УДК: 796.91
ТРЕНЕР
ВЗАИМОСВЯЗЬ СПОРТИВНЫХ РЕЗУЛЬТАТОВ НА ДИСТАНЦИЯХ КЛАССИЧЕСКОГО КОНЬКОБЕЖНОГО МНОГОБОРЬЯ У МУЖЧИН
Кандидат педагогических наук, профессор А.Г. Полозков Российская таможенная академия, Москва Г.А. Полозков
Москва
CORRELATION OF SPORTS RESULTS AT DISTANCES OF CLASSIC MEN'S ALLROUND SPEED SKIING A.G. Polozkov, professor, Ph.D. Russian Customs Academy, Moscow GA. Polozkov Moscow
Key words: speed skating, cluster analysis, regression, forecasting. Problems of special training in classic all-around speed skating are extremely relevant. European and World Championships and Olympic Games are the most prestigious competitions. Basically athletes who had gone through allround training won the Olympics. One can find in the modern scientific and methodical literature a significant amount of research devoted to the problems of the theory and methodology of sports training of speed skaters, however, the dependence of athletic performance at distances in men's classic all-round speed skating is studied insufficiently.
The purpose of the present study was to identify the relationship of men's athletic performance at classic all-round speed skating distances. The statistical data of speed skating results were borrowed from the official reference books, as well as from the online database «Speed skating. Statistics» and «ISU.org». The results of world champions in speed skating in the period from 1908 to 2013 were subject to a comparative analysis.
The statistical data were processed using the author's software by B.G. Mirkin (1985). The method of cluster analysis was applied to identify a more close relationship of athletic performance at all-round speed skating distances. The study revealed several homogeneous groups of athletes.
Applying the methods of multivariate statistics, coaches can determine the relationship of athletic performance not only between all-round speed skating distances, but also at adjoined distances.
Based on the identified relationships training means and methods for speed skaters can be modeled and results at the distances and the total of points in the allround can be forecasted.
Ключевые слова: конькобежный спорт, кластерный анализ, регрессия, прогнозирование.
Введение. Проблемы специальной подготовки конькобежцев в классическом многоборье чрезвычайно актуальны. Самыми престижными соревнованиями являются чемпионаты Европы, мира и Олимпийские игры, а олимпийскими чемпионами в основном становились спортсмены, прошедшие многоборную подготовку. В современной научно-методической литературе имеется значительное количество исследований, посвященных проблематике теории и методики спортивной тренировки конькобежцев, однако определение зависимости спортивных результатов на дистанциях классического конькобежного многоборья у мужчин достаточно изучены [1-3].
Цель исследования - выявить взаимосвязь спортивных результатов на дистанциях классического конькобежного многоборья у мужчин. Методика и организация исследования. Статистические данные результатов в конькобежном спорте были заимствованы нами из официальных справочных изданий, а также из базы данных «Конькобежный спорт. Статистика» и «SU.org» системы Internet. Сравнительному анализу были подвергнуты результаты чемпионов мира по конькобежному спорту в период с 1908 по 2013 г.
Результаты исследования и их обсуждение. Материалы статистически обрабатывались с применением авторской компьютерной программы Б. Г. Миркина (1985). С целью выявления более тесной взаимосвязи спортивных результатов на дистанциях конькобежного многоборья, применив метод кластерного анализа, мы обнаружили несколько однородных групп спортсменов. Для группы, в которую вошли выдающиеся конькобежцы Ард Схенк, Эрик Хайден, Николай Гуляев, выявлена линейная зависимость между результатами на дистанциях классического многоборья, описанная уравнением регрессии. Коэффициент корреляции между показателями равен 0,99. Уравнение регрессии имеет вид Y=a*T+b, где Y- искомый показатель, a и b - коэффициенты регрессии, Т - спортивный результат на дистанции, с.
Как видно из диаграммы рис. 1, различие реальных и расчетных результатов составляет менее 1 %: наибольший разброс на дистанции 10 000 м у Харма Кёйперс - 0,88 %; на дистанции 5000 м у Ивара Беллангруда - 0,64 %, или 3,2 с.
На диаграмме рис. 2 показана разница в очках расчетной суммы очков и её погрешность в процентах, или соотношение реального и расчетного показателей. Наибольшая погрешность (0,47 %, или 0,901 очка) - у Ивара Баллангруда, наименьшая -у Арда Схенка (0,08 %), что составляет -0,134 очка. Выявлена взаимосвязь спортивных результатов в данной группе конькобежцев. Предлагаемые линейные уравнения регрессии позволяют с высокой степенью вероятности прогнозировать спортив-
У, с А В Т дистанции, с
Т1500 3,7 -25,12 500
Т5000 13,32 -86,4 500
Т10000 1,79 132,4 5000
Сумма очков 4,7583 -18,3936 500
ный результат. Прогноз на дистанциях 1500 м и 5000 м и сумме очков многоборья осуществляется по времени 500 м, а по времени на дистанции 5000 м - результат на дистанции 10 000 м. Авторами представлено уравнение регрессии, отражающее линейную зависимость между суммой очков многоборья и результатом на дистанции 500 м многократного чемпиона мира, Европы и Олимпийских игр голландского конькобежца Свена Крамера [4].
У= 3,19836 х Т500 + 31,6835,
где У- искомый показатель, а и Ь - коэффициенты регрессии, Т 500 - спортивный результат на дистанции 500 м.
1,00
0,50 0,00 -0,50 -1,00 -1,50 -1- 1 1 I ■ 1 чЛ/"* / V /а
' 1 х\ У Г/ и V \ у
1 г
1
И вар Балла-нгруд 1938 Одд Лунд-берг 1946 Ласси Парк-кинен 1947 Ард Схенк 1970 Харм Кёйперс 1975 Эрик Хай-ден 1979 Николай Гуляев 1987
— А— 10 000 м 0,64 -0,26 0,64 -0,66 0,21 0,05 -0,02
— ■— 5000 м 0,64 -0,32 -0,38 0,07 0,88 -0,08 0,40
—• 1500 м -0,62 -0,79 -0,01 0,33 -0,53 -0,21 0,03
Рис. 1. Расчетные результаты по дистанциям многоборья и их различия в процентом отношении от показанных в соревновании
0,60 0,40 0,20 0,00 -0,20 -0,40 -0,60 -0,80 -1,00
■ 0,47 / \ /
/ ^ ✓ ч .■■0,35
.....■ /1,08 V"
____
/ '■•*-о,зо ..••и -0,30 \
/
/
*
Ивар Баллан-ФУД ОДА Лундберг Ласси Паркки-нен Ард Схенк Харм Кёйперс Эрик Хайден Николай Гуляев
—Разница в очках -0,901 0,583 -0,205 -ОД 34 0,634 0,484 -0,562
• Погрешность в К 0,47 -0,30 0,10 0,08 -0,36 -0,30 0,35
Рис. 2. Реальная и расчетная сумма очков классического конькобежного многоборья
Рис. 3. Сумма очков конькобежного многоборья Свена Крамера на чемпионатах Европы и мира в сравнении с расчетными показателями
На диаграмме рис. 3 приведена расчетная сумма очков многоборья, даны показатели разницы в очках и погрешность расчета от показанного на соревновании реального результата. Следует отметить, что Свен Крамер на чемпионате Европы 2010 г. выступал после длительного перерыва, связанного с лечением. Его реальный результат в сравнении с прогнозируемым составил менее 1 %. В последующих соревнованиях -одном чемпионате Европы и трех чемпионатах мира погрешность расчетной суммы многоборья составила 0,243±0,146 %%.
Таблица 1. Результаты победителей чемпионатов мира в классическом многоборье
№ п/п Год Имя, фамилия Страна 500 м 5000 м 1500 м 10 000 м Сумма очков
1 1938 Ивар Баллангруд Норвегия 43,8 08:20,2 02:16,1 17:14,4 190,907
2 1946 Одд Лундберг Норвегия 45,2 08:34,0 02:21,0 17:29,7 196,085
3 1947 Ласси Парккинен Финляндия 45,2 08:33,7 02:22,1 17:38,7 196,872
4 1970 Ард Схенк Нидерланды 40,3 07:30,7 02:04,4 15:33,0 173,487
5 1975 Харм Кёйперс Нидерланды 40,99 07:35,6 02:05,88 15:49,85 176,002
6 1979 Эрик Хайден США 38,22 06:59,15 01:56,05 14:43,11 162,973
7 1987 Николай Гуляев СССР 37,24 06:51,28 01:52,70 14:28,50 159,356
Таблица 2. Расчетные результаты на дистанциях 1500, 5000, 10 000 м (в секундах) и суммы очков в многоборь
Год Имя, фамилия 1500 м 5000 м 10 000 м Сумма очков
1938 Ивар Баллангруд 136,94 497,02 1027,76 190,006
1946 ОддЛундберг 142,12 515,66 1052,46 196,668
1947 Ласси Парккинен 142,12 515,66 1051,92 196,667
1970 Ард Схенк 123,99 450,40 939,15 173,353
1975 Харм Кёйперс 126,543 459,59 947,91 176,636
1979 Эрик Хайден 116,294 422,69 882,68 163,457
1987 Николай Гуляев 112,668 409,64 868,59 158,794
Для большинства медико-биологических исследований считается достаточной степень вероятности безошибочного прогноза, равная 95 %, а число случаев генеральной совокупности, в которой могут наблюдаться отклонения от закономерностей, не будет превышать 5 %. Выводы
• Применяя методы многомерной статистики, тренеры имеют возможность определять взаимосвязь спортивных результатов не только между дистанциями конькобежного многоборья, но и на смежных дистанциях.
• На основе выявленных зависимостей возможны моделирование тренировочных средств и методов подготовки конькобежцев, прогноз результатов на дистанциях и суммы очков многоборья.
Литература
1. Васильковский, Б.М. Контроль за уровнем специальной выносливости и нормированием тренировочных нагрузок в подготовке конькобежцев-многоборцев высокой квалификации: дис. ... канд. пед. наук / Б.М. Васильковский. - М., 1983. - 180 с.
2. Волков, Н.И. Тренировка сильнейших конькобежцев мира / Н.И. Волков, Б.А. Стенин. - М.: Физкультура и спорт, 1970. - 120 с.
3. Миркин, Б.Г. Анализ качественных признаков и структур / Б.Г. Миркин. - М.: Статистика, 1980. - 319 с.
4. Полозков А.Г. Прогноз суммы очков конькобежного многоборья Свена Крамера по результату бега на дистанции 500 м /
A.Г. Полозков, Г.А. Полозков // Педагогические науки. - 2009.
- № 6 (39). - С. 89-90.
References
1. Vasil'kovsky, B.M. Controlling the level of special endurance and standardization of training loads in training of highly skilled allround speed skaters: Ph.D. thesis / B.M. Vasil'kovsky. - Мoscow, 1983.
- 180 P. (In Russian)
2. Volkov, N.I. Training of the strongest skaters of the world / N.I. Volkov, B.A. Stenin. - Мoscow: Fizkultura i sport, 1970. - 120 P. (In Russian)
3. Mirkin, B.G. Analysis of qualitative characteristics and structures /
B.G. Mirkin. - Мoscow: Statistika, 1980. - 319 P. (In Russian)
4. Polozkov, A.G. Forecast of total points of Sven Kramer in all-round speed skating based on his 500 m result / A.G. Polozkov, G.A. Polozkov // Pedagogicheskie nauki. - № 6 (39). - 2009. - P. 89-90. (In Russian)
Информация для связи с автором: 89857498305
Поступила в редакцию 01.07.14 г.
ИЗ ПОРТФЕЛЯ РЕДАКЦИИ
УДК: 796.034.2
НАРОДНЫЕ СОСТЯЗАТЕЛЬНО-ИГРОВЫЕ ТРАДИЦИИ В ФИЗИЧЕСКОМ ВОСПИТАНИИ СТУДЕНТОВ ВУЗА
Аспиранты А.В. Маркелов, 1КА. Минченков
Доктор педагогических наук профессор В.В. Пономарев Сибирский государственный технологический университет, Красноярск
Ключевые слова: народные игры, состязательно-игровые традиции, физическое воспитание студентов вуза, физическая культура народа.
Актуальность. Теоретический анализ программно-методического обеспечения и современной образовательной практики физического воспитания студентов в вузе показал, что, к сожалению, специалисты, педагоги, ученые и медицинские работники не в полной мере используют в учебном процессе и повседневной жизнедеятельности многовековые наработки, традиции и опыт народной физической культуры в укреплении и поддержании здоровья молодого поколения.
В то же время молодой человек должен овладеть знаниями об исторических основах культуры здоровья и здорового образа жизни народа, формировать народную культуру, сохранять ее, приумножать и передать последующим поколениям.
Цель исследования - теоретически обосновать и опытно-экспериментальным путем проверить эффективность использования народных состязательно-игровых традиций в физическом воспитании студентов вуза.
Методика и организация исследования. В проведении опытно-экспериментальной работы участвовали студенты Сибирского государственного технологического университета. В исследовании, которое проходило с сентября 2009 г. по май 2013 г. в три этапа, приняли участие 75 студентов (юношей) 1-го и 2-го курсов экспериментальной группы, контрольная группа студентов составила 100 человек.
В ходе исследования были разработаны народная состязательно-игровая технология и модель использования культурного наследия народной физической культуры в интеграции с современной системой физического воспитания студентов в вузе, включающие различные блоки физических упражнений, критерии контроля, задачи и этапы реализации экспериментальной технологии.
Результаты исследования и их обсуждение. Учитывая данную проблемную ситуацию, нами было разработано программно-методическое сопровождение народной состязательно-игровой технологии, состоящее из следующих нетрадиционных направлений и разделов физического воспитания студентов: народные игры
и состязания, единоборства, физические упражнения на природе; импровизированные взятия «городков», кулачные бои, единоборства с предметами; закалы; имитация исторических схваток, битв и единоборств в доспехах и шлемах и др.
Анализ результатов проведенной опытно-экспериментальной работы показал высокую эффективность спроектированной народной состязательно-игровой технологии в физическом воспитании студентов вуза, которая выразилась в следующих статистических цифрах: физическая подготовленность за учебный год у студентов экспериментальных групп повысилась в среднем на 17,3 % (р<0,5), в контрольных - на 2,9 % (р<0,05); частота заболеваний ОРЗ за учебный год в экспериментальных группах составила 0,8 раза (р<0,05), в контрольных - 1,9 раза (р<0,05); функциональная подготовленность у студентов экспериментальных групп улучшилась за учебный год на 9,4 % (р<0,05), в контрольных - на 0,5 % (р<0,05); знание студентами истории развития народной физической культуры было следующим: на «отлично» - 30 %, «хорошо» - 60 % и «удовлетворительно» - 10 %. Студенты контрольной группы не смогли ответить ни на один вопрос.
Вывод. Результаты проведенного эксперимента показали высокую эффективность народных состязательно-игровых традиций в физическом воспитании студентов вуза. Данные опытные народно-состязательные традиции могут быть рекомендованы для включения в учебно-образовательный процесс студентов вузов страны.
Использованная литература
1. Бальсевич, В.К. Спортивно-ориентированное физическое воспитание: образовательный и социальный аспекты [Текст] / В.К. Бальсевич, Л.И. Лубышева // Теория и практика физ. культуры. - 2003. - № 5. - С. 19.
2. Горбунов, Б.В. Воинская состязательно-игровая традиция в народной культуре русских [Текст] / Б.В. Горбунов / Историко-этнографическое исследование / Институт этнологии и антропологии РАН. - М., 1999. - 379 с.
3. Лубышева, Л.И. Концепции формирования физической культуры человека [Текст] / Л.И. Лубышева. - М.: ГЦОЛИФК, 1992. - 123 с.
Информация для связи с автором: [email protected]
Поступила в редакцию 09.03.2014 г.