УДК 537.226.4
ВЫСОКОЭФФЕКТИВНЫЕ ПЬЕЗОЭЛЕКТРИЧЕСКИЕ КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ НА ОСНОВЕ ТИТАНАТА СВИНЦА, МОДИФИЦИРОВАННОГО РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ (РЗЭ), ДЛЯ УЛЬТРАЗВУКОВЫХ ПРИБОРОВ В МЕДИЦИНСКОЙ ПРАКТИКЕ
С.В. Титов, Л.А. Резниченко, О.Н. Разумовская Научно-исследовательский институт физики Ростовского государственного университета 344090, г. Ростов-на-Дону, пр-т Стачки, 194, Россия fon: (863-2) 28-50-66; fax: (863-2) 28-50-44
Одной из приоритетных задач ультразвукового медицинского приборостроения является разработка и создание высокоэффективных пьезоэлектрических материалов - основ активных функциональных элементов различного рода устройств. Необходимость решения такой задачи определяется следующим.
Большинство выпускаемых в настоящее время ультразвуковых приборов медицинской диагностики, терапии и хирургии содержит пьезоэлектрические преобразователи, выполненные на пьезокерамических элементах типа ЦТС (ЦТС-19, ЦТС-36 - Россия, Р2Т5Л - США). Используя указанные материалы, трудно достигнуть значительного улучшения чувствительности и разрешающей способности ультразвуковых преобразователей, упрощения их конструкции и повышения частотного диапазона. Это обусловлено тем, что материалы типа ЦТС имеют высокую диэлектрическую проницаемость етзз/ео=700-1700 и очень низкую анизотропию пьезопараметров (К/Кр<1,0). Многие перечисленные выше трудности могут быть преодолены при использовании анизотропных пьезокерамических материалов на основе титаната свинца (РЬТЮ3), сочетающих низкую диэлектрическую проницаемость (етзз/ео <200) с высокой анизотропией пьезосвойств (К/Кр>15). Начиная с 1987 года, в НИИ физики проводятся работы по созданию такой пьезокерамики на основе РЬТЮ3. Разработан способ ее получения, исследованы свойства более 200 составов. В результате были получены новые материалы, обладающие уникальными свойствами: сочетанием высокой степени анизотропии пьезопараметров (Кг/Кр^-<х>) с очень низкой механической добротностью (бм»<10), экстремально высокой пьезочувствительностью (я33>50 мВ-м/Н), повышенными значениями пьезомодуля (ё33~200 пКл/Н), показана возможность использования таких материалов в конкретных пьезоэлектрических датчиках. Среди таких материалов перспективными оказались и материалы на основе титаната свинца, модифицированного РЗЭ. Основные их характеристики: Тк (температура Кюри) ~300^350°С; етзз/ео=85^170; К=0,5^0,65; Кр~0; ё33=100^150 пКл/Н; Qм(()<5^; £33=50^150 мВ-м/Н, верхний предел рабочей частоты ~20 МГц.
Высокий К, характеризующий эффективность преобразования механической деформации в электрическое напряжение и обратно, свидетельствует о высоком к.п.д. пьезоматериала, а низкий Кр определяет отсутствие нежелательных колебаний помех. С низкой етзз/ео связана повышенная рабочая частота преобразователя и высокий уровень его пьезопараметров
Разработанные материалы могут быть рекомендованы для целей мед. диагностики и ультразвуковой хирургии камней во внутренних органах человека.
(
V
МИС-2000
Ультразвуковые и акустические приборы в медико-биологической практике
Работа выполнена при частичной финансовой поддержке Российского Фонда Фундаментальных исследований (РФФИ). Грант № 99-02-17575.
УДК 631.
УЛЬТРАЗВУКОВЫЕ СКАНЕРЫ СИСТЕМЫ ВИЗУАЛИЗАЦИИ И ПОЗИЦИОНИРОВАНИЯ ЛИТОТРИПТЕРА ЛУ-1
П.В. Иванов, Е.И. Ситало
НИИ физики Ростовского государственного университета Россия, 344Q9Q, г.Ростов-на-Дону, пр.Стачки, 194.
Тел: (8632)-285815,285Q55, факс: (8632)-285Q44, E-mail: [email protected]
Введение
Литотриптер ЛУ-1 предназначен для экстракорпорального разрушения почечных конкрементов (камней) размером от 6 мм и более в условиях стационаров[1]. В литотриптере применен многоэлементный пьезоэлектрический осесимметричный кольцевой фокусирующий излучатель ультразвуковых волн -силовая антенная решетка. Наведение фокуса силовой антенной решетки на конкремент и его разрушение проводится под контролем ультразвукового визуализатора. Датчики системы визуализации (далее - сканеры) снабжены устройствами позиционирования, с помощью которых определяются пространственные координаты сканера относительно фокуса силовой антенной решетки. В данной работе рассмотрены принципы построения одного из важнейших функциональных узлов литотриптера - системы сканирования и позиционирования.
Назначение
Система сканирования и позиционирования литотриптера предназначена
для:
-углового перемещения ультразвукового излучателя внешнего сканера визуализатора в заданных пределах с определенной точностью;
-измерения угла смещения ультразвукового излучателя внешнего сканера визуализатора;
-измерения пространственных координат ультразвукового излучателя внешнего сканера визуализатора в заданных пределах с определенной точностью;
-углового перемещения ультразвукового излучателя центрального сканера визуализатора в заданных пределах с определенной точностью;
-измерения угла смещения ультразвукового излучателя центрального сканера визуализатора;
-поворота плоскости сканирования излучателя центрального сканера визуализатора вокруг оси симметрии силовой антенной решетки и измерения угла поворота с определенной точностью.
Состав
В состав системы сканирования и позиционирования входят:
1) внешний сканер;
2) устройство позиционирования внешнего сканера;
3) центральный сканер;
4) устройство позиционирования центрального сканера.
Внешний сканер
В качестве внешнего сканера применен разработанный сканер механический, секторный. Сканер представляет собой компактное малогабаритное устройство, предназначенное для излучения и приема ультразвуковой энергии.