikh nauk. 1986, Vol. 41, No. 1, P. 57-96 (In Russ.).

8. Levchuk V. M. [Automorphisms of unipotent subgroups of Chevalley groups]. Algebra i logika. 1990, Vol. 29, No. 3, P. 316-338 (In Russ.).

9. Levchuk V. M. Chevalley groups and their unipotent subgroups. Contemp. Math., AMS. 1992, Vol. 131, Part 1, P. 227-242.

10. Levchuk V. M. [Model-theoretic and structural problems of algebra and Chevalley groups]. Mate-maticheskiy forum, gruppy i grafy.-Vladikavkaz: YuMI VNTs RAN i RSO-A. 2011, Vol. 6, P. 71-80 (In Russ.).

11. Mal'tsev A. I. [A correspondence between the rings and groups]. Matematicheskiy sbornik.1960, Vol. 50, P. 257-266 (In Russ.).

12. Litavrin A. V. [Automorphisms of the nilpotent subalgebra N<&(K) Chevalley algebra of symplectic type]. Izvestiya IrkGU, ser. matem. 2015, Vol. 13, No. 3, P. 41-55 (In Russ.).

13. Levchuk V. M., Litavrin A. V., Khodyunya N. D., Tsygankov V. V. [Niltriangular subalgebras of the Chevalley algebras and their generalizations]. Vladikav-kazskiy matematicheskiy zhurnal. 2015, Vol. 17, No. 2, P. 37-46 (In Russ.).

14. Seligman G. B. On automorphisms of Lie algebras of classical type. III. Trans. Amer. Math. Soc. 1960, Vol. 97, P. 286-316.

15. Steinberg R. Lections on Chevalley groups. Yale University, 1967, 151 p.

16. Bourbaki N. Gruppy i algebry Li [Groups and Lie algebra]. Moscow, Mir Publ., 1972, 334 p.

© Левчук В. M., Литаврин А. В., 2016

i Надоели баннеры? Вы всегда можете отключить рекламу.