УДК 533
И. А. Гришанова, И. Ш. Абдуллин, Л. Н. Абуталипова,
О. С. Мигачева
ВЛИЯНИЕ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ НА ПОВЕРХНОСТНЫЕ СВОЙСТВА
МОДИФИЦИРОВАННЫХ СВЕРХМОДУЛЬНЫХ ПОЛИЭТИЛЕНОВЫХ ВОЛОКОН
Ключевые слова: сверхмодульный полиэтилен, модификация поверхности, низкотемпературная плазма, ультрафиолетовое
излучение, смачиваемость, гидрофильность, деструкция.
Многофиламентные высокомодульные полиэтиленовые волокна подвергались ультрафиолетовому излучению различной продолжительности и с различной интенсивностью. Установлено, что ультрафиолетовое излучение оказывает негативное влияние на поверхностные свойства модифицированных ВЧЕ плазмой волокон.
Keywords: sverhmodulny polyethylene, surface modification, low-temperature plasma, ultraviolet radiation, wettability, hydrophilicity,
destruction.
Multifilament high modulus polyethylene fibers exposed to UV radiation of varying lengths and with different intensity.
Found that ultraviolet radiation has a negative impact on the surface properties of modified yester plasma filaments.
Введение
Сверхмодульные многофиламентные полиэтиленовые волокна благодаря уникальным функциональным свойствам и технико-экономическим факторам приобретают все большую востребованность на рынке для производства изделий технического и индивидуального назначения [1]. Однако низкая поверхностная энергия полиэтилена затрудняет его применение в промышленном производстве, в частности, при получении композиционных материалов. В связи с этим актуальным остается вопрос активизации поверхности полиэтиленовых волокон, нитей и тканей с целью придания им требуемых технологических свойств, например, капиллярности, смачиваемости, адгезионной способности и т.д.
Перспективным направлением модификации поверхностных свойств синтетических волокон являются плазменные методы обработки, заключающиеся в воздействии на материал барьерного, тлеющего, коронного, дугового, искрового, высокочастотного и сверх-высокочастотного разрядов. Общим недостатком перечисленных способов модификации является неустойчивость плазменных эффектов во времени под действием внешних факторов (света, влажности, температуры, кислорода, механических напряжений и т.д.). Наиболее опасно фотоокисление под действием лучей света (физическое старение), в результате которого происходит изменение надмолекулярной структуры [2]. По различным источникам эффект модификации снижается до 40% в течение первых 30 дней, а в полимере могут наблюдаться деструктивные процессы [3-6].
Деструкция модифицированного слоя, как правило, небольшого по толщине (16-43 нм) [7] происходит значительно быстрее объемной деструкции, в результате чего резко изменяются физикомеханические свойства высоко-молекулярного соединения.
Целью данной работы явилось изучение влияния ультрафиолетового излучения на показатель краевого угла смачивания и капиллярность модифицированных текстильных материалов.
Материалы и методы
Объектом исследования выбраны непрерывные высокомодульные многофиламент-ные волокна малого диаметра (8-15 мкм) марок 8К60 -гидрофобные в исходном состоянии, 8К 75 - гидрофильные в исходном состоянии в результате спин-финишной обработки (производство Нидерланды) и Б 800 - гидрофобные в исходном состоянии (производство Китай).
Низкотемпературная плазменная модификация гидрофобных волокон проводилась на высокочастотной емкостной установке (ВЧЕ), описание которой дано в работе [8]. Входные параметры установки составляли - напряжение и = 4,5 кВ, сила тока I = 0,5 А, обеспечивающие максимальную капиллярность волокон. Время обработки составляло 1 = 180 с, вид используемого плазмообразующего газа - аргон.
Влияние физического старения исследовалось в зависимости от времени старения и мощности светового потока. Исследование продолжительности воздействия УФ излучения проводили при Т=25°С в течение 10800с.
При проведении экспериментов в качестве источников ультрафиолетового (УФ) излучения использовались ртутные лампы различной мощности, работающие в режиме длин волн 200-400 нм. Поток УФ излучения на поверхность волокон на расстоянии 0,80 м от ламп составлял 3,0*1014 и 5,5*1014 фотон/ см2 соответственно.
Измерение показателей, характеризующих свойства поверхности, осуществлялось в соответствии с научно-техническими нормативами (ГОСТ 29104.11-91, ГОСТ 7934.2-74).
Результаты исследований и обсуждение
Влияние временного фактора на изменение свойств модифицированной поверхности под действием ультрафиолета приведены на рис.1.
Согласно приведенной временной зависимости изменение капиллярности проходит через максимум. В течение первых 1800с наблюдается некоторое увеличение капиллярности (от 110 до
140 мм) для трех типов волокон (Б 800, 8К 60, 8К75). При дальнейшей экспозиции волокон капиллярность уменьшается, достигая значения Н = 50 -90 мм за 10800с.
Н, мм
160
о 4-----------------------------------------------
О 2000 4000 6000 8000 10000 12000
—5К 75 (\«=3,0х1014 фотон/ см2 )
—$К 75 (\Л/=5,5х1014 фотом/ см2 )
—*—0800 -*-5К 60
Рис. 1 - Зависимость капиллярности модифицированных СВМПЭ волокон от продолжительности воздействия УФ излучения различной мощности
В исходном состоянии угол смачивания для гидрофобных волокон (Б 800 и 8К 60) составлял 0=137°, для гидрофильных волокон равновесный краевой угол не устанавливается, что свидетельствует о полном их смачивании. После модификации гидрофобных волокон в ВЧЕ разряде значение краевого угла смачивания также не устанавливается.
Наиболее устойчивыми к действию УФ излучения в исследуемом диапазоне волн при световом потоке 3,0*1014 фотон/см2 являются волокна марки Б 800. Наименее устойчивыми к световому потоку оказались волокна 8К 75, подвергнутые спин-финишной обработки.
При увеличении мощности УФ излучения до 5,5^10 фотон/см наблюдается довольно резкое снижение капиллярности до значения Н= 10 - 15 мм, т.е. волокна практически приобретают гидрофобные свойства.
На рис. 2 приведены микрофотографии фи-ламентов в исходном состоянии и при различной длительности УФ экспозиции, полученные с помощью конфокального лазерного сканирующего микроскопа марки ЬБХТ 0Ь8 4000 фирмы 01утрш при увеличении *2138.
Ж
й
г А
ж з и
Рис. 2 - Микрофотографии высокомодульных полиэтиленовых волокон (Х2138) в исходном состоянии (а -Б 800; г - 8К 60; ж - 8К 75), подвергнутых УФ излучению в течение 1800 с (б -Б 800; д-8К 60; з -8К 75) и 10800 с (в-Б 800; е -8К 60; и-8К 75)
Приведенные фотографии свидетельствуют о нарушении поверхностного слоя филаментов. Причем на поверхности филаментов наблюдаются фотодеградирующие явления (появление глобулярных включений и расслоение фибрилл) тем большее, чем длительнее процесс (рис.2 б, в, д, е, ж, и). Более того на процесс старения модифицированного слоя, как свидетельствует рисунок, оказывают влияния условия получения и последующей обработки волокон в технологическом процессе (рис.2 е, и).
Изучено также влияние временного фактора на свойства модифицированных волокон в естественных условиях (Т= 23-25 °С), защищенных от прямого попадания светового излучения. Полученные данные свидетельствуют, что в течение 30 суток значение капиллярности практически не изменяется, а в течение 12 месяцев наблюдается сохранение модифицированного эффекта с плавным уменьшением значений капиллярности на 60 - 70%.
Таким образом, структурные преобразования в поверхностных слоях волокон, под действие УФ излучения, вероятно, связаны с диффузией низкомолекулярных примесей из объема на поверхность волокон, зависит от предыстории образцов и условий хранения ( наличие или отсутствие УФ излучения). Полученные данные подтверждаются результатами работ [9, 10], выполненных на полиэтиленовых полипропиленовых и полиэтилентетрофта-латовых пленках.
Литература
1. Перепелкин, К.Е. Армирующие волокна и волокнистые полимерные композиты/ К.Е. Перепелкин. - М.: НОТ, 2009г - 380 с.
2. Бабкина Н.В. и др. Структура изменения в смесях линейных полимерах в процессе их физического старения// Н.В. Бабкина и др. / ВМС. Серия А, - 2012. -Т.54.- № 2, -с. 256-266.
3. Оулет, Р. Технологическое применение низкотемпературной плазмы / Р. Оулет, М. Барбье, П. Черемисинофф и др. / Пер. с англ. - М. : Энергоатомиздат, 1983. - 144 с.
4. Голубчиков, О.А. Влияние плазмоактивации на поверхностную структуру и прочностные характеристики полипропиленовой пленки / О. А. Голубчиков, О.В. Горнухи-на, Т.А. Агеева и др. //Пластические массы. - 2006. - №
12. - С. 7-9.
5. Абдуллин, И.Ш. Влияние потока низкотемпературной плазмы на свойства текстильных материалов / И.Ш. Аб-
дуллин, В.В. Хамматова. - Казань: Изд-во Казанск. Ун-та, 2004. - 216 с.
6. Шарнина, Л.В. Текстильный материал, как объект плазменной обработки. Гидрофилизация поверхности / Л.В. Шарнина, Ф.Ю. Телегина // Известия Вузов: Химия и химическая технология. - 2008. - Т.51. - Вып. 3. - С. 86-90.
7. Сергеева, Е. А, Физическая модель воздействия ВЧ-плазмы пониженного давления на полиэтилен / Е.А, Сергеева, И.Ш. Абдуллин, В.С. Желтухин// Вестник Казан. Технолог.ун-та. № 7; Федер. Агенство по обр., Казан. Гос. Технол. Ун-т. - Казань: КГТУ, 2010. - 113-116 с
8. Гришанова И.А., Шарафеев Р.Ф., Мигачева О.С. Капиллярность модифицированных арамидных волокон // Наноматериалы, нанотехнологии, наноиндустрия Сборник статей 1 Всероссийской научно-практической конференции с элементами научной школы 21-22 декабря 2010г. Казань ,2011 - С.100-103.
9. Д.М. Мяленко, О.Б. Федотова / Влияние импульсного ультрафиолетового облучения на адгезионные свойства полиэтилена// ГНУ ВНИМИ,- Сб. науч. трудов.- 2004
10. Ю.С. Акишев и др. / Изменение во времени поверхностных свойств полимеров, модифицированных в плазме // Химия и химическая технология -Т. 55, вып. 4, -2012.- с.42-51.
11. Максимов А.И., Горберг Б. Л., Титов В.А. Возможности и проблемы плазменной обработки тканей и полимерных материалов //Текст. химия. - 1992. - С.101- 118.
12. Драчев А. И., Гильман А. Б. Влияние заряда, образующегося в поверхностных слоях полимеров под воздействием тлеющего разряда, на гидрофилизацию поверхности. // Энциклопедия низкотемпературной плазмы. Серия Б. Т. Х1-5. Прикладная химия плазмы, 2006.- С.173-182.
13. Митченко Ю.И., Фенин В. А., Чеголя А.С. Структурнохимические превращения полимеров, подвергнутых действию газового разряда // Высокомолекул. соединения. -1989. - Т. А (31), №2. - С. 369- 373.
14. Кутепов, А. М. Плазменное модифицирование текстильных материалов: перспективы и проблемы /А. М. Кутепов, А. Г. Захаров, А. И. Максимов и др. //Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). - 2002. - Т. ХЬУ1. - № 1. - С.103-115.
15. Рыбкин, В. В. Низкотемпературная плазма как инструмент модификации поверхности полимерных материалов / В.В. Рыбкин //Соросовский образовательный журнал. -200. - Т.6. - №3. - С. 58-63.Гильман А.Б., Ришина Л.А.Структурные превращения в объеме полипропилена под действием плазмы. // Энциклопедия низкотемпературной плазмы. Серия Б. Т. Х1-5.Прикладная химия плаз-мы.2006.- С. 183-188
16. Гильман, А.Б. Модификация пленок полипропилена в разряде постоянного тока / А.Б. Гильман, М.С, Пискарев, О.В. Стариченко, Н.А. Шмакова, М.Ю. Яблоков, А.А Кузнецов // Хим.выс.энергий. - 2008. - Т.42. - С. 368-371.
© И. Ш. Абдуллин - д-р техн. наук, проф., проректор КНИТУ, [email protected]; И. А. Гришанова - канд. хим. наук, доц. каф. моды и технологий КНИТУ, [email protected]; Л. Н. Абуталипова - д-р техн. наук, проф., проректор КНИТУ; О. С. Мигачева - асп. каф. моды и технологий КНИТУ, [email protected].