Влияние климатических изменений на транспортную инфраструктуру в Арктической зоне и на территориях распространения вечной мерзлоты
С. Д. Воронцова,
первый вице-президент ГК «Транспортная интеграция»
на территории россии темпы изменения климата превышают средне-глобальные масштабы. особую озабоченность вызывает воздействие климатических изменений на транспортную инфраструктуру в районах распространения вечной мерзлоты, поскольку климато-обусловленное уменьшение несущей способности грунтов и развитие деструктивных геоморфологических процессов могут привести (а в ряде регионов уже привели) к нарушению эксплуатационных условий и разрушению транспортных объектов.
Комплексные оценки природных и социально-экономических последствий изменения климата в Арктической зоне (рис. 1) и в районах распространения многолетней (вечной) мерзлоты на территории России содержатся в работах, подготовленных Росгидрометом. В них Арктика выделена в особый регион, где изменения климата происходят наиболее быстро [1, 2].
тенденции изменения климата в Арктике и на территориях распространения многолетней (вечной) мерзлоты
По данным Росгидромета, за период 1976-2015 гг. среднегодовая температура на территории России увеличивалась
рис. 1. Границы арктической зоны рФ
со скоростью 0,45 °С за 10 лет. Наибольшие изменения произошли в Восточной Сибири и на Дальнем Востоке, особенно в северных частях этих регионов, расположенных в криолитозоне (на территории, полностью или частично покрытой многолетнемерзлыми грунтами), где потепление составило до 0,8 °С за 10 лет, а на Таймыре — до 1 °С за 10 лет.
Наиболее существенные сезонные изменения температуры отмечались весной (средний по России тренд 0,59 °С за 10 лет) и осенью (0,48 °С за 10 лет). Весенние и осенние значения температуры наиболее сильно повышались в северных районах Восточной Сибири и на Дальнем Востоке, где тренд составляет от 0,8 до 1 °С за 10 лет, а в отдельных очагах превышает 1 °С за 10 лет. Таким образом, самое интенсивное потепление воздуха наблюдается в переходные сезоны (весна и осень). Потепление воздуха весной в совокупности с умеренным повышением температуры воздуха летом создает предпосылки для увеличения глубины сезонного оттаивания многолетней (вечной) мерзлоты.
В России преобладает умеренное увеличение годовой суммы осадков со средней интенсивностью 2 % за 10 лет, лишь в немногих регионах Сибири и Дальнего Востока скорость роста превышает 5 % за 10 лет. В зимний период наблюдается уменьшение осадков в Якутии, на Чукотке и в Средней Сибири,
Зеаеее*1еглтЗер1етЬег2015. Эеа ¡се е*1егл ¡п ЭергетЬег 2014. Эеа ¡се е*1егШп 5ер1етЬегЭ013. Эеа ¡се ещет т Зер1етЬег 2012. РготгаОС РготЩК. РготМ5ЮС. РготуЗЮС.
Беа ¡се е*1еп1 ¡п Бе^етЬег 2011. Беа ¡се ех1егИ ¡п 5ер(ет^с 2010. Беа ¡се еЯет ¡п 5ер1етЬег 2009. Беа ¡се ех1еп! ¡п 5ер1етЬег 2008.
Пип №ЮС. Г г-снп I. .1 ОС Ргот№ЮС. ГготШ0£.
Зеасеех1еп1тЗер1етЬес2007. Эеа ¡се ех1ет ¡п Зер1етСег 2006. Эеаюе ех1егИт Зер1етЬег2005. Эеа ¡се ех1ег1 ¡п 5ер1етЬег 2002
Пип1..1.1С.С. Пот I.'О'. Г|Ц--| 1. ■..I."'. Гг.у-.^Х
рис. 2. минимальная область распространения морских полярных льдов в северном полушарии по данным спутниковых наблюдений NOAA в 2002-2015 гг. (спутниковые данные NOAA http://www.arctic. noaa.gov/detect/ice-seaice.shtml)
а также вдоль всего Арктического побережья к востоку от Ямала. Весной во всех регионах имеет место наибольший рост осадков со средней скоростью 5,8 % за 10 лет, в Восточной Сибири — до 15-20 % за 10 лет.
В криолитозоне увеличение осадков происходит преимущественно в летний сезон, что приводит к увеличению влажности и теплопроводности грунта, а также к более глубокому сезонному протаи-ванию многолетнемерзлых грунтов.
За последние годы некоторое уменьшение зимних осадков в средних широтах отмечается в Восточной Сибири и на Чукотке, небольшое увеличение — на севере Западной Сибири. Спутниковые данные отражают значительные изменения снежного покрова, площадь распространения которого на севере России в весенний период быстро сокращается. Продолжительность залегания снежного покрова уменьшается в среднем по России на 1,84 дн. за 10 лет, на Чукотке и на севере Камчатки — до 7,48 дн. за 10 лет.
Продолжительность снежного периода и высота снежного покрова определяют условия эксплуатации временных зимних дорог (зимников), по которым осуществляется доставка грузов автотранспортом во многие поселки и города Арктической зоны России. Увеличение высоты снежного покрова ведет к росту затрат на расчистку автомобильных и железных дорог, взлетно-посадочных полос и других объектов транспортной инфраструктуры. Уменьшение
высоты снежного покрова способствует ослаблению его теплоизолирующего влияния в холодный период года и повышению температуры грунта, что ведет к оттаиванию вечной мерзлоты.
В результате многочисленных наблюдений выявлены значительные изменения элементов природной среды в Арктической зоне РФ и в области распространения многолетнемерзлых грунтов. В совокупности эти данные подтверждают тенденции глобального изменения климата.
За последние годы четко прослеживается тенденция уменьшения площади распространения морских полярных льдов. Изменения конфигурации морских льдов в период, когда они достигают наименьшей площади в Арктическом бассейне, показано на рис. 2. Прямое следствие этих изменений — увеличение безледного периода и улучшение условий навигации вдоль трассы Северного морского пути (СМП). Согласно прогнозам, к концу XXI в. навигационный период по трассе СМП увеличится до четырех — шести месяцев, что позволит сократить расходы на ледокольное сопровождение судов [3, 4].
Увеличение продолжительности безледного периода ведет к усилению береговой эрозии. Льдистые морские берега, протяженность которых составляет более трети побережья Восточной Сибири, отступают со скоростью от 0,5 до 25 м/год. В последние десятилетия на побережье моря Лаптевых ско-
рость разрушения и отступания берегов увеличилась в 1,5-2 раза по сравнению со среднемноголетней нормой.
Влияние разрушительных процессов испытывают на себе населенные пункты, объекты транспортной инфраструктуры и средства навигационного обеспечения, расположенные на побережье северных морей.
Вследствие потепления климата, увеличения глубины сезонного оттаивания прибрежных участков и сокращения площади морских льдов возрастает штормовая активность, играющая главную роль в разрушении берегов [5]. Быстро развиваются овраги и провалы, интенсифицируются оползни, разрушаются склоны даже на большом удалении от берега. Эти процессы, сопутствующие отступанию берегов, весьма опасны для транспортной инфраструктуры: они охватывают значительные площади, распространяясь с высокой скоростью вглубь суши.
Область распространения многолетней (вечной) мерзлоты в России занимает около 11,3 млн км2, что составляет почти 65 % территории страны (рис. 3). На этой территории проживают около шести миллионов человек (почти 4 % населения РФ).
К многолетнемерзлым грунтам, которые называют вечной мерзлотой, относят грунты, находящиеся ниже уровня нулевых отметок, если их температура в течение двух или более лет остается отрицательной. В России многолетне-мерзлые грунты имеют сплошное распространение на площади 7 млн км2, прерывистое — 1,8, островное и редкоо-стровное — на площади 2,5 млн км2.
По данным многолетних наблюдений, температура многолетнемерзлых грунтов повсеместно увеличивается, за последние годы на многих участках — на 1,5-2 °С. На севере европейской территории России площадь приповерхностной вечной мерзлоты сокращается, а в южных районах островного распространения она полностью оттаяла.
Для России состояние многолетне-мерзлых грунтов имеет важное значение. Это связано с несколькими причинами:
1) безопасность и надежность эксплуатации объектов транспортной инфраструктуры, расположенных на территории вечной мерзлоты, напрямую зависят от несущей способности многолетне-мерзлых грунтов, которая уменьшается с ростом температуры (оттаивание вечной
мерзлоты приводит к частичному или полному разрушению объектов транспортной инфраструктуры);
2) многочисленные деструктивные геоморфологические процессы, развивающиеся при оттаивании многолетнемер-злых грунтов (оползни, береговая эрозия, термокарстовые просадки и др.), ведут к изменению гидрологического режима, заболачиванию почвы, гибели леса;
3) в результате таяния многолетне-мерзлых грунтов усиливается эмиссия парниковых газов, особенно метана, что негативно влияет на изменение климата.
влияние климатических изменений на транспортную инфраструктуру
На территории Арктической зоны РФ и зоны распространения многолетней (вечной) мерзлоты расположено множество инфраструктурных объектов, играющих важную роль в транспортной системе страны: морские и речные порты, аэропорты, автомобильные и железные дороги. В связи с климатическими изменениями и их последствиями, в частности с оттаиванием многолетней мерзлоты, значительная часть объектов транспортной инфраструктуры, расположенных на указанных территориях, подвержена риску полной или частичной утраты функциональности.
Через морские порты Арктического и Дальневосточного бассейнов проходит треть экспортно-импортных и каботажных грузов России. В 2016 г. через морские порты этих бассейнов было перевалено 235,2 млн т грузов. Операторы морских терминалов Арктического бассейна перегрузили в 2016 г. 49,7 млн т грузов (+40,6 % по сравнению с 2015 г.). Увеличился объем перевалки сухогрузов до 26,6 млн т (+6,6 %) и наливных грузов до 23,1 млн т (в 2,2 раза). Наиболее высокими темпами вырос грузооборот порта Мурманск — до 33,4 млн т (в 1,5 раза) и порта Варандей — до 8 млн т (+21,6 %).
В морских портах Дальневосточного бассейна грузооборот увеличился до 185,5 млн т (+8,3 %), из них сухогрузов — до 111 млн т (+13 %), наливных грузов — до 74,5 млн т (+2,1 %). Грузооборот порта Восточный вырос до 68,5 млн т (+5,2 %), Ванино—до 30,2 млн т (+11,6 %), Находка — до 23,3 млн т (+9,4 %), Пригородное — 16,4 млн т (+2,4 %), Владивосток — до 14,3 млн т (+11,2 %), Де-Кастри — до 11,5 млн.т (+10,4 %), Посьет — до 8,2 млн т (+26,6 %).
Основные направления деятельности портов в арктической зоне и областях, находящихся под влиянием вечной мерзлоты, — это транспортировка добываемых на территории России углеводородов, лесоматериалов, горнорудной продукции, бункеровка топлива, доставка генеральных и проектных грузов. Северные и восточные порты отличают сложные условия их эксплуатации и малый период навигации. Северные порты играют важную роль в социально-экономическом развитии арктических регионов страны, так как через них осуществляется северный завоз.
За последние годы наблюдается рост грузопотоков по трассе СМП. Это необходимо для обеспечения деятельности многих крупных российских компаний: Норильского горно-металлургического комбината, ПАО «Газпром», ПАО «НК „Роснефть"», ПАО «Лукойл», ПАО «НО-ВАТЭК», ЗАО «Росшельф» и др.
Основные порты СМП, относящиеся к арктическому бассейну, — Игарка, Дудинка, Диксон, Тикси, Певек, Провидения. В акватории СМП грузовые операции осуществляются помимо морских портов в 19 портопунктах, расположенных на побережье и островах. В акватории СМП расположен порт Са-бетта, который обеспечит эффективное освоение Южно-Тамбейского газокон-денсатного месторождения. Рост объемов перевозок по трассе СПМ связан с этапами освоения Южно-Тамбейского газоконденсатного месторождения и
вовлечения в разработку углеводородного сырья месторождений Ямала.
Сегодня к основным сдерживающим факторам интенсивного использования СМП относится сложная ледовая обстановка. Продолжительная и суровая зима при коротком и холодном лете обусловливает большую ледовитость арктических морей, что служит главным препятствием для прохода судов на многих участках трассы СМП. Наиболее трудные условия плавания складываются в районах больших скоплений тяжелых льдов (Таймырского и Айонского ледовых массивов), которые до конца не тают даже в самые теплые месяцы. На таких участках проводка судов возможна только с помощью ледоколов.
На внутренних водных путях, расположенных в Арктической зоне РФ и на территории распространения многолетней (вечной) мерзлоты, насчитывается 61 речной порт, шесть из них входят в Арктическую зону РФ.
На территории вечной мерзлоты РФ находится около 20 аэропортов, из них семь — в Арктической зоне. Относительно авиационных перевозок отмечается следующее:
• недостаточное развитие аэропортов тех арктических городов и поселков, где авиация является основным видом транспорта;
• высокий процент износа взлетно-посадочных полос, светосигнального оборудования, наземной и авиационной техники;
• нехватка парка малой авиации, отсутствие серийного выпуска самолетов малого размера, соответствующих спросу на перевозки и условиям эксплуатации в арктических районах.
Для сохранения сети аэродромов региональных и местных воздушных линий в Арктике созданы семь федеральных казенных предприятий, выполняющих функции заказчика по реконструкции аэродромов. В перспективе основными арктическими авиаузлами для магистральных и международных линий станут аэропорты Мурманска, Архангельска и Анадыря. Важное значение для региональных перевозок будут иметь аэропорты Нарьян-Мара, Салехарда, Норильска, Хатанги, Тикси и Певека. Получит развитие сеть малых аэропортов с взлетно-посадочными полосами для грузопассажирских перевозок в районы Арктики.
В Арктической зоне РФ и на территориях многолетней мерзлоты расположены железнодорожные магистрали, которые обеспечивают доставку грузов в северные регионы и в морские порты для экспорта углеводородов и горнорудной продукции, а также осуществляют пассажирские перевозки. В перспективе планируется развитие сети железных дорог в северных регионах за счет реализации проектов «Белкомур» и «Северный широтный ход», а также строительства в Дальневосточном федеральном округе нового участка железной дороги до Магадана для транспортировки грузов в морские порты Охотского моря (рис. 4).
Протяженность автомобильных дорог в рассматриваемых зонах составляет 79 тыс. км, из которых на долю федеральных дорог приходится 8 %. На федеральных автомобильных дорогах (Р-21 «Кола», Р-297 «Амур», А-331 «Вилюй», А-360 «Лена», А-381 подъезд к аэропорту г. Нарьян-Мара и др.) имеются отдельные участки, проходящие по территориям распространения многолетней мерзлоты прерывистого и островного типов. Эти участки автомобильных дорог и мостовые переходы на них наиболее уязвимы при возникновении чрезвычайных ситуаций, связанных с климатическими изменениями.
В перспективе планируется развитие сети автомобильных дорог за счет создания новых автодорожных коридоров «Северо-Запад — Сибирь» и «Северо-Восток — Полярный Урал», строительства ответвлений транспортного коридора «Запад — Восток», строительства новых автодорог в рамках реали-
Рис. 4. Приоритетные проекты развития железных дорог в Арктической зоне РФ и на территориях многолетней мерзлоты
зации проекта «Промышленный Урал — Полярный Урал» (рис. 5).
На объекты транспортной инфраструктуры оказывают влияние как значения климатических факторов (температуры воздуха, количества осадков, числа переходов температуры через точку замерзания, экстремально низких и высоких значений температуры и др.), так и деградация многолетнемерзлых грунтов, обусловленная изменением климата.
Опасные геокриологические процессы в криолитозоне — термокарст, термоэрозия, образование наледей, пучение, курумы, массовые смещения оттаивающего грунта на склонах. Основные воздействия опасных геокриологических процессов на объекты транспортной инфраструктуры можно разделить на три группы:
1) давление на воспринимающую поверхность транспортных сооружений, обусловленное подвижками крупных массивов грунта (оползнями, куру-мами и др.);
2) формирование пустот в грунте, что ведет к существенному изменению напряженно-деформированного состояния транспортного объекта или его фундамента (термокарст, эрозионные процессы, карст и др.);
3) нарушение полотна автомобильных и железных дорог, покрытий аэродромов, инфраструктуры морских и речных портов (наледи, затопление и др.) [6, 7].
В последние десятилетия площадь распространения деструктивных криогенных процессов расширяется. Это выражается в разрушении дорожных покрытий и коммуникаций, деформациях
Рис. 5. Перспективы развития сети автомобильных дорог в Арктической зоне РФ и на территории вечной мерзлоты
насыпей, фундаментов сооружений, в увеличении зон заболачивания.
Возможные последствия климатических изменений для рассматриваемых объектов транспортной инфраструктуры приведены в таблице.
Приведенные в таблице опасные природные процессы служат причиной рисков полной или частичной утраты функциональности объектов транспортной инфраструктуры в связи с прогнозируемыми климатическими
изменениями и их последствиями, в частности с оттаиванием многолетней (вечной) мерзлоты. Вечномерзлые грунты обладают высокой несущей способностью, но при оттаивании она снижается, вследствие высокой суммарной влажности происходят осадки и просадки, появляются участки земли, которые сдвигаются или затапливаются. При таянии вечной мерзлоты значительно возрастает береговая эрозия, которая усиливается из-за сокращения длитель-
ности ледового периода и связанного с этим удлинения периода волнового воздействия на берега арктических морей. Это представляет угрозу для портов и подходов к ним.
В условиях глобального потепления ледовые условия плавания по СМП улучшились, появилась возможность плавания по высокоширотным трассам к северу от таких арктических архипелагов, как Земля Франца-Иосифа, Северная Земля, Новосибирские острова. Од-
Бозможные последствия изменения климата для функционирования объектов транспортной инфраструктуры
Изменения Последствия
Автомобильные дороги Железные дороги Порты, БПП и аэропорты
Температура
- Повышение значений средней температуры;
- периоды аномальной жары / засухи;
- учащение смены теплых / холодных дней
- Деградация
и таяние вечной мерзлоты;
- сокращение площади арктических льдов
Тепловая нагрузка на покрытие / износ; колейность; термическое повреждение мостов; более частые оползни в горах; сокращение сроков эксплуатации; рост потребности в охлаждении (при перевозке пассажиров / грузов) и, следовательно, в топливе; сокращение интервалов между ремонтными работами; увеличение расходов на строительные и ремонтные работы; изменение спроса
Деформация дорог; сокращение количества дней, пригодных для перевозок; нестабильность склонов и разрушение насыпей; ограничение грузовых и пассажирских перевозок
Деформация путей; перегрев / сбои в работе объектов инфраструктуры и подвижного состава; пожары на откосах и отказ оборудования; проблемы с электроникой и сигнальными устройствами; ограничение скорости; сокращение срока эксплуатации оборудования; рост потребностей в охлаждении / топливе; сокращение интервалов между ремонтными работами; рост расходов на строительные и ремонтные работы; изменение спроса
Повреждение путей; ненадежность склонов и разрушение насыпей; ограничения грузовых и пассажирских перевозок
Повреждение инфраструктуры, оборудования и грузов; рост энергопотребления для охлаждения грузов; понижение уровня воды и ограничение внутренней навигации; уменьшение полезной нагрузки авиационного транспорта; потепление приведет к снижению расходов на уборку снега / льда и удлинению периода строительных работ
Нарушение инфраструктуры морских портов и аэропортов; увеличение срока навигации по СМП; сокращение протяженности маршрутов на СМП / сокращение расходов на топливо при увеличении расходов на вспомогательное обслуживание
Осадки
Изменение интенсивности / частоты экстремальных осадков (наводнения и засухи)
Затопление; учащение оползней, случаев разрушения склонов и земляного полотна и отказов оборудования; воздействие на узловые объекты (например, на мосты); ухудшение видимости, приводящее к увеличению числа аварий; учащение схода грязевых потоков; задержки; изменение спроса
Затопление, размывание мостовых опор, проблемы с дренажными системами и туннелями; оползни; затопление подземных объектов; разрушение насыпей / земляных сооружений; эксплуатационные проблемы; задержки, изменение спроса
Затопление наземной инфраструктуры; повреждение грузов и оборудования; ограничение навигации на внутренних водных путях вследствие засухи
Ветры/грозы
Уровень моря/штормы
Изменение среднего уровня моря; усиление разрушительной силы штормов / штормовых нагонов; изменение силы и направления волн
Повышение опасности затопления и эрозии прибрежных районов с причинением ущерба автомобильным дорогам; временное затопление, невозможность использования дорог во время штормовых нагонов
Подмыв мостовых опор, повреждение объектов инфраструктуры / контактных сетей, ограничение / перебои в эксплуатации железных дорог, затопление насыпей / земляных сооружений
Повреждение инфраструктуры / грузов в результате затопления и усиления волн; увеличение расходов на строительство и обслуживание портов; заиление портовых / судоходных каналов; воздействие на ключевые транзитные пункты (например, на Панамский канал); перемещение людей / предприятий, страховые проблемы
нако вследствие разрушения островных ледников участилось появление айсбергов, что увеличивает риск для морских перевозок и добычи углеводородов на арктическом шельфе.
Приведем прогнозируемые изменения свойств ледяного покрова в Арктической зоне РФ:
• средняя толщина ледяного покрова уменьшится, главным образом из-за исчезновения двухлетних льдов;
• вследствие незначительного опреснения верхнего слоя океана несущественно изменятся прочностные свойства морского льда;
• несколько возрастет вероятность сильных сжатий льда, особенно в прибрежных зонах и ледяных массивах из-за усиления ветров;
• увеличится торосистость ледяного покрова вследствие усиления ветровой активности;
• сохранится вероятность появления айсбергов в северных частях арктических морей.
Таким образом, по трассам СМП изменится пространственное распределение льдов, они будут отступать в северные районы Арктики в летний период, что сопряжено с расширением временных рамок навигационного периода. Это сделает более доступными для плавания высокоширотные трассы и будет способствовать созданию условий для круглогодичной навигации на трассах СМП.
Климатические и ледовые условия на трассе СМП в значительной степени определяют:
• проектные решения для новых транспортных и ледокольных судов;
• выбор оптимальных судоходных трасс, обеспечивающих безопасное и наименее затратное мореплавание;
• сохранение контроля РФ над плаванием судов в пределах своей экономической зоны (в соответствии со ст. 234 Конвенции ООН по морскому праву), позволяющего в определенной степени компенсировать издержки на содержание российских атомных ледоколов за счет ледового сбора.
При проектировании арктических транспортных судов необходимо учитывать возможные изменения климата.
Сохранение положительного тренда температуры в вековом масштабе изменения климата следует рассматривать как фактор, требующий учета при проектировании объектов транспортной инфраструктуры. Для береговых
сооружений важны такие прогнозы, как повышение уровня моря, рост числа и интенсивности штормов, увеличение продолжительности безледного периода в прибрежной зоне, что будет способствовать более интенсивному разрушению берегов и угрожать инфраструктуре.
К 2030 г. ожидается рост на 15-20 % опасных природных явлений и рисков потери функциональности рассматриваемых объектов в связи с климатическими изменениями [8-10]. Высокая степень риска отмечается для морских и речных портов, аэродромов, отдельных участков железных и автомобильных дорог, расположенных в Арктической зоне РФ. Для обеспечения устойчивого и надежного функционирования этих объектов необходимы непрерывный мониторинг геологических и гидрометеорологических процессов в зоне их тяготения, контроль динамики их воздействия на элементы транспортных сооружений.
Основной способ адаптации транспортных сооружений к прогнозируемым климатическим изменениям — термостабилизация грунтов в криоли-тозоне с применением различных технических решений: вентиляционных каналов в насыпях, термосифонов, винтовых свай, изолирующих слоев, оригинальных конструкций свайно-эстакад-ных мостовых и других транспортных сооружений с различными пролетными строениями на винтовых свайных фундаментах с системой аккумуляции холода и др. [11-15]. Они различаются:
• по принципу работы: испарительные (двухфазные) и конвективные (газовые, жидкостные и газожидкостные);
• типу используемого теплоносителя (хладагента): газовые (воздушные), жидкостные, парожидкостные (двухфазные), газожидкостные (эффект газлифта);
• материалу изготовления: из углеродистой и нержавеющей стали и из алюминиевых сплавов, в отдельных случаях используются полиэтиленовые трубы;
• конструктивным особенностям.
Возможные сценарии адаптации
объектов транспортной инфраструктуры в части морских и речных портов к прогнозируемым климатическим изменениям сводятся к инженерным и техническим решениям: проведению мероприятий по берегоукреплению, расчистке и защите дна акваторий и
подходных каналов, созданию условий для искусственной мелиорации и др. Такие мероприятия достаточно дороги, они требуют проведения инженерных изысканий, разработки проектной документации, использования специальной техники. Минимизировать затраты на меры адаптации к климатическим изменениям можно, если использовать современные методы мониторинга и прогнозирования климатических изменений, в частности с помощью автоматизированных систем контроля технического состояния сооружений, их планово-высотного положения, термометрических измерений.
Рекомендации
На основе анализа влияния климатических изменений на функционирование объектов транспортной инфраструктуры и изучения опыта строительства транспортных сооружений в криолитозоне сформулирован ряд рекомендаций.
Прогнозировать климатические изменения для оценки надежности функционирования объектов транспортной инфраструктуры в условиях многолетней мерзлоты необходимо с учетом влияния на климат выделения метана в результате таяния многолетнемерзлых грунтов на заболоченных территориях, выделения аэрозольных частиц при сгорании тех или иных видов углеводородного топлива, других опасных природных явлений (наводнений, повышения уровня воды в реках, карстовых явлений, просадочных процессов и др.).
Новые конструкции и технологии адаптации объектов транспортной инфраструктуры к климатическим изменениям необходимо апробировать на стационарных экспериментальных участках, в пределах специально оборудованных полигонов, расположенных на территории строительства транспортных сооружений.
Необходимо разработать показатели учета климатических изменений при оценке риска потерь функциональности объектов транспортной инфраструктуры в результате опасных природных явлений и использовать их в технико-экономических расчетах при проектировании, строительстве и эксплуатации транспортных объектов.
Необходимо разработать и принять следующие нормативные документы:
• Методические рекомендации Минтранса России «Учет климатиче-
ских изменений при проектировании, строительстве и эксплуатации транспортных сооружений в зоне многолетней (вечной) мерзлоты» с отдельными рекомендациями по видам транспорта;
• Методические рекомендации по количественной оценке рисков потери функциональности транспортных сооружений в связи с прогнозируемыми климатическими изменениями и их последствиями, в частности с оттаиванием многолетней (вечной) мерзлоты;
• Свод правил «Учет климатических изменений при проектировании транспортных сооружений в зоне вечной мерзлоты».
Необходимо разработать региональные пакеты нормативных документов, регламентирующих вопросы природно-климатического районирования, особенностей проектирования, строительства, эксплуатации и утилизации транспортных сооружений в зоне многолетней (вечной) мерзлоты.
Литература
1. Второй оценочный доклад Росгидромета об изменениях климата и их последствиях на территории Российской Федерации. Общее резюме. М.: Планета, 2014. 58 с.
2. Доклад об особенностях климата на территории Российской Федерации за
п
2015 год / Росгидромет. М., 2016 68 с.
3. Гомонов К. Г., Осокина К. А., Сорокин Л. В. Экономические последствия от изменения уровня Мирового океана для прибрежной инфраструктуры // Вестн. РУДН. Сер. Экономика. 2015. № 3.
4. Данилов А.И. Обеспечение гидрометеорологической безопасности освоения и использования морских месторождений // Материалы IV Всерос. морской науч.-практич. конф. «Стратегия морской деятельности России и экономика природопользования в Арктике». Мурманск: Изд-во МГТУ, 2012. С. 146-147.
5. AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). OsLo, Arctic Monitoring and Assessment Programme (AMAP), 2011.
6. Анисимов О. А. Основные природные и социально-экономические последствия изменения климата в районах распространения многолетнемерзлых пород: прогноз на основе синтеза наблюдений и моделирования. М.: Гринпис, 2010. 44 с.
7. Анисимов О. А., Кокорев В. А. Климат в арктической зоне России: анализ современных изменений и модельные проекции на XXI век // Вестн. МГУ. 2016. № 1. С. 61-69.
8. Катцов В. М., Порфирьев Б. Н. Оценка макроэкономических последствий изменений климата на территории Российской Федерации на период до
2030 г. и дальнейшую перспективу (резюме доклада) // Труды Главной ге-офиз. обсерватории им. А. И. Воейкова. 2011. № 563. С. 7-59.
9. Порфирьев Б., Катцов В. Последствия изменений климата в России и адаптация к ним (оценка и прогноз) // Вопр. экономики. 2011. № 11. С. 94-108.
10. Pinnegar J., Watt T., Kennedy K. CLimate Change Risk Assessment for the Martine and Fisheries Sector. UK CLimate Change Risk, 2012.
11. Зеленина Л. И., Федькушова С. И. Арктические льды: прогноз и адаптация // Инноватика. 2014. № 2.
12. Зеленина Л., Антипин А. Льды Арктики: мониторинг и меры адаптации // Север. 2015. № 18. С. 122.
13. Селин В. С., Васильев В. В. Влияние возможного потепления климата на хозяйственную деятельность в Арктике // Север и рынок: формирование экономического порядка. 2009. С. 27.
14. Хрусталев Л. Н., Пармузин С. Ю., Емельянова Л. В. Надежность северной инфраструктуры в условиях меняющегося климата: моногр. М.: Университетская книга, 2011. 260 с.
15. Цатуров Ю. С., Клепиков А. В. Современное изменение климата Арктики: результаты нового оценочного доклада Арктического совета // Арктика: Экология и экономика. 2012. № 4 (8). С 76-818