УДК 535.378
ВЛИЯНИЕ ГАЗОВ И ДОБАВОК НА ТРИБОЛЮМИНЕСЦЕНЦИЮ СУЛЬФАТА ТЕРБИЯ
© Г. Л. Шарипов*, А. А. Тухбатуллин, А. М. Абдрахманов,
М. Р. Муфтахутдинов
Институт нефтехимии и катализа РАН Россия, Республика Башкортостан, 450075 г. Уфа, Проспект Октября, 141.
Тел./факс: +7 (347) 284 27 50.
E-mail: [email protected]
Изучено влияние газов (Ar, He, N2, SO2, O2) и нитрита натрия на интенсивность твердотельной (эмиттер Tb3+) и газовой (эмиттер N2) составляющих триболюминесценции сульфата тербия. Продувка SO2 и добавка кристаллов нитрита натрия приводит к тушению обеих компонент. Кислород тушит только линий азота. Напуск аргона и гелия приводит к сильному (до 30—40 раз) увеличению интенсивности как азотной, так и твердотельной компонент триболю-минесценции.
Ключевые слова: триболюминесценция, лантаниды, тушение кислородом, диоксидом серы, нитритом натрия.
Введение
Триболюминесценция (ТЛ) - свечение кристаллических веществ при механическом воздействии на них (трение, разлом, обновление поверхностей). В настоящее время известно большое количество материалов, светящихся при деструкции. Высокой интенсивностью свечения обладают, например соединения лантанидов [1].
Спектр ТЛ лантанидов содержит твердотельную компоненту, совпадающую со спектром фотолюминесценции (ФЛ) кристаллов, и азотную (газовую) компоненту, представляющую собой линии молекулярного азота [2, 3]. Линии N2, расположенные в УФ области и соответствующие переходам С3Пи - Б3Пё, возникают в результате разделения электрических зарядов при деструкции кристаллов и последующего пробоя в газовой фазе [4]. Механизм возникновения твердотельной компоненты твердо не установлен. В литературе обсуждались несколько гипотез: люминесценция кристаллов возникает в результате поглощения УФ излучения азота [2]; другой возможный путь - возбуждение кристаллов за счет бомбардировки электронами или ионами, ускоренными в электрическом поле между разноименно заряженными поверхностями [5]. Также возможна твердотельная люминесценция примесных центров, заселяемых за счет энергии электрического поля в запрещенной зоне (между валентной зоной и зоной проводимости) по механизму, хорошо известному для кристаллофосфоров [6]. Так или иначе, ТЛ является следствием электризации поверхностей кристаллов при механовоздействии и ее интенсивность тесно связана с их пьезоэлектрическими и поверхностными свойствами [1, 4].
Ранее в литературе отмечались факты необычного «поведения» азотной компоненты при ТЛ. На ее интенсивность слабо влияло вакуумирование или вытеснение азота из окружающей кристаллы атмосферы инертным газом - аргоном [1-3]. Это могло свидетельствовать о вкладе в азотную компоненту свечения молекул азота, адсорбированных
кристаллами. Помимо этого было установлено, что при насыщении окружающей кристаллы атмосферы различными газами также возникает свечение этих газов [3]. Однако, систематического исследования влияния добавок на ТЛ лантанидов еще не проводилось. Между тем, знания в этой области представляют интерес при разработке сенсоров деструкции материалов на основе явления ТЛ [1, 3].
В настоящей работе изучено влияние насыщающих газов и нитрита натрия на интегральную интенсивность, интенсивность твердотельной и азотной компонент ТЛ сульфата тербия для выявления активирующего или тушащего действия добавок.
Экспериментальная часть
Исследовалась ТЛ соли Tb2(SO4)3-8H2O марки «хч». Навеску кристаллов в 200-250 мг помещали в стальную цилиндрическую кювету диаметром 30 мм с кварцевым окошком на дне. Для возбуждения ТЛ использовали 4-х лепестковую мешалку из фторопласта, вращаемую при 1000 об/мин электродвигателем. Свечение регистрировали при растирании кристаллов мешалкой по дну кюветы в атмосфере воздуха, He, Ar, O2, SO2 и при добавлении кристаллов NaNO2 и Na2SO4. Подача газов производилась с помощью трубки, подведенной непосредственно к слою кристаллов со скоростью 15-20 мл/сек. Для создания вакуума кювету плотно закрывали. Спектры ТЛ и ФЛ регистрировали при помощи спек-трофлуориметра Aminco-Bowman J4-8202, или монохроматора МДР-23. Детектором света служил фотоэлектронный умножитель Hamamatsu R3896. Оценка интенсивности газовой и твердотельной компонент ТЛ проводилась с помощью различных светофильтров в специальной установке, детектором света в которой являлся ФЭУ-39. Концентрацию SO2 в атмосфере при изучении тушения ФЛ кристаллов Tb2(SO4)3-8H2O определяли спектрофотометрически по интенсивности поглощения при X = 290 нм (е = 300 л-моль-1-см-1 [7]). Диоксид серы получали воздействием тиосульфата натрия с серной кислотой
* автор, ответственный за переписку
[8]. Выделяемый при реакции газ отбирали шприцем и добавляли в герметичную кювету с кристаллами сульфата тербия, в которой контролировалась интенсивность ФЛ при Хвозб = 365 нм, а также поглощение 802. Спектры поглощения регистрировали на спектрофотометре “8рееогё ИУ-УК”.
Результаты и их обсуждение
Напуск в кювету Не и Аг ведет к увеличению интегральной интенсивности ТЛ примерно в 30-40 раз по сравнению с интенсивностью на воздухе (рис. 1).
Рис. 1. Интегральная интенсивность ТЛ сульфата тербия при продувке Аг и Не.
При вытеснении азота из кюветы этими газами линии N не исчезают, а наоборот, их интенсивность растет (рис. 2 график 1). Аналогичный рост интенсивности наблюдается и для твердотельной компоненты, (рис. 2 график 2), свечения полученного с помощью интерференционного фильтра с максимумом пропускания 546 нм, в области наиболее интенсивной полосы испускания иона ТЬ3+.
Рис. 2. Интенсивность азотной компоненты ТЛ - 1 и твердотельной компоненты ТЛ - 2 при продувке Аг. Использованы светофильтр УФС-2 с пропусканием от 260 до 400 нм (1) и интерференционный фильтр, пропускающий максимум полосы иона ТЬ3+ при X = 545 нм (2).
На рис. 3 приведен спектр ТЛ сульфата тербия при продувке аргоном. В этом спектре видны, линии Аг (переход 4р - 4s), которые регистрируются
совместно с линиями К2. Примерно такая же картина наблюдается при продувке кюветы гелием, спектр ТЛ содержит линии Не и линии азота. Линии гелия и аргона не вносят большого вклада в рост интенсивности ТЛ так как, свечение Не и Аг малоинтенсивно. При вакуумировании кюветы в течение 10 мин до ~10-1 мм рт. ст. интенсивность излучения азота вначале растет, затем уменьшается до постоянного уровня в 1.5-2 раза меньше интенсивности излучения на воздухе.
Длина волны,нм
Рис. 3. Спектр ТЛ ТЬ2^04)3-8Н20 при продувке Аг.
Спектрофлуориметр МДР-23, АХ = 4 нм.
Наиболее значительное тушение линий азота происходит при продувке кюветы 02 (рис. 4). На данном рисунке показана интенсивность ТЛ ТЬ2(804)3-8Н20 в УФ области, полученная с помощью светофильтра УФС-2, пропускающего только свечение в диапазоне 260-400 нм, где расположены основные линии молекул азота.
Рис. 4. Тушение линий азота (X = 260-400 нм) кислородом при ТЛ сульфата тербия.
Видно, что кислород почти полностью тушит азотную компоненту. На твердотельную компоненту (полосы иона ТЬ3+ в области 488-590 нм наблюдение ТЛ через светофильтр ЖС-16 или интерференционный фильтр X = 546 нм) кислород практически не влияет. Очевидно, данные факты являются отражением того, что в формировании газовой
компоненты ТЛ принимают участие как газы, находящиеся в окружающей кристаллы атмосфере, так и адсорбированные на поверхностях кристаллов молекулы. Кислород, очевидно, сильно тушит свечение азота. При вакуумировании, или продувке гелием и аргоном, данное тушение ослабевает. Однако, несмотря на сильное падение концентрации молекул азота в окружающей атмосфере, достаточно интенсивное свечение обеспечивается за счет адсорбированных молекул №2, подвергаемых десорбции и электронному возбуждению при электрических разрядах. Возможно даже, возбуждение адсорбированного азота не требует обязательного участия разрядов, а происходит по иным механизмам, аналогичным механизму при акустолюминес-ценции [9], или механизму возбуждения твердотельной компоненты ТЛ за счет энергии электрических полей, возникающих при механоэлектризации кристаллов [5].
Рис. 5. Тушение ТЛ ТЬ2(804)3-8Н20 диоксидом серы.
При продувке кюветы 802 происходит полное тушение как азотной, так и твердотельной компонент ТЛ ТЬ2(804)3-8Н20 (рис. 5). Из рис. 5 видно, что в отличие от действия 02, тушение 802 происходит не мгновенно при напуске газа, а развивается в течении десятков секунд. Очевидно, это связано с небольшой скоростью тушения. Специальные опыты показали, что диоксид серы тушит также и фотолюминесценцию кристаллов сульфата тербия. Экспериментально вычисленная по уравнению Штерна-Фольмера 10/1 = 1 + к-т0-[802] (т0 = 420 мкс для ТЬ3+) константа скорости реакции тушения ФЛ диоксидом серы составила к = 5.5-105 л-моль-1-с-1. Вероятно, константа скорости тушения люминесценции молекул азота диоксидом серы также невелика. В тоже время, известно, что при тушении №2 кислородом, константа скорости составляет 2-1010 л-моль-1-с-1 [10]. Поэтому даже малые добавки 02 приводит к сильному тушению электронновозбужденных состояний №2 (рис. 4). Тушение диоксидом серы ТЬ3+* и №2* проявляется при больших концентрациях, когда частота столкновений возбужденных частиц с тушителем велика. Поэтому наблюдается медленный спад свечения, так как
в начале продувки кюветы концентрация молекул 802 мала, но со временем она увеличивается, вместе с этим растет вероятность столкновений возбужденных частиц с тушителем.
[№а2804], [№а№02], мг
Рис. 6. Зависимость интенсивностей азотной (1, 2) и твердотельной (3, 4) компонент ТЛ ТЬ2(804)3-8Н20 при добавлении сульфата натрия - 1, 3 и нитрита натрия - 2, 4. Использованы светофильтр УФС-2 (260-400 нм ) - 1, 2 и интерференционный фильтр (X = 546 нм) - 3, 4.
Наряду с влиянием газов, интересным является также выяснение влияния на ТЛ добавок различных кристаллических веществ. Известно, например, что сильным тушителем ФЛ лантанидов, в том числе тербия, является ион нитрита [11]. Как оказалось, №а№02 влияет на твердотельную и азотную компоненту ТЛ (рис. 6). Например, из рис. 6 видно, что уже при добавлении 50-60 мг №а№02 к 200 мг сульфата тербия наблюдается спад интенсивности ТЛ. Практически полное подавление ТЛ происходит при добавлении 125 мг №а№02. Добавление таких же количеств №а2804 не влияет на ТЛ ТЬ2(804)з-8Н20. Таким образом, влияние №а№02 связано именно с действием №02 . Тушение твердотельной компоненты по-видимому свидетельствует о наличии миграции энергии возбуждения не только внутри отдельных кристаллов по экситон-ному механизму, но и между различными соприкасающимися поверхностями кристаллов. Аналогичные процессы передачи энергии между нанокристаллами кремния описывалась в литературе [12]. Механизм тушения азотной компоненты ТЛ пока не вполне ясен.
Выводы
1. Обнаружено усиление интенсивности трибо-люминесценции сульфата тербия в атмосфере инертных газов - гелия и аргона. Это явление можно использовать для повышения интенсивности триболюминесценции и улучшения характеристик сенсоров на основе солей лан-танидов.
2. Установлено наличие тушения триболюми-несценции сульфата тербия кислородом и диоксидом серы. Данное тушение связано не с вытеснением азота из окружающей кристаллы
атмосферы, а с реакциями истинного тушения азотной компоненты ТЛ - свечения молекул N2* и твердотельной компоненты ТЛ - излучения ионов Tb3+*.
3. Обнаружено тушение триболюминесценции сульфата тербия добавками нитрита натрия. Тушение обусловлено взаимодействием иона NO2 в твердой фазе с центрами триболюми-несценции Tb3+* и N2*.
4. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант №11-02-97000).
ЛИТЕРАТУРА
1. Sage I., Bourhill G. Triboluminescent materials for structural damage monitoring // J. Mater. Chem. 2001. V.
11. P. 231-245.
2. Булгаков Р. Г., Кулешов С. П., Зузлов А. Н., Вафин Р. Р. Триболюминесценция ацетилацетонатов лантанидов // Изв. АН, Сер. хим. 2004. №12. С. 2602-2604.
3. Шарипов Г. Л., Тухбатуллин А. А., Абдрахманов А. М. Триболюминесцения кристаллов и суспензий неорганических солей лантанидов // Физикохимия поверхностей и защита металлов. 2011. Т. 47. №1, С. 16-22.
4. Sweeting L. M. Triboluminescence with and without Air // Chem. Mater. 2001, V. 13, P. 854-870.
5. Takada N., Sugiyama J., Katoh R. Mechanoluminescent properties of europium complexes // Synth. Met. 1997. V. 91. P. 351-354.
6. Шарипов Г. Л., Абдрахманов А. М., Тухбатуллин А. А. Сонотриболюминесценция суспензий кристалов соединений трехвалентного тербия // Письма в ЖТФ. 2009. Т.35. №10. С. 25-33.
7. Mettee H. D. Fluorescence and phosphorescence of SO2 vapor // J. Chem. Phys. 1968. V.49, P. 1784-1793
8. Карякин Ю. В. Ангелов И. И. Чистые химические вещества. М.: Химия, 1974. 408 с.
9. Островский И. В. Акустолюминесценция - новые явления акустооптики // Соросовский образовательный журнал. 1998. №1. С. 95-102.
10. Попов Н. А. Исследование неустойчивости несамостоятельного СВЧ-разряда в азотно-кислородных смесях // ТВТ. 1994. T. 30. № 2. C. 177-182.
11. Шарипов Г. Л., Абдрахманов А. М., Тухбатуллин А. А., Гареев Б. М., Загретдинова Л. Р., Действие NO3~ на сонолюминесценцию Tb3+ в водном растворе. Структура и динамика молекулярных систем. Сб. статей. Изд. Мар-ГТУ. 2009. Вып. 16. Ч. 3, С. 252-257.
12. Гусев Б. О., Прокофьев А. А., Маслова О. А., Теруков Е. И., Яссиевич И. Н. Передача энергии между нанокристаллами кремния // Письма в ЖЭТФ. 2011. Т.93. В.
3. С. 162-165.
Поступила в редакцию 15.06.2011 г.