WOUND CARE WITH THE LEAF EXTRACT OF CECROPIN P1-PRODUCING TRANSGENIC KALANCHOE: HISTOLOGICAL FINDINGS
Belous AS1,2 Shevelev AB1, Trubnikova EV1, Biryukova YuK1, Mishina ES2, Loyko EA2, Lebedeva AA3, Zakharchenko NS3
1 Research Laboratory "Genetics", Kursk State University, Kursk, Russia
2 Kursk State Medical University, Kursk, Russia
3 Puschino branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of RAS, Puschino, Russia
Management of purulent wounds is a problem that requires particular attention: wounds are a common injury type for which suppurative complications are frequent, mortality rates are high and antimicrobial therapy may be ineffective due to the presence of drug-resistant bacteria in the wound. In this work we have studied the effectiveness of wound treatment with the leaf extract of transgenic Kalanchoe pinnata modified to produce antimicrobial peptide cecropin P1. Purulent wounds infected with Staphylococcus aureus were modeled in Wistar rats. Four groups of animals were formed, with 10 animals in each group. In all groups, the wounds were cleansed with 3 % hydrogen peroxide solution once a day; all groups except the controls received additional treatment. Group 2 received 10 % cefazolin solution, group 3 received kalanchoe juice, group 4 received the juice of cecropin P1-producing kalanchoe. Histologic stains of biopsy samples were performed after rats were sacrificed by anesthetic overdose on days 3, 10 and 14 after treatment onset. On day 3, wound dynamics was the same in all groups. On day 10 exudate was still observed in the controls; in group two exudation was almost finished and regeneration was about to begin; in groups 3 and 4 the wound defect was filled with granulation tissue. In spite of epidermal repair along the wound edges in groups 2 and 3, there still was some sloughing and granulation tissue was less mature than in group 4. We recommend conducting more extensive clinical research of the leaf extract of cecropin P1-containing transgenic Kalanchoe pinnata.
Keywords: wound healing, purulent wound, Staphylococcus aureus, Kalanchoe pinnata, cecropin P1, antimicrobial treatment
Funding: this work was supported by the Ministry of Education and Science of the Russian Federation (Grant No. 14.607.21.0016 dated June 5, 2014, ID RFMEFI60714X0016).
Acknowledgements: we thank Viktor Lazarenko of Kursk State Medical University and Alexandr Khudin of Kursk State University for providing full access to the research facilities of both universities.
[><] Correspondence should be addressed: Alexandr Belous
prospect A. Deriglazova, d. 71, kv. 89, Kursk, Russia, 305014; a.s.belous@mail.ru
Received: 05.02.2017 Accepted: 18.02.2017
ЛЕЧЕНИЕ РАН ЭКСТРАКТОМ ЛИСТЬЕВ ТРАНСГЕННОГО КАЛАНХОЭ С ЦЕКРОПИНОМ P1 (ГИСТОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ)
А. С. Белоус1,2 А. Б. Шевелев1, Е. В. Трубникова1, Ю. К. Бирюкова1, Е. С. Мишина2, Е. А. Лойко2, А. А. Лебедева3, Н. С. Захарченко3
1 Научно-исследовательская лаборатория «Генетика», Курский государственный университет, Курск
2 Курский государственный медицинский университет, Курск
3 Пущинский филиал,
Институт биоорганической химии имени академиков М. М. Шемякина и Ю. А. Овчинникова, Пущино
Проблема лечения гнойных ран актуальна в хирургии в связи с распространенностью ран различной этиологии, частотой гнойных осложнений, высокой летальностью, появлением антибиотикорезистентных штаммов бактерий. В работе исследована эффективность фармакотерапии раневого процесса экстрактом листьев трансгенного каланхоэ перистого с антимикробным пептидом цекропином P1. Гнойную рану моделировали на крысах линии Wistar с внесением в рану культуры Staphylococcus aureus. Сформировали 4 группы по 10 животных в каждой. Во всех группах раны обрабатывали ежедневно однократно 3 % раствором перекиси водорода и дополнительным препаратом, кроме группы 1 (контрольной). В группе 2 использовали 10 % раствор цефазолина, в группе 3 — сок каланхоэ, в группе 4 — сок каланхоэ с цекропином P1. Гистологическое исследование раневых биоптатов производили на 3, 10 и 14 сутки с начала лечения после выведения крыс из эксперимента путем передозировки наркоза. Результаты лечения через 3 сут были схожими во всех группах. Через 10 сут для ран крыс контрольной группы была отмечена незавершенность фазы экссудации, группы 2 — переход фазы экссудации в фазу регенерации, а групп 3 и 4 — покрытие грануляционной тканью. Несмотря на восстановление эпидермиса по краям ран в группах 2 и 3, кое-где сохранялся струп, а грануляционная ткань была менее зрелой, чем в группе 4. Результаты позволяют рекомендовать экстракт листьев трансгенного каланхоэ перистого с цекропином P1 для широкого клинического изучения.
Ключевые слова: раневой процесс, гнойная рана, Staphylococcus aureus, каланхоэ перистое, Kalanchoe pinnata, цекропин P1, антимикробная терапия
Финансирование: работа выполнена при поддержке Министерства образования и науки РФ (соглашение № 14.607.21.0016 от 5 июня 2014 г., шифр RFMEFI60714X0016).
Благодарности: Виктору Лазаренко из Курского государственного медицинского университета и Александру Худину из Курского государственного университета за возможность выполнения экспериментальной части исследования на базе научно-исследовательских лабораторий университетов.
Для корреспонденции: Белоус Александр Сергеевич
пр-т А. Дериглазова, д. 71, кв. 89, г Курск, 305014; a.s.belous@mail.ru
Статья получена: 05.02.2017 Статья принята к печати: 18.02.2017
Treatment of purulent wounds of various origins is complicated by frequent suppurative complications and associated with high fatality rates entailing considerable expenses [1, 2]. According to some authors, suppurative complications account for 3035 % of all surgical conditions, causing death in 25 % of cases [3-5].
There are a lot of approaches to treating purulent wounds [6-10]; new methods are also being continuously developed and introduced into clinical routine. Among them are hyperbaric oxygen therapy, laser therapy, magnet therapy, wound treatment in the aseptic environment, etc. [11-15]. But the most common method relies on the use of dressings, since they are available, easy to use and cheap [16-18].
It should be noted that overuse or misuse of antibacterial drugs promotes antibiotic resistance in bacteria impeding treatment of complex chronic diseases, such as venous leg ulcers in diabetic patients who have to undergo a long-term antibacterial therapy [19, 20]. Promising alternatives to traditional antibiotics are antimicrobial peptides and biostimulators that promote healing, such as kalanchoe.
Many plants of the genus Kalanchoe are medicinal herbs: their juice is used to treat burns, dermal wounds, and ulcers; they can be used as biostimulators after skin grafting. Kalanchoe juice is rich in flavonoids, such as bufadienolides and lectins known to trigger mitosis in lymphocytes, vitamins, organic acids, polysaccharides, antioxidants, and micronutrients [21, 22]. So far, transgenic plants — "bioreactors" for producing active pharmaceutical ingredients — have been engineered based on K. daigremontiana [23, 24], K. laciniata [25] and K. blossfeldiana [26]. Of them all, K. pinnata has the most substantial pharmacological potential. In 2012 a new method was developed to obtain transgenic K. pinnata plants in which the gene of cecropin P1 is expressed [27].
Cecropin P1 is a secretory factor of a large roundworm of pigs, Ascaris suum; it belongs to the group of linear a-helical peptides that do not contain cysteine [28]. Unlike insect cecropins, porcine cecropin P1 consists of a long positively charged a-helix that carries a large number of amino acid residues. In the experiments in vitro, cecropin P1 has been shown to be highly active against gram-positive and gramnegative pathogenic bacteria [29], fungi [30] and some tumor cells [31], but its antimicrobial activity in vivo has not been reported so far.
In light of the above, our work aimed to assess the effect of the leaf extract of transgenic cecropin P1-producing K. pinnata on purulent wounds infected with Staphylococcus aureus in the rat model.
METHODS
The experiment was carried out in Wistar rats (age of 4 months, weight of 200-220 g) that had been quarantined prior to the experiment in the animal facility of the Research Institute for Environmental Medicine of Kursk State Medical University. Only healthy animals were chosen for the experiment. The animals were housed in a standard biologically clean room at 2224 °C under 12/12 light cycle. All rats received pellet food and filtered tap water. Treatments were conducted in the afternoon at a fixed time. The rats were anaesthetized with intraperitoneal injections of the chloral hydrate aqueous solution, 300 mg/kg body weight, and sacrificed with its overdose. The experiment was conducted in compliance with the principles of the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (Strasburg, 1986).
The animals were stratified by body weight and the type of treatment applied. The rats with a modeled purulent wound infected with S. aureus were distributed into the following groups: group 1 (controls) consisted of animals treated with 3 % hydrogen peroxide (n = 10); group 2 included animals treated with 3 % hydrogen peroxide and 10 % cefazolin solution (n = 10); group 3 included animals treated with 3 % hydrogen peroxide and kalanchoe juice (n = 10); group 4 consisted of animals treated with 3 % hydrogen peroxide and transgenic kalanchoe juice with cecropin P1 (n = 10). Wounds were modeled on the anaesthetized animals under sterile conditions. A 20 x 20 mm area on the back was shaved to remove hair and treated with an aseptic followed by the excision of the skin and subcutaneous tissue. Then 1 ml of 106 CFU/ml S. aureus 592 solution (a 24-h old culture) was introduced into the wound. To provide uniform treatment conditions, prevent the wound from deformation, drying, contamination or animal bites, a piece of gauze dressing was sewn onto the skin to cover the wound. In 48 h all animals showed typical signs of inflammation and suppuration. After sutures were removed, the dressing was taken off, puss was drained and wound care was performed once a day for 14 days in a row.
Biopsy was performed on days 3, 10 and 14 after treatment onset; the animals were sacrificed in threes. Soft tissue samples were excised from the wound bed and the adjacent edges using the razor. The samples were immediately fixed in 10 % neutral formalin solution, dehydrated through an ascending series of alcohols and embedded into paraffin according to the standard protocol. Paraffin slices were stained with hematoxylin and eosin.
Microscopy and microimaging were performed using the optical system consisting of Leica CM E microscope (Leica Microsystems, Germany) and Micromed DCM-510 SCOPE digital camera (Nablyudatelnie pribory, Russia) at magnifications of x40, x100, x200 and x400; images were captured using Future Win Joe software (Future Optics, China) supplied with the digital camera. In the course of the histological analysis, we assessed inflammation intensity, the onset of granulation, epithelialization at wound edges, and quality of the new epithelium. A cell profile of the tissue adjacent to the wound edges or of the newly formed tissue at later healing stages was also prepared. Fibrous tissue was differentiated from other cells karyologically. The proportion of various type cells was calculated after counting 100 cells in > 10 non-overlapping fields of view.
Statistical analysis was performed using Microsoft Excel 10.0. Mean value (M) and standard error of mean (m) were computed for all parameters. The two-sample t-test with unequal variances was applied to compare the groups and establish differences between them. Differences were considered significant at p < 0.05
RESULTS
Treatment outcome in group 1 (controls)
Day 3
Purulent wounds showed signs of acute suppurative inflammation. The wound surface was covered with fibrinous and leukocyte detritus; underneath, degrading leukocytes were accumulating and hemorrhagic areas were observed. Tissues adjacent to the wound were edematous showing signs of leukocyte infiltration. Edema and infiltration were observed in deeper layers, down to the muscle tissue. The epithelium at the
wound edges was thickened and disorganized. In the dermis, collagen fibers were swollen and blood vessels were dilated and plethoric (Fig. 1, A).
Day 10
The wounds were filled with a purulent necrotic mass; the epidermis at the wound edges was thickened. Macrophages and mast cells were observed in the dermis which showed conspicuous leukocyte infiltration (see Table). Interstitial edema had spread into deeper dermal layers down to the muscle fibers (Fig. 1, B).
Day 14
Deep leukocyte infiltration was still present; the wounds were filled with necrotic tissue. The dermis was edematous at the wound edges, and the epidermis was thinned. Edema and infiltration persisted in the underlying muscle tissue. Granulation tissue started to develop in the wound bed; occasional microabscesses were observed filled with leukocytes (Fig. 1, C).
Treatment outcome in group 2 (10 % cefazolin solution)
Day 3
Histology revealed signs of acute suppurative inflammation. The wounds were filled with necrotic tissue; multiple leukocyte and fewer neutrophil infiltrates were observed. A large number of macrophages were spotted in a field of view (Fig. 1, D).
Day 10
Connective tissue was actively growing in the dermis to form the organized structure; fibroblastic cells and macrophages were abundant (see Table). Epithelial cells were vigorously proliferating and differentiating. (Fig. 1, E).
Day 14
Areas of the new epidermis with clearly differentiated layers were noticed, but its thickness exceeded that of the intact skin. Granulation tissue was mature. A few inflammatory microfoci were spotted in deeper dermal layers. On the whole, the wound granulated actively; granulation tissue was subsequently replaced by fibrous tissue. The skin defect was covered with multiple collagen fibers running in different directions (Fig. 1, F).
Treatment outcome in group 3 (kalanchoe juice)
Day 3
We observed a morphological pattern similar to that in the controls and group 2. Mast cells were actively involved in the reparative process indicated by the increased number of total cells near the wound. The wound retained residual purulent exudate and necrotic tissue. (Fig. 2, А).
Day 10
The epidermis at the edges started to advance to the wound bed where foci of granulation tissue had already appeared. Single collagen fibers were arranged chaotically surrounded predominantly by fibroblasts and macrophages (Table, Fig. 2, B).
Day 14
In some samples, complete epithelialization was observed. Variably mature granulation was observed in the derma. Collagen fibers were surrounded by fibroblasts and ran parallel to the skin surface (Fig. 2, C).
Treatment outcome in group 4 (juice of transgenic kalanchoe producing cecropin P1)
Day 3
The wounds were filled with necrotic tissue. The samples contained a lot of neutrophils. Marked edema and dilated capillaries were observed in the derma (Fig. 2, D).
Day 10
Regeneration was accompanied by a localized inflammatory response induced by the arrival of neutrophils at the wound site. Inflammatory infiltrates were polymorphic. The wound bed was granulating. Vigorous angiogenesis improved tissue vascularization in the area surrounding the wound; edema diminished, inflammatory infiltration decreased (Fig. 2, E).
Day 14
The wound was filled with multiple collagen fibers surrounded by fibroblasts. Fibers were arranged chaotically, though horizontal orientation prevailed. The epithelium was advancing growing over the granulation tissue. It was thicker than the intact skin (Fig. 2, F).
Comparison of treatment outcomes
Histological analysis conducted on day 3 of the experiment did not reveal any significant differences in treatment outcomes in different groups. However, on day 10 the situation was different. The exudative phase was still unfinished in the control group. In group 2 the exudative phase was giving way to the remodeling phase. In groups 3 and 4 the wounds were granulating.
On day 14 the number of fibroblasts significantly exceeded the number of granulocytes and macrophages in groups 3 and 4 (see Table) indicating an active regenerative process. Regeneration was the most successful in group 4 (transgenic kalanchoe with cecropin P1). By the end of the experiment the wounds in this group had been fully covered with the new epidermis.
DISCUSSION
Since 2007, a number of authors have described the process of obtaining a transgenic K. pinnata able to express the cecropin P1 gene and accumulate this peptide in the cytoplasm [30]. Accumulation of cecropin P1 and its effect on phytopathogens and traditional bacterial cultures have been assessed in vitro. However, neither of those works contain any information about the therapeutic effect of transgenic kalanchoe juice in the treatment of infections in animas. Still, healing, immunomodulatory and remodeling properties of K. pinnata [32] may enhance the antibacterial effect of cecropin P1 in the experiments with the transgenic plant in vivo.
Our study demonstrates that kalanchoe juice expedites transition from the first stage of the inflammatory process to remodeling. In comparison with the controls, kalanchoe
Fig. 1. Histological study of wounds modeled in rats. (A-C) Histological slices of animals in the control group (group 1) sacrificed at different stages of the experiment: (A) on day 3; (B) on day 10; (C) on day 14. (D-F) Histological slices of animals in group 2 (additional treatment with 10 % cefazolin) sacrificed at different stages of the experiment: (D) on day 3; (E) on day 10; (F) on day 14. Hematoxylin and eosin staining, x280
Fig. 2. Histological study of wounds modeled In rats. (A-C) Histological slices of animals In group 3 (additional treatment with kalanchoe juice) sacrificed at different stages of the experiment: (A) on day 3; (B) on day 10; (C) on day 14. (D-F) Histological slices of animals in group 4 (additional treatment with kalanchoe juice containing antimicrobial peptide cecropin P1) sacrificed at different stages of the experiment: (D) on day 3; (E) on day 10; (F) on day 14. Hematoxylin and eosin staining, *280
Proportion of various cells In the modeled wounds with regard to the treatment type and the day of sacrifice
Group Day of sacrifice
3 10 14
Fibroblasts Macrophages Granulocytes Lymphocytes Fibroblasts Macrophages Granulocytes Lymphocytes Fibroblasts Macrophages Granulocytes Lymphocytes
1 (controls) 14,7 ± 0,7 12,9± 0,3 49,9 ± 1,8 22,5 ± 0,6 17,0 ± 0,4 13,3 ± 0,2 48,0 ± 2,8 21,7 ± 0,3 24,9 ± 0,5 38,7 ± 1,7 15,6 ± 0,8 20,8 ± 0,3
2 (10 % cefalozin solution) 9,5 ± 0,2 59,3 ± 2,1 7,9 ± 0,2 23,3 ± 0,2 15,2 ± 0,1 62,4 ± 1,3 7,5 ± 0,4 14,9 ± 0,6 31,9 ± 0,7 51,7 ± 2,6 8,4 ± 0,1 8,0 ± 0,1
3 (kalanchoe juice) 12,9 ± 0,6 37,1 ± 0,7 30,3 ± 1,6 19,7 ± 0,4 17,7 ± 0,2 38,9 ± 1,6 15,6 ± 0,2 27,8 ± 0,4 24,0 ± 0,6 47,3 ± 2,5 14,4 ± 0,2 14,3 ± 0,2
4 (kalanchoe juice + cecropin P1) 12,1 ± 0,2 21,4 ± 0,4 44,0 ± 1,2 22,5 ± 0,1 20,5 ± 1,0 23,9 ± 0,4 24,2 ± 1,1 31,4 ± 2,6 30,1 ± 1,2 26,4 ± 1,6 18,4 ± 1,1 25,1 ± 1,2
treatment promoted faster elimination of edema and debridement of necrotic tissue, stimulated granulation and epithelialization. The polymorphic cell profile and the presence of variably mature fibroblastic cells indicate a stimulating effect of the transgenic kalanchoe on the proliferative and functional activity of granulation tissue. The therapeutic effect of transgenic kalanchoe juice is very marked at the last stage of wound healing in comparison with the controls. A combination treatment with 1 % cefazolin and kalanchoe juice was more effective than the treatment received by the controls. Still it was less effective than in the group treated with transgenic kalanchoe: in spite of complete regeneration of the epidermis at the wound edges in groups 2 and 3, sloughing was still observed, and the presence of various cell types in the granulation tissue indicated that it was less mature in comparison with group 4. Full epidermal closure in group 4 and integumentary structures indicated faster regeneration and complete skin restoration due to a more active migration and proliferation of endotheliocytes and vigorous angiogenesis.
Surprisingly, transgenic kalanchoe juice produced a stronger inhibitory effect on the growth of S. aureus in vivo than we had expected knowing about its antibacterial activity demonstrated in some experiments in bacterial cultures in vitro [30]. This might be due to the combined antimicrobial effects of P1 cecropin and endogenous bufadienolides of K. pinnata. Besides, the rate of pathogen elimination from the wound could be determined to a great extent by hemagglutination of K. pinnata lectins that have an immunostimulatory effect [33]. Similar to concanavalin and phytohemagglutinin, these lectins can promote proliferation of
lymphocytes, including those that recognize specific pathogen antigens accumulating near the infection site. Coupled with cecropin Pi-induced suppression of bacterial functions and the antimicrobial factors of the juice, lectins can promote healing and stimulate production of antigens. Also, pathogen elimination from the wound can be expedited by vascularization and scar tissue remodeling induced by some kalanchoe juice components, yet unidentified. This can stimulate transport of immune system cells and soluble factors to the infection site promoting better healing.
CONCLUSIONS
We have demonstrated a strong therapeutic effect of transgenic kalanchoe juice (with cecropin Pi) on purulent wounds infected with S. aureus in rats. The obtained results allow us to recommend the studied substance for use in the clinical setting. Transgenic kalanchoe juice is a promising agent for treating varicose leg ulcers in patients with diabetes. Their immunity is compromised and the ulcers often harbor mixed infections; however, long-term therapy is complicated by drug resistance that bacteria develop in the course of treatment.
In cases of external bacterial infections, the use of transgenic kalanchoe juice instead of the extracted antimicrobial peptide will reduce purification expenses and enhance the therapeutical effect of cecropin Pi. Thus, K. pinnata may be recommended as a promising, cost-effective and available "bioreactor" for obtaining peptide- or protein-derived antimicrobial substances, including alpha-lytic protease, lysostaphin and hirudin.
References
1. Blatun LA. Mestnoe medikamentoznoe lechenie ran. Problemy i novye vozmozhnosti ikh resheniya. Consilium Medicum. Khirurgiya. (Suppl). 2007; (1): 9-15. Russian.
2. Heal C, Buettner P, Browning S. Risk factors for wound infection after minor surgery in general practice. Med J Aust. 2006 Sep 4; 185 (5): 255-8.
3. Abaev YuK. Spravochnik khirurga. Rany i ranevaya infektsiya. Rostov-on-Don: Feniks; 2006. 427 p. Russian.
4. Frolov AP, Mironov VI, Gileva II. Lechenie gnoino-nekroticheskikh zabolevanii myagkikh tkanei v usloviyakh khirurgicheskogo statsionara. In: Petrova MM, editor. Aktual'nye voprosy sovremennoi khirurgii: Proceedings of the Theoretical and Practical Conference; 2008 Mar 10-12; Moscow, Russia. Moscow; Krasnoyarsk: Prof. VF Voino-Yasenetsky KrasSMU Press; 2008. p. 457-9. Russian.
5. Belda FJ, Aguilera L, García de la Asunción J, Alberti J, Vicente R,
Ferrandiz L, et al. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA. 2005 Oct 26; 294 (16): 2035-42.
6. Moshurov IP, Banin IN, Minakov OE, Chernych MA. [Analisis of effectiveness an impuls stream of madical solution use in treatmant of inflamatory wounds]. Sistemnyi analiz i upravlenie v biomeditsinskikh sistemakh. 2008: 7 (1): 106-10. Russian.
7. Antonyuk AV. Vakuum-terapiya v kompleksnom lechenii khronicheskikh ran [abstract of the dissertation]. Yaroslavl: Yaroslavl State Medical University; 2007. 22 p. Russian.
8. Gadzhiev EA. Nizkointensivnaya lazernaya i impul'snaya induktsionnaya magnitoterapiya v lechenii gnoinykh ran [abstract of the dissertation]. Moscow: Gosudarstvennyi nauchnyi tsentr lazernoi meditsiny; 2007. 29 p. Russian.
9. Gurvich BL. Primenenie regional'noi distantsionnoi ul'trazvukovoi sanatsii v komplekse lecheniya bol'nykh s gnoinymi ranami (kliniko-
eksperimental'noe issledovanie) [abstract of the dissertation]. Voronezh: NN Burdenko Voronezh State Medical University; 2007. 21 p. Russian.
10. Isaev UM. Lechenie gnoinykh ran ozonomagnitoforezom (klinicheskoe issledovanie) [abstract of the dissertation]. Makhachkala: Dagestan State Medical University; 2008. 19 p. Russian.
11. Gaivoronskaia TV. [Experimental substantiation of indirect electrochemical blood oxidation and antioxidant therapy use efficacy in the treatment of festering soft tissues wounds]. Stomatologiia (Mosk). 2008; 87 (1): 18-21. Russian.
12. Zagirov UZ, Isaev UM, Salikhov MA. [Clinicopathologic basis of ozonomagnetophoresis in treatment of festering wounds]. Khirurgiia (Mosk). 2008; (12): 24-6. Russian.
13. Zagirov UZ, Isaev UM, Salikhov MA. Ozonomagnitoforez v lechenii gnoinoi rany. Vestnik novykh meditsinskikh tekhnologii. 2007; 14 (3): 207-8. Russian.
14. Vinnik luS, Karapetian GE, lakimov SV, Sychev AG. [Application of cryogenic stimulation in treatment of chronic wounds]. Vestn Khir Im I I Grek. 2008; 167 (1): 27-8. Russian.
15. Zatolokin VD, Khalilov MA, Moshkin AS, Yudina OA. [Experience in the use of new methods of treatment of purulent wounds in the experimental conditions]. Uchenye zapiski Orlovskogo gosudarstvennogo universiteta. Seriya: Estestvennye, tekhni-cheskie i meditsinskie nauki. 2010; (2): 160-2. Russian.
16. Kuznetsov NA, Nikitin VG. Shchadyashchie khirurgicheskie vmeshatel'stva i interaktivnye povyazki v lechenii infitsirovannykh ran. Consilium Medicum. Khirurgiya. (Suppl). 2006; (2): 39-45. Russian.
17. Petrova VV, Spesivtsev YuA, Kulikov YuF. Ispol'zovanie sorbiruyushchikh povyazok tipa «Resorb» v lechenii bol'nykh s gnoino-nekroticheskimi porazheniyami nizhnikh konechnostei pri sindrome diabeticheskoi stopy v ambulatornykh usloviyakh. Ambulatornaya khirurgiya. Statsionarozameshchayushchie tekhnologii. 2004; 16 (4): 163-4. Russian.
18. Meylan G, Tschantz P. [Surgical wounds with or without dressings. Prospective comparative study]. Ann Chir. 2001 Jun; 126 (5): 459-62. French.
19. Zhilina SV, Mironov AYu, Polikarpova SV, Pivkina NV. [Monitoring of Streptococcus isolated in pyoinflammatory diseases of the skin and soft tissue]. Kurskii nauchno-prakticheskii vestnik «Chelovek i ego zdorov'e». 2009; (2): 46-53. Russian.
20. Tillotson GS, Draghi DC, Sahm DF, Tomfohrde KM, Del Fabro T, Critchley IA. Susceptibility of Staphylococcus aureus isolated from skin and wound infections in the United States 2005-07: laboratory-based surveillance study. J Antimicrob Chemother. 2008 Jul; 62 (1): 109-15.
21. Sazhina NN, Lapshin PV, Zagoskina NV, Korotkova EI, Misin VM. [Comparative analysis of kalanchoe juice antioxidatic activity]. Khimiya rastitel'nogo syr'ya. 2013; (3): 113-9. Russian.
22. Akinsulire OR, Aibinu IE, Adenipekun T, Adelowotan T, Odugbemi
Литература
1. Блатун Л. А. Местное медикаментозное лечение ран. Проблемы и новые возможности их решения. Consilium Medicum. Хирургия. (Прил.). 2007; (1): 9-15.
2. Heal C, Buettner P, Browning S. Risk factors for wound infection after minor surgery in general practice. Med J Aust. 2006 Sep 4; 185 (5): 255-8.
3. Абаев Ю. К. Справочник хирурга. Раны и раневая инфекция. Ростов н/Д: Феникс; 2006. 427 с.
4. Фролов А. П., Миронов В. И., Гилёва И. И. Лечение гнойно-некротических заболеваний мягких тканей в условиях хирургического стационара. В сб.: Петрова М. М., редактор. Актуальные вопросы современной хирургии: Материалы научно-практической конференции; 10-12 марта 2008 г.; Москва, Россия. М.; Красноярск: Изд-во КрасГМА; 2008. с. 457-9.
5. Belda FJ, Aguilera L, García de la Asunción J, Alberti J, Vicente R, Ferrándiz L, et al. Supplemental perioperative oxygen and the risk
T. In vitro antimicrobial activity of crude extracts from plants Bryophyllum pinnatum and Kalanchoe crenata. Afr J Tradit Complement Altern Med. 2007 Feb 16; 4 (3): 338-44.
23. Garcês HM, Champagne CE, Townsley BT, Park S, Malhô R, Pedroso MC, et al. Evolution of asexual reproduction in leaves of the genus Kalanchoe. Proc Natl Acad Sci U S A. 2007 Sep 25; 104 (39): 15578-83.
24. Truesdale MR, Toldi O, Scott P. The effect of elevated concentrations of fructose 2,6-bisphosphate on carbon metabolism during deacidification in the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol. 1999 Nov; 121 (3): 957-64.
25. Grigoryan AYu, Bezhin AI, Pankrusheva TA, Ivanov AV, Zhilyaeva LV, Kobzareva EV, et al. [The immobilized form of antiseptics for the treatment of purulent wounds in the experiment]. Kurskiy nauchno-prakticheskiy vestnik "Chelovek i ego zdorovie". 2011; (4): 25-33. Russian.
26. Sanikhani M, Mibus H, Stummann BM, Serek M. Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Rep. 2008 Apr; 27 (4): 729-37.
27. Zakharchenko NS, Lebedeva AA, Bur'yanov Yal, inventors; Shemyakin-Ovchinnikov Institute of bioorganic chemistry, assignee. Sposob polucheniya geneticheski modifitsirovannykh rastenii kalankhoe, ekspressiruyushchikh gen tsekropina P1. Russian Federation patent RU 2445768. 2012 Mar 27. Russian.
28. Martemyanov EA, Shirin AS, Grudkov AT. Synthesis cloning and expression of genes for antibacterial peptides: cecropin, magainin, and bombinin. Biotechnol Lett. 1996; 18 (12): 1357-62.
29. Pillai A, Ueno S, Zhang H, Lee JM, Kato Y. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem J. 2005 Aug 15; 390 (Pt 1): 207-14.
30. Zakharchenko NS, Rukavtsova EB, Gudkov AT, Yukhmanova AA, Shkol'naya LA, Kado Cl, et al. Expression of the artificial gene encoding anti-microbial peptide cecropin P1 increases the resistance of transgenic potato plants to potato blight and white rot. Dokl Biol Sci. 2007 Jul-Aug; 415: 267-9.
31. Shin SY, Kang JH, Jang SY, Kim Y, Kim KL, Hahm KS. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Biochim Biophys Acta. 2000 Feb 15; 1463 (2): 209-18.
32. Kutsik RV, Zuzuk BM. Kalankhoe peristoe (Briofillyum chashechkovyi) Kalanchoe pinnata (Lam.) Pers. Analiticheskii obzor. Provizor [Internet]. 2004 [cited 2017 Feb 27]; (4-6). Available from: http://www.provisor.com.ua/archive/2004/N4/ art_27.php?part_code=68&art_code=4029;
33. Adenike K, Eretan OB. Purification and partial characterization of a lectin from the fresh leaves of Kalanchoe crenata (Andr.) Haw. J Biochem Mol Biol. 2004 Mar 31; 37 (2): 229-33.
of surgical wound infection: a randomized controlled trial. JAMA. 2005 Oct 26; 294 (16): 2035-42.
6. Мошуров И. П., Банин И. Н., Минаков О. Е., Черных М. А. Анализ эффективности местного лечения гнойно-воспалительной патологии при использовании импульсного потока лечебного раствора. Системн. анализ и управ. в биомед. системах. 2008: 7 (1): 106-10.
7. Антонюк А. В. Вакуум-терапия в комплексном лечении хронических ран [автореф. диссертации]. Ярославль: Ярославская государственная медицинская академия; 2007. 22 с.
8. Гаджиев Э. А. Низкоинтенсивная лазерная и импульсная индукционная магнитотерапия в лечении гнойных ран [автореф. диссертации]. М.: Государственный научный центр лазерной медицины; 2007. 29 с.
9. Гурвич Б. Л. Применение региональной дистанционной ультразвуковой санации в комплексе лечения больных с гнойными ранами (клинико-экспериментальное исследование)
[автореф. диссертации]. Воронеж: Воронежская государственная медицинская академия имени Н. Н. Бурденко; 2007. 21 с.
10. Исаев У. М. Лечение гнойных ран озономагнитофорезом (клиническое исследование) [автореф. диссертации]. Махачкала: Дагестанская государственная медицинская академия; 2008. 19 с.
11. Гайворонская Т. В. Экспериментальное обоснование эффективности применения непрямого электрохимического окисления крови и антиоксидантной терапии при лечении гнойных ран мягких тканей. Стоматология. 2008; 87 (1): 18-21.
12. Загиров У. З., Исаев У. М., Салихов М. А. Клинико-морфоло-гическое обоснование озономагнитофореза в лечении гнойной раны. Хирургия. Журнал имени Н. И. Пирогова. 2008; (12): 24-6.
13. Загиров У. З., Исаев У. М., Салихов М. А. Озономагнитофо-рез в лечении гнойной раны. Вестн. нов. мед. технол. 2007; 14 (3): 207-8.
14. Винник Ю. С. Карапетян Г. Э., Якимов С. В., Сычев А. Г. Использование криогенной стимуляции в лечении хронических ран. Вестн. хир. 2008; 167 (1): 27-8.
15. Затолокин В. Д., Халилов М. А., Мошкин A. C., Юдина О. А. Опыт применения новой методики лечения гнойных ран в экспериментальных условиях. Ученые записки Орловского государственного университета. Серия: Естественные, технические и медицинские науки. 2010; (2): 160-2.
16. Кузнецов Н. А., Никитин В. Г. Щадящие хирургические вмешательства и интерактивные повязки в лечении инфицированных ран. Consilium Medicum. Хирургия. (Прил.). 2006; (2): 39-45.
17. Петрова В. В., Спесивцев Ю. А., Куликов Ю. Ф. Использование сорбирующих повязок типа «Ресорб» в лечении больных с гнойно-некротическими поражениями нижних конечностей при синдроме диабетической стопы в амбулаторных условиях. Амбулат. хир. Стационарозам. технол. 2004; 16 (4): 163-4.
18. Meylan G, Tschantz P. [Surgical wounds with or without dressings. Prospective comparative study]. Ann Chir. 2001 Jun; 126 (5): 459-62. French.
19. Жилина С. В., Миронов А. Ю., Поликарпова С. В., Пивки-на Н. В. Стрептококки в этиологии гнойно-воспалительных заболеваний кожи и мягких тканей. Курский науч.-практ. вестн. «Человек и его здоровье». 2009; (2): 46-53.
20. Tillotson GS, Draghi DC, Sahm DF, Tomfohrde KM, Del Fabro T, Critchley IA. Susceptibility of Staphylococcus aureus isolated from skin and wound infections in the United States 2005-07: laboratory-based surveillance study. J Antimicrob Chemother. 2008 Jul; 62 (1): 109-15.
21. Сажина Н. Н., Лапшин П. В., Загоскина Н. В., Короткова Е. И., Мисин В. М. Сравнительный анализ антиоксидантной активности соков каланхоэ. Хим. растит. сырья. 2013; (3): 113-9.
22. Akinsulire OR, Aibinu IE, Adenipekun T, Adelowotan T, Odugbemi T. In vitro antimicrobial activity of crude extracts from plants Bryophyllum pinnatum and Kalanchoe crenata. Afr J Tradit
Complement Altern Med. 2007 Feb 16; 4 (3): 338-44.
23. Garces HM, Champagne CE, Townsley BT, Park S, Malho R, Pedroso MC, et al. Evolution of asexual reproduction in leaves of the genus Kalanchoe. Proc Natl Acad Sci U S A. 2007 Sep 25; 104 (39): 15578-83.
24. Truesdale MR, Toldi O, Scott P. The effect of elevated concentrations of fructose 2,6-bisphosphate on carbon metabolism during deacidification in the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol. 1999 Nov; 121 (3): 957-64.
25. Григорьян А. Ю., Бежин А. И., Панкрушева Т. А., Иванов А. В., Жиляева Л. В., Кобзарева Е. В. и др. Иммобилизованные формы антисептиков для лечения гнойных ран в эксперименте. Курский научно-практический вестник «Человек и его здоровье». 2011; (4): 25-33.
26. Sanikhani M, Mibus H, Stummann BM, Serek M. Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Rep. 2008 Apr; 27 (4): 729-37.
27. Захарченко Н. С., Лебедева А. А., Бурьянов Я. И., авторы; Институт биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова, патентообладатель. Способ получения генетически модифицированных растений каланхоэ, экспрессирующих ген цекропина P1. Патент РФ RU 2445768. 27 марта 2012.
28. Martemyanov EA, Shirin AS, Grudkov AT. Synthesis cloning and expression of genes for antibacterial peptides: cecropin, magainin, and bombinin. Biotechnol Lett. 1996; 18 (12): 1357-62.
29. Pillai A, Ueno S, Zhang H, Lee JM, Kato Y. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem J. 2005 Aug 15; 390 (Pt 1): 207-14.
30. Захарченко H. C., Рукавцова Е. Б., Гудков A. T., Юхмано-ва A. A., Школьная Л. А., Кадо К. И. и др. Эспрессия ис-кусствеенного гена антимикробного пептида цекропина P1 повышает устойчивость трансгенных растений картофеля к фитофторозу и белой гнили. Докл. АН. 2007; 415 (1): 129-31.
31. Shin SY, Kang JH, Jang SY, Kim Y, Kim KL, Hahm KS. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Biochim Biophys Acta. 2000 Feb 15; 1463 (2): 209-18.
32. Куцик Р. В., Зузук Б. М. Каланхоэ перистое (Бриофиллюм чашечковый) Kalanchoe pinnata (Lam.) Pers. Аналитический обзор. Провизор [Интернет]. 2004 [дата обращения 27 февраля 2017]; (4-6). Доступно по: http://www.provisor.com.ua/ archive/2004/N4/art_27.php?part_code=68&art_code=4029; http://www.provisor.com.ua/archive/2004/N5/art_33.php7part_ code=68&art_code=4048; http://www.provisor.com.ua/ archive/2004/N6/art_28.php?part_code=68&art_code=4087
33. Adenike K, Eretan OB. Purification and partial characterization of a lectin from the fresh leaves of Kalanchoe crenata (Andr.) Haw. J Biochem Mol Biol. 2004 Mar 31; 37 (2): 229-33.